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Abstract� In this paper we establish passivity for the system

which describes the attitude motion of a rigid body in terms

of minimal three�dimensional kinematic parameters� In partic�

ular� we show that linear� asymptotically stabilizing controllers

and control laws without angular velocity measurements follow

naturally from these passivity properties� The results of this pa�

per extend similar results for the case of the �nonminimal� Euler

parameters�
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I� Introduction

Recently it has been shown ����������� that there exist linear

asymptotically stabilizing control laws for the attitude motion
of a rigid body using minimal� three�dimensional parameteriza�
tions for the kinematics� In ��� linear control laws were derived
in terms of the classical Cayley�Rodrigues parameters ��� and
the nonstandard Modi	ed Rodrigues parameters ������� In the
present paper we show that the existence of linear asymptoti�
cally stabilizing controllers in terms of these parameters is inti�
mately related to the passivity properties of the corresponding
kinematic systems� We show these passivity properties by con�
structing the respective storage functions� Using these results�
we also derive control laws which do not use angular velocity
measurements�
The results in this paper complement and extend similar re�

sults published recently in terms of the 
non�minimal� Euler
parameter kinematic parameterizations ������� In particular� in
��� the authors establish the passivity between the angular ve�
locity vector and the Euler parameter vector� as well as the
Euler rotation vector� Adaptive control laws are then derived
using these results� Reference �� uses the same result to de�
velop velocity�free controllers in terms of the Euler parameters�
The approach in �� is similar to the recent results of ��� and
��� on output stabilization of Euler�Lagrange systems� where it
is shown that asymptotic stabilization for such systems may be
possible without velocity measurements via the inclusion of a
dynamic extension 
lead 	lter� to the system� The so�called
�dirty derivative� controllers of ��� provide the necessary damp�
ing for the global stabilization of the closed�loop system� The
results of ������� consider� however� vector second�order mechan�
ical systems and thus� the derived PD controllers are in terms of
generalized coordinates and their derivatives� Attitude control
problems� on the other hand� are more conveniently and com�
pactly described in terms of angular velocities which are not
rates of any generalized coordinates� Thus� for attitude prob�
lems it is preferable to develop �PD� controllers in terms of the
angular velocity vector and the kinematic parameters� instead�
A comprehensive treatment of �PD� controllers for tracking of
mechanical systems on Lie groups in a coordinate�free frame�
work is given in ����

II� System Equations

The dynamics for the attitude motion of a rigid body obey
the di�erential equation

J �� � S
��J� � u� �
�� � �� 
��
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where � � IR� denotes the angular velocity vector in a body�
	xed frame� u � IR� is the acting torque vector� and J is the
symmetric inertia matrix� The matrix S
�� denotes a skew�
symmetric matrix representing the cross product between two
vectors� i�e�� S
v�w � �v � w�
In this paper� the orientation of the body with respect to the

inertial frame will be described either in terms of the Rodrigues
parameters� or in terms of the Modi	ed Rodrigues parameters
���� The kinematic equations in terms of the Rodrigues param�
eters take the form

�� � H
���� �
�� � �� 
��

where

H
�� ��
�

�

I � S
�� � ��T �

and I denotes the ��� identity matrix� The kinematic equations
in terms of the Modi	ed Rodrigues parameters take the form

�� � G
���� �
�� � �� 
��

where

G
�� ��
�

�

�
�� �T�

�
I � S
�� � ��T

�

If �e and � denote the principal axis and the principal angle
��� respectively� then the Cayley�Rodrigues parameters can be
de	ned by � � �e tan
����� whereas the Modi	ed Rodrigues pa�
rameters can be de	ned by � � �e tan
����� The kinematic de�
scription using the Modi	ed Rodrigues parameters has the ad�
vantage that remains valid for eigenaxis rotations up to �� deg�
whereas the Cayley�Rodrigues parameters cannot describe mo�
tions which correspond to eigenaxis rotations of more than
��� deg ������������
Direct manipulation shows that the matrices H
�� and G
��

have the following properties ����

�TH
�� �

�
� � �T�

�

�
�T

HT 
��
I � ��T ��	H
�� �

�
� � �T�

�

�
I 
��

for all 
�� �� � IR� � IR�� and

�TG
�� �

�
� � �T�

�

�

GT 
��G
�� �

�
� � �T�

�

��

I 
��

for all 
�� �� � IR� � IR�� respectively�

III� Passivity and Stabilizability

An important property of the system of equations 
�� and

��� equivalently equations 
�� and 
��� is that they describe a
system in cascade interconnection� of two passive systems� For
the passivity de	nitions used in this work one may consult �����

Proposition �� 
i� The system 
�� with input u and output �
is passive�

ii� The system 
�� with input � and output � is passive�

iii� The system 
�� with input � and output � is passive�

Proof� 
i� Let the function V	
�� � 	
�
�TJ�� Di�eren�

tiation along the trajectories of 
�� yields that �V	
�� � �Tu�

therefore integrating from � to T one obtains
R T

�
�Tu dt �

V	
�
T ��� V	
��� and since V	
�� � � for all � � IR� we have



�

that
R T

�
�Tu dt� V	
��� � � which establishes that the system

is passive �����

ii� Let the function V�
�� � � ln
� � �T��� Di�erentiation

along the trajectories of 
�� and use of equations 
�� and 
��
yields that �V�
�� � �T�� Integrating from � to T � rearrang�
ing terms� and since V�
�� � � for all � � IR�� we have thatR T

