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Abstract. This paper introduces a new class of globally asymptotically stabilizing feedback control laws
for the complete (i.e., dynamics and kinematics) attitude motion of a rotating rigid body. Control laws are
given in terms of two new parameterizations of the rotation group derived using stereographic projection.
The stabilizing properties of the proposed controllers are proved using Lyapunov functions which involve a
quadratic plus a logarithmic term. An interesting feature of the proposed Lyapunov functions is that they
often lead to controllers that are linear with respect to the kinematic parameters.
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1. INTRODUCTION

A recent paper (Tsiotras and Longuski, 1994a) intro-
duced a new method for parameterizing the set of ro-
tational matrices, i.e. the kinematics of the rotational
motion. The proposed new kinematic formulation in-
volves three parameters for describing the kinematics
of the motion, that is, it falls within the same cate-
gory as the Fuler angles and the Cayley-Rodrigues
parameters. It is derived by stereographically pro-
jecting an appropriate set of coordinates (direction
cosines) onto their respective projective plane. In
this paper one more non-standard, three-dimensional
kinematic description is introduced, the derivation
of which also uses the idea of the stereographic pro-
jection. In this case the stereographic projection is
applied to the Euler parameters, instead. The re-
sulting parameters are closely related to the Cayley-
Rodrigues parameters but they are superior to them,
since they are not limited to eigenaxis rotations of
only up to 180 deg.

The scope of this paper is twofold: First to discuss the
potential of the new kinematic formulations in con-
trol applications, and second to introduce a new type
of Lyapunov function which can facilitate control de-
sign for attitude control problems. In particular, the
problem of the complete, global asymptotic stabiliza-
tion of the attitude motion, using feedback control
is of interest. By complete we mean that not only
angular velocity stabilization is required, but stabi-
lization of the orientation as well. By global asymp-
totic stabilization we mean that all of the trajectories
of the closed loop system remain bounded and tend
to zero for arbitrary initial conditions. (It is tacitly
assumed that all initial conditions are in the domain
of definition of the corresponding differential equa-
tions, such that standard arguments about the exis-

tence and uniqueness of solutions hold). By feedback
we mean that we have complete knowledge about the
state of the system, which is thus available for use
in the control loop. The question of incomplete in-
formation about the state (output feedback) is not

addressed.

Another implicit assumption made is that the feed-
back control history can be implemented through gas
jet actuators. This can be achieved in practice using,
for example, a Pulse-Width Pulse-Frequency Modu-
lator (PWPF) (Wie and Barba, 1985). Since most
current gas jets are of the on-off type, a PWPF mod-
ulator can be used to produce the continuously vary-
ing control profile. This is accomplished by producing
a pulse command sequence to the thruster valve by
adjusting the pulse width and pulse frequency. The
average torque produced by the thruster equals the
demanded torque input.

Section 2 of the paper introduces the equations of mo-
tion. The main results are given in Section 3. The
first two theorems in Section 3 present two known
results, but are repeated here the sake of complete-
ness and for comparison. The first result (Theorem 1)
gives a linear stabilizing control law in terms of Eu-
ler parameters and is due to Mortensen (1968). The
second result (Theorem 2) has appeared in several pa-
pers (Junkins et al., 1991; Li and Bainum, 1992) and
gives a globally stabilizing control law in terms of the
Cayley-Rodrigues parameters. The stabilizing con-
trol law 1s based on a quadratic Lyapunov function
and 1s nonlinear. Theorem 3 gives a linear feedback
control law in terms of the Cayley-Rodrigues param-
eters, using a new type of Lyapunov function which is
not quadratic. Instead, the Lyapunov function is the
sum of a quadratic term for the dynamics and a loga-
rithmic term for the kinematics. This is the first new



result of the paper. Theorems 4 through 7 are also
all new and present stabilizing control laws in terms
of the new kinematic parameters. Theorem 8 is an
extension of Theorem 4.4 in Tsiotras and Longuski
(1994b) for the case of a nonsymmetric rigid body.

