
Dynamic Programming Guided Exploration
for Sampling-based Motion Planning Algorithms

Oktay Arslan1 Panagiotis Tsiotras2

Abstract— Several sampling-based algorithms have been re-
cently proposed that ensure asymptotic optimality. The con-
vergence of these algorithms can be improved if sampling is
guided toward the most promising region of the search space
where the solution is more likely to be found. In this paper
we propose three sample rejection methods that leverage the
classification of the samples according to their potential of being
part of the optimal solution to guide the exploration of the
motion planner to promising regions of the search space. These
sampling strategies are a direct by-product of the exploitation
phase of the algorithm, which uses a dynamic programming
(DP) step while planning on random graphs as, for example,
is done in the RRT# algorithm. It is shown that the proposed
sampling strategies are able to compute high-quality solutions,
much faster than existing algorithms. We provide numerical
results and compare the performance of the proposed algorithm
with the original RRT# and the RRT∗ algorithms.

I. INTRODUCTION

A bottleneck in most motion planning problems, especially
those involving systems with high state dimensionality, is the
computational overhead associated with discretizing the state
space. Hence deterministic searches are impractical for high
dimensional search spaces. Probabilistic methods, on the
other hand, have proven to be very efficient for the solution
of motion planning problems with dynamic constraints in
high dimensional search spaces. Among them, incremental
sampling-based motion planning algorithms, such as the
Rapidly-exploring Random Trees (RRT) [21], and the Proba-
bilistic Road Maps (PRM) [8], [15], [16], [6, Ch. 7] have be-
come very popular, owing to their implementation simplicity
and their advantages in handling high-dimensional problems.
Moreover, these algorithms have been recently applied to
many other interesting applications including pursuit-evasion
games, stochastic optimal motion planning problems [13],
[12], [2].

Although these algorithms work very well in practice,
the solution may be far from the optimal one. Recent
algorithms, notably the RRT∗ and the PRM∗ algorithms,
bypass this drawback and ensure asymptotic optimality as
the number of samples tends to infinity. Nonetheless, the
convergence rate to the optimal solution of the RRT∗ and
PRM∗ algorithms may still be slow, as demonstrated by
several motion planning problems of robotic manipulation.

One of the main reasons of the slow convergence of
asymptotically optimal algorithms is the lack of a good ex-

1Oktay Arslan is a Robotics, PhD Candidate with the D. Guggenheim
School of Aerospace Engineering and the Institute for Robotics and Intelli-
gent Machines at the Georgia Institute of Technology, Atlanta, GA 30332-
0150, USA, Email:oktay@gatech.edu

2Panagiotis Tsiotras is with the faculty of D. Guggenheim School
of Aerospace Engineering and the Institute for Robotics and Intelligent
Machines at the Georgia Institute of Technology, Atlanta, GA 30332-0150,
USA, Email:tsiotras@gatech.edu

ploration strategy. Most current planners use an exploration
strategy whose only goal is to gather samples from the free
space. Although every collected sample gives some infor-
mation about the topology of the search space, it may not
necessarily contribute to improving the cost of the solution
of a given query. Since the exploration task (e.g., sampling,
collision checking) is one of main computational bottlenecks
of sampling-based motion planners, it is preferable to select
samples that maximize the improvement of the quality of
the solution of a given query (i.e., contribute most to the
exploitation step). One way to achieve this is to guide
exploration to the region of the search space that is relevant
to the current query, i.e., the subset of the search space in
which the optimal solution lies. The concept of “relevant”
region is not new and has been essential in the success and
the wide applicability of the A∗ algorithm [11]. As it is
well known, with the help of an admissible heuristic, the
A∗ algorithm expands a much smaller number of vertices
than that of Dijkstra’s algorithm [7]. This set of expanded
vertices corresponds to the “relevant” region of the query
of interest, that is, these vertices have the potential to be
part of the optimal solution. Note that if the heuristic used
is the exact “cost-to-go” for each vertex, the relevant region
would consist only of the vertices of the optimal solution.
The same approach can be incorporated to sampling-based
motion planners by approximating the relevant region of
a query and adjusting the sampling strategy to draw more
samples from the relevant region. Computing the relevant
region is not easy, of course, but recently a new sampling-
based motion planning algorithm, called RRT#, has been
proposed which computes successively tighter approxima-
tions of the relevant region of the search space as the number
of samples tend to infinity as a by-product of the exploitation
step [3]. Specifically, and similarly to the RRT∗ algorithm,
the RRT# algorithm utilizes ideas from Rapidly-exploring
Random Graphs (RRG) but, in addition, it also incorporates
a relaxation step, as used in dynamic programming [4], [5],
in order to solve the optimal motion planning problem more
efficiently. As shown in [3] the RRT# algorithm has a
faster convergence rate and provides solutions with smaller
variance compared to the RRT∗ algorithm. The RRT# algo-
rithm also provides a good characterization of the computed
information during the search, by identifying the region
of the search space which is highly likely to contain the
optimal solution. It is then natural to leverage this property
of the RRT# algorithm to guide the selection of future
samples to improve the overall convergence properties of
the algorithm. This is precisely the main contribution of this
paper. By interleaving the exploitation and exploration steps
of the RRT# algorithm, we show significant improvements

in terms of the convergence rate of asymptotically optimal
sampling-based algorithms using a number of non-trivial
path-planning scenarios.

