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Stability of Time-Delay Systems: Equivalence between does not provide direct information on how conservative the resultant
Lyapunov and Scaled Small-Gain Conditions condition may be in practice.
In this note, we show that several existing Lyapunov-based results,
Jianrong Zhang, Carl R. Knopse, and Panagiotis Tsiotras  both delay-independent and delay-dependent, are equivalent to the
scaled small-gain condition for robust stability of a comparison system
) . that is free of delay. This result provides a new frequency-domain in-

Abstract it is demonsirated that many previously reported Lyapunov- o nretation to some common Lyapunov-based results in the literature.
based stability conditions for time-delay systems are equivalent to the ro- | . : . . .
bust stability analysis of an uncertain comparison system free of delays via Vi & numerical example, we investigate the potential conservatism
the use of the scaled small-gain lemma with constant scales. The novelty ofof the stability conditions, and demonstrate that a major source of
this note stems from the fact that it unifies several existing stability results conservatism is the embedding of the delay uncertainties in unit disks
under the‘same framework. In addition, it offers insights on how new, less {hat the comparison system employs. This source of conservatism is
conservative results can be developed. hidden in the Lyapunov-based framework but is quite apparent in the

Index Terms—Stability, time-delay systems. comparison system interpretation. These results also provide insight
into how to reduce the conservatism of the stability tests.

After a conference version of this note appeared in [28], we be-
came aware of the results of [15] and [7] which are related to our

The analysis of linear time-delay systems (LTDS) has attractegpproach. Unlike the model transformation class in [15], which con-
much interest in the literature over the half century, especially in thains distributed delays, the comparison system employed herein is a
last decade. Two types of stability conditions, namely delay-inddelay-free uncertain systestated in frequency domain and permits the
pendent and delay-dependent, have been studied [17]. As the nammediate application of the standard frequency-domain techniques,
implies, delay-independent results guarantee stability for arbitrariych as the: framework. The results in [7] are based on a special case
large delays. Delay-dependent results take into account the maximofour comparison system, namely = I,,. Neither [15] nor [7] exam-
delay that can be tolerated by the system and, thus, are more usefihéd the equivalence of existing Lyapunov-based criteria and the scaled
applications. One of the first stability analysis results was the polynsmall-gain conditions, which is the contribution of this note.
mial criteria [8]-[10]. An important result was later provided by [3], The notation is conventional. L&™"*™ (C"*™) be the set of all
which gives necessary and sufficient conditions for efficient compueal (complex): x m matricesR. := RU {>}, I,, ben x n identity
tation of the delay margin for the linear systems witimmensurate matrix, W be the transpose of real matiii, andRH~. := {H (s) :
delays. This result only requires the computation of the eigenvaluBs s) € H.., H(s) is a real rational transfer matiixP > 0 indicates
and generalized eigenvalues of constant matrices. Unfortunatelythiat P is a symmetric and positive definite matrix, ghe|| . indicates
is not straightforward to extend this to many problems of intereshe .. norm defined by|G||oc := sup,,cg 7[G(jw)] Wherea (M)
such as the stability of general (noncommensurate) delays systeimshe maximum singular value of complex matrix. The structured
‘H., performance of LTDS with exogenous disturbances, robusingular value of a matri®/ € C"*" with respect to a block structure
stability of LTDS with dynamical uncertainties, and robust controllef is defined byu () = 0 if there is noA € A such thatl — MA
synthesis, etc. Recently, much effort has been devoted to developimgingular, and
frequency-domain and time-domain based techniques which may S SN S At (T — MAY — )/ -1
be extendable to such problems. The frequency-domain approaches pa(M) = [min{a(A) : det(I - MA) =0, A € A}]
include integral quadratic constraints [6], singular value tests [25],0therwise. We also define the s&t, := {diag[\l.,, A2Ln,, -+,
framework-based criteria [4], and other similar techniques. In [20}-I».]: X € C} and the closed norm-bounded €&\, := {A €
the traditionalu-framework was extended for time-delay systems t&feo: [[Alls < 1, A(s) € A, }. Finally, for linear time-invariant
obtain a necessary and sufficient stability condition, which was th&¥stemP(s) and its inputz(¢), we define a signaP(s)[z](t) as
relaxed to a convex sufficient condition. P(s)[x](#) := L7 [P(s)X (5)]

Other recent stability analysis results have been developed in )
the time-domain, based on Lyapunov’s Second Method using eit%‘?ere}‘(
Lyapunov—Krasovskii functionals or Lyapunov—Razumikhin functions2Pace operator.