2. EQUATIONS OF MOTION

The dynamics of the rotational motion of a rigid body
is described by the following set of differential equa-
tions

Il(.bl = (Iz — Ig)(.dz(.dg + Ul (1&)
Iz(.;)z = (13 — Il)(.dg(.dl =+ us (1b)
13@3 = (Il — Iz)(.dl(.dz + Us (1(3)

where w1, ws, w3 denote the components of the body
angular velocity vector w with respect to the body
principal axes, where uy, us, ug are the acting torques,
and where the positive scalars I, I, I3 are the prin-
cipal moments of inertia of the body with respect to
its mass center.

In addition to the dynamics, which provides the time
history of the angular velocity vector, the orientation
of a rigid body is given by the kinematic equations.
If R is the rotation matrix which relates the inertial
and the body reference frames, then it obeys the dif-
ferential equation

R= SR (2)

where S(w) is the skew-symmetric matrix

0 W3 —W9
Sw):=| —ws 0w (3)
Wo —W1 0

The introduction of the matrix R is necessary because
direct integration of wy,wsy,ws does not provide any
useful information about the orientation of the body.
Because of the redundancy of system (2) (R is an or-
thogonal matrix) one can also determine the orienta-
tion if certain parameters are known (Euler parame-
ters, Cayley-Rodrigues parameters, Euler angles). In
Tsiotras and Longuski (1994a) a new three-parameter
set for describing the kinematics is introduced, which
1s shown to have some significant advantages over the
other classical three-dimensional parameterizations.
In Subsection 3.3 another kinematic formulation is
introduced, which is also derived using stereographic
projection. For a complete discussion on the attitude
representations see Stuelpnagel (1964) and the recent
survey paper by Shuster (1993).

The main results of the paper are presented in the

next section.

3. STABILIZING CONTROLLERS

The main interest is in designing feedback control

laws for the attitude motion of a rigid body. A
Lyapunov function approach is used to prove global
asymptotic stability of the associated closed-loop sys-
tem. An insightful choice of a certain type of Lya-
punov function, involving the sum of a quadratic and
a logarithmic term, often allows the design of linear
feedback control laws. Linear feedback control laws
in terms of the four-dimensional parameterization of
Euler parameters have been already proposed in the
literature (Mortensen, 1968). However, in the case
when one uses a non-redundant set of parameters, no
linear globally stabilizing control law is known thus
far. Theorem 3 and Theorem 4 give such linear con-
trol laws for the case of three kinematic parameters,
using the proposed Lyapunov functions.

3.1. Fuler Parameters

Fuler’s Principal Rotation Theorem (Kane et al.,
1983) states that a completely general angular dis-
placement of a rigid body can be accomplished by
a single rotation through an angle ® (principal an-
gle) about a unit vector e (principal vector), which
is fixed in both the body and the inertial frames. If
one defines

P . .
Qo:=cos—, ¢ :=esin—, (i=12,3) (4)
2 2
where € = (ey,es,e3) is the principal vector, then
the parameters qo, ¢1, ¢2, ¢3 (Euler parameters) sat-
i1sfy the following set of linear, ordinary differential

equations

qo 0 —w1 —w2 —ws 0
G| _Ll]lwr 0 ws —w 7 5)
q2 2| ws —w3z 0 w1 q2
q3 w3 W2 —w1 0 43

From (4) one easily establishes the following Euler
parameter constraint

@+ +a+as=1 (6)

The four-dimensional parameterization of (4) intro-
duces a redundant parameter in order to achieve a
nonsingular description of the motion. It is well-
known, for example, that although three is the
least number of parameters required to describe
the kinematics of a rotating rigid body, every such
three-dimensional parameterization of the motion
is nevertheless singular (Stuelpnagel, 1964; Shuster
1993). This is the case with the classical three-
dimensional parameterizations using FEulerian angles
and the Cayley-Rodrigues parameters. Since quater-
nions provide a global, singularity-free description of
the rotational motion, their use has become very pop-
ular in control problems (Wie and Barba, 1985; Wie
et al., 1989; Vadali et al., 1984).



Mortensen (1968) showed the following result about
the attitude stabilization of a rigid body in terms of
Euler parameters.