In this paper we develop three extensions of the baseline
RRT# algorithm, originally proposed in [3], which use cer-
tain sample rejection criteria in order to reduce the number of
vertices that are sampled (and eventually added to the search
graph). As a result, the possibility of including samples
in the unfavorable region of the search space is greatly
reduced. We give a detailed explanation of this sample
rejection method via extensive numerical simulations. For
demonstration purposes, we first test the proposed algorithm
on simple problems in 2D where the effect of sample
rejection method is evident and is easily visualized. Then,
we consider a pathological case in which the heuristic is less
informative than that of in former environments. We finally
apply the proposed algorithms to two more challenging
path-planning problems in high dimensional search spaces,
namely, a single-arm (6 DoFs) and a dual-arms (12 DoFs)
manipulation task for a humanoid robot. We benchmark the
performance of all these algorithms against the RRT∗ and
the baseline RRT# algorithms. Our numerical simulations
demonstrate that these new extensions of RRT# reduce the
number vertices in the graph significantly, yet they are all
able to compute high quality paths in much shorter time.

II. PROBLEM FORMULATION

A. Notation and Definitions
Let X denote the configuration space, which is an open

subset of Rd, where d is a positive integer such that d ≥
2. Let the obstacle region and the goal region be denoted
by Xobs and Xgoal, respectively. The obstacle-free space is
defined by Xfree = X \ Xobs. Let the initial configuration
be denoted by xinit ∈ Xfree. We will use graphs to represent
the connections between a (finite) set of configuration points
selected randomly from Xfree. Let G = (V,E) denote such
a graph, where V and E ⊆ V × V are finite sets of vertices
and edges, respectively. Given a vertex v ∈ V in a directed
graph G = (V,E), succ(G, v) returns the vertices in V that
can be reached from vertex v, pred(G, v) returns the vertices
in V that are the tails of the edges going into v, parent(v)
returns a unique vertex u ∈ V such that (u, v) ∈ E and
u ∈ pred(G, v) and a spanning tree of G can be defined such
that T = (Vs, Es), where Vs = V , Es = {(u, v) : (u, v) ∈
E and parent(v) = u}. Given an edge e = (u, v) ∈ E, the
function c : e 7→ r returns a non-negative real number so
that c(u, v), where v ∈ succ(G, u), is the cost incurred by
moving from u to v. In this work it is assumed that transition
costs are symmetric, that is, c(x, x′) = c(x′, x). The function
g : v 7→ r returns a non-negative real number r, which is the
cost of the path to v from a given initial state xinit ∈ Xfree.
The function lmc : v 7→ r returns a non-negative real number
r, which is the one-step lookahead cost-to come estimate
of the vertex v, called the locally minimum cost-to-come
estimate, or lmc-value of the vertex for short (see [3], also
called rhs-value in [19]). We will use g∗(v) to denote the
optimal cost-to-come value of the vertex v which can be
achieved in Xfree. Given a goal region Xgoal, the function
h : (v,Xgoal) 7→ r returns an estimate r of the optimal cost
from v to Xgoal; we set h(v) = 0 if v ∈ Xgoal.

B. Problem Statement

We wish to solve the following motion planning problem:
Given a bounded and connected open set X ⊂ Rd, the sets
Xfree and Xobs = X\Xfree, and an initial point xinit ∈ Xfree

and a goal region Xgoal ⊂ Xfree, find the minimum-cost path
connecting xinit to the goal region Xgoal.

III. MOTION PLANNING ALGORITHMS

A. The RRT# Algorithm

In order to understand how the proposed algorithms work,
we first have to revisit the baseline RRT# algorithm from [3]
and understand how RRT# makes decisions which vertex
to explore next, based on a relaxation step. Note that the
latter step is similar to what it is implemented in the LPA∗

algorithm [19], [17], [18]. The RRT# algorithm performs
two tasks, namely exploration and exploitation, during each
iteration. The exploration task implements the extension pro-
cedure of the RRG algorithm, and this task is subsequently
followed by an exploitation step that implements the Gauss-
Seidel version of the Bellman-Ford algorithm.