[26],[12], [13], [16], [22], [14], [17], [19]. These results are formulated
in terms of linear matrix inequalities (LMIs), and, hence, can be solved Ill. COMPARISON SYSTEM
efficiently [1]. While these results are often extendable to the systemsgg; aase of exposition, we will examine the single-delay case.

with general multipl.e delays and/or dynamical uncertainties, _they CRfdwever, the Lyapunov stability conditions examined here may all
be rather conservative and the corresponding Lyapunov functionals B straightforwardly extended to the case of systems with multiple

complex. A formal procedure for constructing Lyapunov fu”Ctionalfhoncommensurate) delays. Consider the linear time-delay system
for LTDS was proposed in [11], but a Lyapunov functional, in general,
(t) = Ax(t) + Agz(t — 1) 1)

whered € R"*”" andA, € R™*"™ are constant matrices, and the delay
7 is constant, unknown, but bounded by a known bourtl gsr < 7.
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s) is the Laplace transform af(t), andZ [ - ] is the inverse
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[2], its upper bound withD scales is typically used instead. In partic-
> A ular, the interconnection in Fig. 1 is robustly stablé&fifs) € RH is
internally stable and

. _ . -1
ilé%ﬁléfgg (DG(jw)D) <1 4
where
y u D := {diag[D:, D] |D; € C"*", D, = D} > 0}.
G(s) - The test (4), although a convex optimization problem, requires a fre-

guency sweep. Alternatively, the analysis of robust stability may be
performed without the frequency sweep by solving an LMI. The fol-
Fig. 1. A system with uncertainty. lowing lemma states this result. Additional conservatism is introduced
in this formulation, however, since it implies satisfaction of (4) with

. . ... the sameonstant reakcaling matrix used for all frequencies.
The results of this note depend on the notion of robust stability of a; o\ \o 2[21] (Scaled Small-Gain LMI) Consider the system in-

feedback interconnection of a finite-dimensional, linear, time-invariaEErConnection shown in Fig. 1 where the pl&#ts) is FDLTI and the

(FDLTI) system.and an u.n.certain.s.ystem with known uncertqipty St”‘g:certainty block is such that € BA . Let(A, B, C, D) be amin-
ture. The following definition clarifies the type of robust stability use al realization ofG(s) with

herein. More on this definition can be found in [32].
Definition 1: Consider a linear, time-invariant (finite-dimensional) G(s) =
systemG(s) interconnected with an uncertain blogk as shown in C D

Fig. 1. The uncertain block belongs to aknown, uncertainty structurerpen, the closed-loop system is robustly stable if there exist matrices
setA € A. Then, the system is said to bebustly stableif G(s)  y - (andQ = diagQ1, Qz, -+ Q] > 0, Qi € R X" =

A B

is internally stable and the interconnection is well posed and remains; . satisfying the following LMI:
internally stable for alA € A. ATX+XA XB C'Q

To proceed with our analysis, we need the following preliminary BTY _0 DTQ| <o ®)
results. . ’

QC QD  -Q
Definitiom 2: If a system satisfies (5), then we say that this system
satisfies the scaled small-gain sufficiency (SSGS) condition for robust
stability.

Lemma 1: Let M € R"*" be any constant matrix. The system (1)
is asymptotically stable for at € [0, 7], if the following comparison
system

sX = (A+ MANX + A (I, — M)A,X
FATMAGAX + A ApTM A AX IV. MAIN REsULT
(3) Herein, we introduce our main result, namely, the equivalence be-
tween several Lyapunov-based results [25], [13], [16], [19] and the
wherediag[A, As] € BA,, is robustly stable. scaled small-gain conditions for the comparison system (3).
Proof: Using (2), we have First, we restate these stability analysis results.
Theorem 1: Consider the system (1) under Assumption 1. Then, we
sX(s)=AX(s)+ (I — M)Age 7°X(s)+ MAge” "X (s) have