Theorem 1 The linear feedback control law
(1=1,2,3) (7)

U; = —wWi — ¢q,

globally asymptotically stabilizes the system of equa-
tions (1) and (5).

The proof of this theorem is based on the following
Lyapunov function for the system (1) and (5)

[N

3
Z +(0—1)"+4¢i + 43+ a3 (8)

Note that the Lyapunov function in (8) is the sum of
two quadratic terms, the first of which involves only
the angular velocity and represents the kinetic energy
of the rotational motion. The second term involves
the kinematic parameters and can be thought of as a
“potential” energy-like quantity. With this choice of
a Lyapunov function the control law is linear. As will
be shown in the sequel, however, a Lyapunov function
of the this type (quadratic plus quadratic) leads to
nonlinear feedback control laws for other kinematic
parameter sets.

3.2. Cayley-Rodrigues Parameters

Rodrigues parameters can be used to eliminate the
constraint equation (6) associated with the Euler pa-
rameter set, thus reducing the number of coordinates
necessary to describe the kinematics from four to
three. This i1s achieved by defining

qi

Pi = —,

" (i=1,2,3) (9)

The associated kinematic equations then take the

form (Kane et al., 1983)

3

) 1

pr = 5((.«11 —wyp3 +wsp2 + M ;_1: piwi)  (10a)
) 3

p2 = §(W2 — w3p1 +wips + p2 '5—1: piti) (10b)

1
p3 = §(W3 —wip2 +wap1 + p3 ;Piwi) (10¢)

The Rodrigues parameters are also the components

of the Gibbs vector defined by

ﬁ:étan§ (11)

Clearly, from (11) one can easily establish that the
Cayley-Rodrigues parameters cannot be used to de-

scribe eigenaxis rotations of more than 180 deg.

The Cayley-Rodrigues parameters were, for the most
part, ignored in the literature of attitude dynam-
ics; recently, however, these parameters were found
to have an advantage over the Euler parameters for
certain control applications (Dwyer, 1985). This ex-
plains the revived interest in these kinematic param-
eters. Control laws based on the Cayley-Rodrigues
parameters have been derived for example in (Dwyer,
1985; Junkins et al., 1991; Li and Bainum, 1992; Slo-
tine and Di Benedetto, 1990). The main result con-
cerning global stabilization using the Rodrigues pa-
rameters is given in the following theorem (Junkins
et al., 1991; Li and Bainum, 1992).

Theorem 2 The choice of the feedback control

wi — pi(L+ pT + p3 + p3) (12)

U; = —

(i =1,2,3) globally asymptotically stabilizes the sys-
tem (1) and (10).

The proof 1s based on the use of the following
quadratic Lyapunov function

3
:%Z iwi +p1+ P+ 03 (13)

Note that the choice of V is closely related to the
choice of the feedback control which achieves stabil-
ity for this specific Lyapunov function. Clearly, the
nonlinearity associated with the control law (12) is a
consequence of the choice of the Lyapunov function
(13) used to prove stability. If one chooses a dif-
ferent Lyapunov function, one easily establishes the
fact that a lenear control law suffices to provide global
asymptotic stability for the system (1) and (10), as
the following theorem shows.

Theorem 3 The choice of the linear feedback control
law
(i=123) (14)

up = —w; — pi,

globally asymptotically stabilizes the system (1) and

(10).

The proof is based on the following “quadratic plus
logarithmic” Lyapunov function

3
:%Z i +1n1+P1+P2+P3) (15)

Here In(+) denotes, as usual, the natural logarithm.

From equations (12) and (13) and equations (14) and
(15) it is clear that one has, in effect, traded the com-
plexity of the Lyapunov function with the complexity
of the resulting control law. Lyapunov functions of



the “quadratic plus logarithmic” type were first used
in connection with the attitude stabilization problem
of an axi-symmetric spacecraft using only two control
torques (Tsiotras and Longuski, 1994b).