�
�T� dt � V�
��� � � which establishes that the system is

passive �����

iii� The proof is identical to the case 
ii�� where we now use

the positive de	nite function V�
�� � ln
� � �T���
Remark �� According to ���� the systems 
��� 
�� and 
�� are

passive with corresponding storage functions V	� V� and V�� re�
spectively� Moreover� the proof of Proposition � shows that the
systems 
��� 
�� and 
�� are� in fact� lossless �����
The passivity of system 
�� is a well�known fact and has been

used repeatedly in the past� The passivity of system 
�� or
of the system 
��� however� is neither as a well�known nor as a
frequently used result� Passivity in terms of the Euler parameter
vector and the Euler rotation vector has been shown� however�
in ����
Stabilization of passive systems in cascade interconnection is

a straightforward task� In particular� subject to some mild as�
sumptions� one can stabilize such systems using linear feedback�
In essence� the approach consists of using feedback to make the
	rst subsystem strictly passive and then close the loop with the
output of the second subsystem� to obtain a feedback intercon�
nection of a strictly passive and a passive system�

Proposition �� Consider the system 
�� with the feedback
control law

u � �k	� � � 
�

with k	 � �� Then the system with input � and output � is
strictly passive�

Proof� Let V	
�� � 	
�
�TJ� as in the proof of Propo�

sition �� Di�erentiation of V	 along the trajectories yields
�V	 � �TJ �� � �k	k�k

� � �T �� Integrating from � to
T the previous equation and rearranging terms one obtainsR T

�
�T � dt � V	
��� � k	

R T

�
k�k� dt� The last inequality es�

tablishes that the system from � to � is strictly passive with
storage function V	 and dissipation rate k	k�k

� �����
Theorem �� 
i� The linear control law

u � �k	� � k�� 
��

with k	 � � and k� � �� globally asymptotically stabilizes the
system 
�� and 
�� at the origin�

ii� The linear control law

u � �k	� � k�� 
��

with k	 � � and k� � �� globally asymptotically stabilizes the
system 
�� and 
�� at the origin�

Proof� 
i� The proof is easily obtained by constructing an
appropriate Lyapunov function which is the sum of the storage
functions of the passive interconnection� To this end� consider
the positive de	nite� radially unbounded function V 
�� �� �
V	
���k�V�
�� �

	
�
�TJ���k� ln
���

T��� Taking derivatives
along closed�loop trajectories and using equation 
�� one obtains

�V � �TJ �� � �k�
�T ��

� � �T�

� �Tu� k�
�T

� � �T�

� � �T��� � �k	k�k

� � � 
��

By LaSalle�s invariance principle� the system is asymptotically
stable in the 
�� �� space� Global asymptotic stability follows
from the radial unboundedness of V �����


ii� Use the following positive de	nite� radially unbounded
function V 
�� �� � V	
�� � k�V�
�� �

	
�
�TJ� � k� ln
� � �T ��

as a Lyapunov function for the closed�loop system� Asymptotic
stability follows from a standard LaSalle argument as in part 
i��

Remark �� The previous results show global stability in the


�� �� and 
�� �� spaces using the linear control laws in equa�
tions 
�� and 
��� This implies asymptotic stability over an
open and dense set in the con	guration space of the attitude
motion SO
��� This term of stability is often coined almost

global asymptotic stability ����	 The topological structure of
SO
�� 
not a contractible space� does not allow for globally
continuously stabilizing control laws� In practice� however� one
can always modify these control laws 
e�g�� using an open�loop
strategy applied over a 	nite and arbitrarily small interval� over
a set of measure zero to get globally asymptotically stabilizing
controls over the whole SO
���

Remark �� The linear control laws 
�� and 
�� were initially
developed in ��� using a Lyapunov approach� No passivity in�
terpretation was given� however� Linear stabilizing controls in
terms of the Cayley�Rodrigues parameters have also been used
in stabilization of underwater vehicles in ���� also using Lya�
punov theory��

IV� Velocity�Free Controllers

In this section we show that the linear control laws 
�� and 
��
can be implemented without angular velocity feedback and thus�
one only needs orientation measurements� The methodology
used in this section follows closely the one in �� and uses the
properties in equations 
�� and 
���

Proposition �� 
i� The system 
�� and 
�� with control law

u � �k�� � v� 
k� � �� 
���

and input v and output � is passive�

ii� The system 
�� and 
�� with control law

u � �k��� v� 
k� � �� 
���

and input v and output � is passive�
Proof� 
i� Let the function V 
�� �� � V	
�� � k�V�
��

where V	 and V� as in Proposition �� Di�erentiation along the
trajectories of 
�� and 
�� yields that �V 
�� �� � �Tu� k��

T��
Using 
��� we get that �V 
�� �� � �T v� The rest of the proof
follows as in Proposition ��

ii� The proof is similar to part 
i� and thus� omitted�
Notice that the kinematic equations 
�� and 
�� relate � to

the rates of the kinematic parameters through a matrix mul�
tiplication� One can use this result to establish input�output
transformations for these systems which preserve passivity�

Proposition �� 
i� The system 
�� and 
�� with input y ��
�

	
�T�

��
G
��v and output w � G
��� � �� is passive�


ii� The system 
�� and 
�� with input y �
�

�
	
�T �

�

I �

��T ��	H
��v and output w � H
��� � �� is passive�
Proof� 
i� Using equation 
�� we have that

Z T

�

wT y dt �

Z T

�

�
�

� � �T�

��
�TGT 
��G
��v dt

�

Z T

�

�
� � �T�

�

���
�

� � �T�

��
�T v dt

�In fact� Ref� ��� reserves the term almost global stability to the case when

the system is also dened over the complement of this set�
�We owe this observation to an anonymous reviewer�



�

�

Z T

�

�T v dt 
���

Using now part 
i� of Proposition � we establish the desired
result�

ii� The proof is similar to 
i� and thus� omitted�
Notice that if y is the new input as de	ned in Proposition �

then v is given by v � GT 
��y for the case of the Modi	ed
Rodrigues parameters or v � HT 
��y for the Cayley�Rodrigues
parameters� Since by Propositions � the map from y to w is
passive� one may explore the possibility of globally asymptot�
ically stabilizing the system by choosing a feedback such that
the map from w to y is strictly passive �������������
To this end� let A be any matrix which is Hurwitz� B any

full column rank matrix� with the pair 
A�B� controllable� and
Q any positive de	nite matrix� Let also the matrix P be the
solution of the Lyapunov equation ATP � PA � �Q� Clearly
then P is positive de	nite�

Theorem �� Consider the system 
�� and 
�� and let the con�
trol law

u � �k�� � k	G
T 
��y 
���

with k	 � �� k� � �� and where y is the output of the linear�
time�invariant system

�x � Ax�B� 
��a�

y � BTPAx�BTPB� 
��b�

Then the closed�loop system is globally asymptotically stable�
In particular� limt��
�
t�� �
t�� � �� for all initial conditions

��� ��� � IR� � IR��

Proof� Consider the positive de	nite function

V 
�� �� x� �
�

�
�TJ���k� ln
���

T���
k	
�

Ax�B��TP 
Ax�B��


���
Noticing that the last term in 
��� is just k�

�
�xTP �x� the time

derivative of V along the trajectories of the closed�loop system
is

�V � �TJ �� � k�

�
�

� � �T�

�
�TG
��� � k	 �x

TP �x

� �T 
�k�� � k	G
T 
��y� � k��

T� � k	 �x
TPA �x

�k	 �x
TPBG
���

�
k	
�
�xT 
PA�ATP � �x � �

k	
�
�xTQ �x � � 
��

First observe that since V is radially unbounded� all solutions
are bounded� Consider now the set E � f
�� �� x� � �V � �g� Tra�
jectories in E satisfy �x � � and hence x
t� � x� for all t � � and
from 
��a� also �
t� � �� for all t � �� Then �� � � and from 
��
also �
t� � � for all t � �� Since y � BTP �x one has also that
y � �� and using 
�� and 
��� we have that � � �� � � and y � �
implies that � � �� Since A is Hurwitz equation 
��a� then also
implies that x � �� The largest invariant set in E is therefore
the setM � f
�� �� x� � E � � � � � x � �g� By LaSalle�s The�
orem� and since V is radially unbounded� the system is globally
asymptotically stable� In particular� all trajectories of the sys�
tem asymptotically approach M thus limt��
�
t�� �
t�� � ��
as claimed�
Similarly� for the Cayley�Rodrigues parameters one obtains

the following result�
Theorem �� Consider the system 
�� and 
�� and let the con�

trol law

u � �k��� k	H
T 
��y 
���

with k	 � �� k� � �� and where y is the output of the linear�
time�invariant system

�x � Ax�B� 
��a�

y � BTPAx�BTPB� 
��b�

Then the closed�loop system is globally asymptotically stable�
In particular� limt��
�
t�� �
t�� � �� for all initial conditions

��� ��� � IR� � IR��

Remark �� The Cayley�Rodrigues and Modi	ed Rodrigues
parameters are of the �Euler�parameter� type in the sense that
they can be represented by �ef
�� for some function f
�� 
see
���� for more details�� It should be straightforward to extend
the results of this paper to all �Euler�parameter� type attitude
descriptions�

V� Concluding Remarks

In this paper we derive some additional passivity results for
the attitude control problem when the kinematics are described
in terms of minimal parameterizations and we provide the corre�
sponding storage functions� We show that linear asymptotically
stabilizing control laws in terms of the Cayley�Rodrigues and
the Modi	ed Rodrigues parameters follow directly from these
passivity properties� Also� velocity�free controllers can be eas�
ily constructed� These results extend similar previous results in
terms of the 
non�minimal� Euler parameters�
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