=(A+MAHNX(s)+ (I - M)Aze” "X (5) 1) (Delay-Independent Stabilxy25]: The system (1) is asymptot-
e -1\ _, _ ically stable for anyr > 0, if there exist matricesX’ > 0 and
+ <7?S ) TMAisX(s) Q > 0 satisfying
= (A+ MA)X(s) + (I = M)Ase "X (5) ATX + XA+ X407 40X +Q <0, ©)
- ) R (s 2) (Delay-Dependent Stability The system (1) is asymptotically
+ < Ts ) TMAaq [AX () + Aqe X(b)] stable for any) < 7 < 7, if one of the following conditions
= (A+ MAHX (5)+ (I — M)Aqe™ ™" X (5) hold.
=T _ 1 L a) [16] There exist matriXX’ > 0 and constants; > 0 and
+ <T> TMAAX(s) +e77° B2 > 0 satisfying
| Q XAA XA4A,
. <7Fs ) TMAGAX (5). ATATX  priX 0 >0 @)
T AT v =1y
In view of the fact thatle™""||. = 1 and||(e™™" = 1)/(Ts)||lx = AdAd X__l 0 /iﬁ X .
7/7 < 1, it follows from the above equation that (2) is a special case wb?resz =7 [(A+A44) X+X(A+4)]- (8 +
of the uncertain system (3) withy = ¢~ "*I,,, andA, = (e~7° — By )X _ _
1)/(7s)I,,. Therefore, the robust stability of (3) guarantees that (1) is b) [13] There exist matrice# > 0, P1 > 0 andP: > 0
asymptotically stable for alt € [0, 7]. [ ] satisfying , .
As shown in the next section, the comparison system (3) can be H  7PA" TPA
rewritten as an interconnection of an FDLTI systéif) Wi'[.h a block TAP —7TP 0 <0 8)
A, whereA = diag[Ay, A;] € BA,. Hence, the analysis of the ro-
TALP 0 TP

bust stability of the system (3) may be performedianalysis, since
the smallp theorem applies even to the case where the uncertainty iSThe small gain theorem applies to the case where the uncertainty blocks
nonrational [23]. Because the calculation;ofs NP-hard in general contain infinite dimensional dynamic systems [32].
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whereH = P(A+ AT + (A+ AP +7A4(Pr+ whereR = (A + A)TX + X(A + Ay). Multiplying by
Py)AT. diag[ X', I, I, 7Q;*, 7Q; '] on both sides and using Schur
c) [19] There exist matriceX > 0, U > 0, V > 0andiW  complements, the above inequaITy is equwalent to
satisfying H X! X AL
o —WA, ATATV #F(W+X) TAXT! -TQ 0 <0 (11)
AT ek r T ATy TAdX ! 0 -7Qy "
_Ad W =U 444 fld V 0 <0 (9) whereH = 4+Ad) + A-I—Ad)Y 1-|—T Ad(@ +Qz )AT
VAgA VAzAy -V 0 DeflnlngP X '>0,P =7Q; > 0andP, = 7Q,*
— ot E (11) becomes (8).
T(W+X) 0 0 - In addition, if we rewrite (10) in a slightly different form
whereQ = (A4 + A0)" X + X (A + Aa) + WAL+ i =(A4 Ag)z + TAgAu, + FAgAqus
AW 4+ UL o
The following proposition shows that all of above conditions are e
equivalent to the SSGS conditions for the special case of the compar- Y2 ==
ison system (3). w1 = Az [y](t)

Proposition 1: For the comparison system (3) if = 0, the SSGS us = Aszys](t)
condition is equivalent to the condition (and, if M = I,,,the SSGS  then, similarly, we can obtain the following stability condition:
condition is equivalent to the condition (8) and can also be reduced H TXAGgA TXA A,
to the condition (7). Moreover, the delay-dependent condition (9) is

AL AL v _
equivalent to the SSGS condition for (3) willf as a free-matrix vari- TAHA,‘{‘X @ 0 <V
able. TALATX 0 —Q-
Proof: First, letM = 0, thenthe comparison system (3) becomes X>0, Q1>0, Qs>0 (12)

sX(s) =AX(s)+ A1 A X (s) whereH = (A+ A4)"X 4+ X(A + Ay) + Q1 + Q2. Now, letting

Ay € BA,
which can be described as the following closed-loop system:
T =Axr + Aqu
y=x
u = Adly)(0).

A Aq
I, 0

the SSGS condition becomes (6).

With

G(s) =

Next, we letM = I,, andA; = A; A,. Equation (3) then becomes

s Y( =(A+ Ad))(( =+ AQFAC[AX(S) =+ AgFAdAdX(S)

Q, = 74, X andQ, = 73, 'X, where constants, > 0 and
B2 > 0, (12) is reduced to (7).
Finally, consider the general case of (3) and rewrite it as the fol-
lowing:
=(A+MAjz+ (I — M)Agus + TMuy
y1 = AgAz + AgAque

Y2 =T
w1 = Nofyr](t)
uy = Aq[y2](t). (13)
Therefore, applying Lemma 2 with .
A B
G(s)= |~ -
C D
Where4 = A+ MAy, B = [Fv (=) Ay, ¢ = [aTA7 17, and