3.3. Stereographic Coordinates from Euler Parame-
ters

In the previous section it was shown that the Cayley-
Rodrigues parameters eliminate the redundancy asso-
ciated with the Euler parameters, but they have the
disadvantage of becoming unbounded when ¢y = 0.
If instead of (9) one eliminates the constraint (6) by
introducing the parameters

qi
1+ q0’

(i=1,2,3) (16)

g; ‘=

one obtains the following set of differential equations
in terms of oy, (i =1,2,3)

1 wio

o1 = §(T+w302—w203+01 ;Wio'i) (17a)
) 1 wso 3
oy = 2( 5 4+wi0o3—w30o 409 ;w i05)  (17Db)
) 1 wso >
o3 = 5(7 +wo0] —wi 09403 ;wmi) (17¢)

where & := 1 — 07 — 02 — 02. Definition (16) amounts

to a stereographic projection of the unit length vector
(40,91, q2, q3), which lies on a four-dimensional unit
sphere onto the three-dimensional Euclidean space,
using (—1,0,0,0) as the base point (South pole) of the
projection (Conway, 1978). The coordinates in (16)
do not have the disadvantage of the Rodrigues param-
eters which do not allow eigenaxis rotations greater
than 180deg. Indeed, from (4) and (16) one easily
sees that the o; can be viewed as components of the
vector

o= etan — 1
¢ = etan o (18)

which is well-defined for all eigenaxis rotations in the
range 0 < @ < 360 deg.

As Shuster (1993) recently pointed out, these stere-
ographic coordinates of the Euler parameters have
been previously derived also by Marandi and Modi
(1987), where they were called the Modified Rodrigues
Parameters and they were used for libration control of
spacecraft in orbit. It is surprising, however, that in
spite of their obvious advantages over the Rodrigues
parameters, their use in attitude determination and
control has been, for the most part, ignored. It is
hoped that the results of this paper will revive inter-
est in these kinematic parameters.

If one uses these coordinates for the kinematics, one
can easily establish the following result.

Theorem 4 The linear feedback control law

U; = —W; — 0y, (i:1,2,3) (19)
globally asymptotically stabilizes the system of equa-
tions (1) and (17).

The Lyapunov function for the system (1) and (17).
is given by

3
:%Z W) —|—ln1—|—01—|—02—|—03) (20)

It should be clear at this point that the linearity of
the control law (19) is a consequence of the choice
of the Lyapunov function in (20). As in (15) this
1s a “quadratic plus logarithmic” type of Lyapunov
function. If, instead, one uses the “quadratic plus
quadratic” type of Lyapunov function

3
:%Z wi +2(0f + 02 4 02) (21)

one obtains a nonlinear feedback control, as the fol-
lowing theorem states.

Theorem 5 The choice of feedback control
u; = —w; — oy(1 + 0 4+ 02 + 73) (22)

(i =1,2,3) globally asymptotically stabilizes the sys-
tem of equations (1) and (17).

3.4. Stereographic  Coordinates  from  Direction

Cosines

Along the same lines with the previous section, one
can stereographically project one of the columns of
the rotation (direction cosine) matrix onto the com-
plex plane, to eliminate the redundancy of the as-
sociated kinematic equations. (Recall that the rota-
tion matrix is orthogonal.) If one applies the stereo-
graphic projection to the third column of the rotation
matrix using

_b—ia
1+e¢

(23)

one obtains the kinematic equation (Tsiotras and
Longuski, 1994a,c)
. . w w4
W= —1WwsgW+ — 4+ —w

) (24)

where w := wy+1iws, where w := wy+1¢ws, and where
the bar denotes complex conjugate. In equation (23)
a,b, c are the direction cosines of the body 3-axis of
the rigid body with respect to the inertial axes, and
the base point of the projection is chosen to be the
South pole (—1,0,0) of the unit three-dimensional
sphere. The reason for choosing the South pole as



the base point of the stereographic projection in equa-
tions (23) and (16) is to move the inherent singular-
ity associated with the kinematic parameterization
(w = o0 in (23) and ¢; = oo in (16)) as far away from
the respective equilibrium points (w = 0 and o; = 0)
as possible. In this way, global asymptotic stability
of the respective kinematic equations corresponds to
asymptotic stability from the largest possible set of
physical configurations, which does not include the
(isolated) singular point.

The third coordinate necessary to complement (24)
and complete the kinematics obeys the differential
equation

z=ws+ Im(ww) (25)

It can be shown that the (w,z) kinematic parame-
terization of the rotational motion implies that the
body orientation can be described by means of two
successive rotations. The first is a rotation through
an angle z about the 3-axis, and the second is a rota-
tion through an angle arccos ¢ about the unit vector

(b/\/(a2 +b?), —a/\/(a2 +5?),0)

Using these coordinates one has the following stabi-
lizing control law.

Theorem 6 The choice of feedback control
u=—w—w(l+iz), uz=-ws—z (26)

where u = uy+ius and w = wi+iws, globally asymp-

totically stabilizes the system (1), (24) and (25).

Here the following Lyapunov function for the associ-
ated closed-loop system is used

3
:%Z jw? +In(1 + |w|?) + 527 (27)

were | - | denotes the absolute value of a complex
number, i.e., ww = |w|?, w € C.

Using the quadratic Lyapunov function

V=1 Lw+|w?+ 3 (28)

.

1
-

K3

instead, one can show the following theorem.

Theorem 7 The choice of feedback control
u = —w—w(l+|w* —izw (29a)
Uz = —Wwz—2 (29D)
were U = Uy +ius and w = w1 +1tws, globally asymp-

totically stabilizes the system (1), (24) and (25).

For w = 0 one obtains stabilization of the rigid body
about one of its body-axes. If w was defined using
the stereographic projection of the third column of

the rotation matrix, as in (23), then w = 0 implies
stabilization of the body 3-axis about the inertial 3-
axis. In such a case, the final motion is simply a sta-
ble rotation of the rigid body about its body 3-axis.
If one is interested only in stabilization about one
of the body axes, then equation (24) alone suffices
to describe the kinematics, since (25) plays no role
because it describes (roughly) the relative rotation of
the body about this body axis. Since in all such cases
the motion of the body naturally decomposes into the
motion of one of the body axes and, essentially, a ro-
tation about this axis, it appears that the (w, z) coor-
dinates are preferable for designing feedback control
laws. A feedback control law which globally asymp-
totically stabilizes a rigid body about its body 3-axis
can be constructed, for example, as follows.

Theorem 8 The linear feedback control
U= —w—w (30)

globally asymptotically stabilizes the sub-system (1a),
(1b) and (24). That is, for arbitrary initial condi-
tions, limy_ oo (w(t), w(t)) = (0,0).

The Lyapunov function

3
V= %ZIM? +In(1 + |w|?) (31)
=1

1s used to show this result.

The linear control law (30) is used in Tsiotras and
Longuski (1994b) to stabilize the (w, w) system in the
case of an axially symmetric rigid body. Theorem 8
states that the same control law will also work for a
nonsymmetric body, if one is interested only in stabi-
lization to a simple rotation about the body 3-axis.
Another interesting feature of the control law (30) is
that it can be implemented using only two control ac-
tuators about principal axes. In this case, however,
(30) cannot be used to control the final value of ws.

4. CONCLUDING REMARKS

A new approach for designing linear and nonlinear
feedback control laws for the attitude stabilization
of a rigid body has been presented. In particular, a
new type of Lyapunov function for this class of prob-
lems 1s proposed, which often leads to linear control
laws. The proposed Lyapunov functions include a
quadratic term for the angular velocities (kinetic en-
ergy) and a logarithmic term for the kinematic pa-
rameters. Control laws are given both in terms of tra-
ditional kinematic parameterizations (Euler parame-
ters and Cayley-Rodrigues parameters) and in terms
of two new kinematic parameterizations derived by
stereographic projection. All control laws are given
in their most natural form, i.e. taking all control
gains to be unity. Specific applications will require



tuning the control gains to meet time and/or energy
requirements. All of the control laws proposed in this
paper have the property that they do not require in-
formation about the body principal moments of in-
ertia and they are therefore robust with respect to
system parametric uncertainty.

As a final remark, note that the issue of singularities
associated with the three-dimensional parameteriza-
tions has not been explicitly addressed. The global
stability of the closed loop-system, however, will a
posteriori guarantee that the state variables remain
bounded and thus, the body will avoid these singular
orientations.
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