= [0 “4%4], the system (1) is asymptotically stable if there exist

(10) x > 0andQ = diag[V. U] > 0 satisfying
with diag[A», As] € BA,. The last equation can be rewritten as the AT )‘T‘f‘ X A XB CTQ
closed-loop system B'X —Q D'Q| <0. (14)
i A AN T A . LA QC QD -Q
&= (A4 Ag)r +TAqur +TAaus Using Schur complement, (14) is equivalent to
y1 = Az Q TXM Qs AT ATV
y2 = Agw TMTX -V 0 0
ur = Asly](#) o) 0 U AYAlY
w2 = Bafye] (1) VAA 0 VAgds -V
Then, by applying Lemma 2 with where -
A+ Ay [TAs TA4] O =(A+MAN'" X + X(A+MA)+U
G(s) = A Qo =X(I—-M)A,.
|:f1d } 0 DefiningW = X (M —1I), it follows immediately that above condition
we see that the system (1) is asymptotically stable for any constaniS equivalent to (9). n
0 < 7 < 7, ifthere existY > 0 and@ = diag[Q1, Q2] > 0 such It should be noted that while all the Lyapunov-based conditions dis-
that cussed may be obtained from a single comparison system, the realiza-
R TXA: TXA: ATQ:, AYQ, tion of this system used in each condition may be different.
7ATX -, 0 0 0 An implication of the equivalence between the Lyapunov-based re-
AT X 0 —0Q» 0 0 <0 sults and the comparison system robust stability analysis is that the
O A 0 0 —0 0 u framework may be used for analysis (and, more importantly, con-
Q 1A 0 0 0 ! 0 troller synthesis) of uncertain time-delay systems without incurring any
244 —2

2Similar observations can also be found, for example, in [26] and [4].

penalty vis-a-vis known Lyapunov-based approaches. Furthermore, the
u framework offers the advantage that robustness analysis with respect
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information and some of the gain information inherent in these
elements is lost.

3) Thep upper bound used in (4) is guaranteed to be equal to
only when2S + F < 3 [18], whereS and F' are the number of
repeated complex scalar blocks and the number of full complex
blocks, respectively. For the delay-dependent conditions exam-
ined, S = 2 andF = 0. Thus, some conservatism may result
from the gap between and its upper bound. For this example,
theu lower and upper bounds are nearly identical, indicating that
the actual value of: is very close to the: upper bound. Thus,
this source is not a significant contributor to the conservatism for
the example considered.

-
N

Computed Maximum Allowable Delay
o
0 -

Itis apparent that, by far, the largest source of conservatism for this
example problem is the manner in which the time-delay elements are
eliminated by covering their value sets with unit disks. This is hidden
in the Lyapunov framework of the problem, but can be clearly seen in
the scaled small-gain formulation. This insight has led the authors to
develop less conservative analysis techniques for LTDS [29]-[31].

Fig. 2. Delay margin versus . (1) Nyquist Criterion. (2): upper bound with
frequency-depender? scaling. (3) Condition of [19]. (4) Condition of [13].
(5) Condition of [16]. (6) Condition of [25], [26] fols < K *, the stability is VI. CONCLUSION

delay independent. . .
y P It has been demonstrated that several recent results in the analysis

of the stability of linear time-delay systems are, in fact, equivalent
to LTI dynamic or parametric uncertainties in the time-delay systefg robust stability analysis of a linear uncertain delay-free compar-
can be accomplished via the introduction of these uncertainties ind@n system via the scaled small-gain LMI. This result unifies several
the model description. previous criteria, all of which were originally derived via Lyapunov’s
Second Method.
V. CONSERVATISM OFEXISTING ANALYSIS RESULTS

We now turn our attention to the conservatism of these results and
what insights can be gained from the scaled small-gain interpretation.
To illustrate our points, we will examine the following example moti- [1] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnaimear Matrix

vated by the dynamics of machining chatter [24]: Inequalities in System and Control TheoBociety for Industrial and
r Applied Mathematics, 1994.
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Systems, to be published. M
K. Zhou, J. C. Doyle, and K. GloverRobust and Optimal Con- Yy, u) = Z vi(k)Bi(y)y € [a, ] 1)
trol.  Englewood-Cliffs, NJ: Prentice-Hall, 1996. =
where
Up control input;
~(y, v) measured probability density function of the system
output;
V (k) = (v, va, ..., va)T, weight vector;
B;(y) pre-specified basis functions for the approximation of
Yy, ) [2];

A andB constant matrices.
Although there are several advantages in using this type of model to de-
sign the required control algorithm, it is difficult to link such a model
structure to a physical system. In particular, the key assumption that the
control input only affects the weights of the output probability density
function is strict for some applications. As such, it would be ideal if a
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