Algorithm 1: Body of the RRT# Algorithm
1 RRT#(xinit, Xgoal, X)
2 V ← {xinit}; E ← ∅;
3 G ← (V ,E);
4 for k = 1 to N do
5 xrand ← Sample(k);
6 G ← Extend(G, xrand);
7 Replan(G,Xgoal);

8 (V ,E)← G; E′ ← ∅;
9 foreach x ∈ V do

10 E′ ← E′ ∪ {(parent(x), x)};
11 return T = (V ,E′);

A brief description of the main procedures used by the
RRT# algorithm in [3] is given below. The following
procedures are inherited from the RRT∗ algorithm [14].
Sample : N → Xfree returns independent, identically dis-
tributed samples from Xfree. Nearest returns a point from
a given finite set V , which is the closest to a given point
x in terms of a given distance function. Near returns a
collection of points, from a given finite set V , within the
closed ball of radius rn centered at a given point x , where
rn = min

{
((γ log n)/(ζdn))

1/d
, η
}

, η is steering radius, γ
is a constant, ζd is the volume of unit ball in d-dimensional
space. Steer returns the point in a ball centered around a
given state x that is closest, with respect to the given distance
function, to another given point xnew. Given two points
x1, x2 ∈ Xfree, the Boolean function ObstacleFree(x1, x2)
checks whether the line segment connecting these two points
belongs to Xfree. It returns True if the line segment is a
subset of Xfree. Extend is a function that extends the nearest
vertex of the graph G toward the randomly sampled point
xrand. In addition, our proposed algorithms use the following
procedures.

Ordering: Given a vertex v ∈ V , the function Key :
v 7→ k returns a real vector k ∈ R2, whose components
are k1(v) = lmc(v) + h(v) and k2(v) = lmc(v). Given two
keys k1, k2 ∈ R2, the Boolean function 4 : (k1, k2) 7→

Algorithm 2: Replan Procedure#

1 Replan(G,Xgoal)
2 while q.findmin() ≺ Key(v∗goal) do
3 x = q.findmin();
4 g(x) = lmc(x);
5 q.delete(x);
6 foreach s ∈ succ(G, x) do
7 if lmc(s) > g(x) + c(x, s) then
8 lmc(s) = g(x) + c(x, s);
9 parent(s) = x;

10 UpdateQueue(s);

{False, True} returns True if and only if either k11 < k21
or (k11 = k21 and k12 ≤ k22), and returns False otherwise.

Promising vertices: Given a graph G = (V,E) with
xinit ∈ V , let g∗(v) be the optimal cost-to-come value of
the vertex v that can be achieved on the given graph G, and
let v∗goal = argminv∈V ∩Xgoal

g∗(v). The set of promising ver-
tices Vprom ⊂ V is defined by Vprom={v : [f(v), g∗(v)] ≺
[f(v∗goal), g

∗(v∗goal)]}, where f(v) = g∗(v) + h(v). Only
promising vertices have the potential to be part of the optimal
path from xinit to Xgoal. Therefore, all promising vertices
must be stationary at the end of each iteration.

Relevant region: Let x∗goal ∈ Xgoal be the point in the
goal region that has the lowest optimal cost-to-come value in
Xgoal, i.e., x∗goal = argminx∈Xgoal

g∗(x). The relevant region
of Xfree is the set of points x for which the optimal cost-to-
come value of x, plus the estimate of the optimal cost moving
from x to Xgoal is less than the optimal cost-to-come value
of x∗goal, that is,

Xrel = {x ∈ Xfree : g
∗(x) + h(x) < g∗(x∗goal)}. (1)

Points of Xrel have the potential to be part of the optimal
path starting at xinit and reaching Xgoal.

Replanning: Given a graph Gk = (V k, Ek) at the kth
iteration, a goal region Xgoal ⊂ Xfree and an arbitrary
vector gk−1,0 ∈ Rnk of cost-to-come values of all v ∈
V k, where gk−1,0i = 0 for vi = xinit, the function
Replan : (Gk,Xgoal, g

k−1,0) 7→ (Gk,Xgoal, g
k,0) operates

on the nonstationary vertices iteratively until all promising
vertices become stationary.

Priority of vertices: The priority of vertices is the same as
the priority of their associated keys, and a priority queue
is used to sort all of the nonstationary vertices of the
graph based on their respective key values. The function
UpdateQueue changes the queue based on the g- and lmc-
values of the vertex v. If the vertex v is nonstationary, then
it is either inserted into the queue or its priority in the queue
is updated based on its up-to-date key value if it is already
inside the queue. Otherwise, the vertex is removed from the
queue if it is a stationary vertex. The order of expanded
vertices is determined by selecting the vertex of minimum
key value in the queue for expansion at each step.

The main body of the RRT# algorithm is given in
Algorithm 1. The algorithm starts by adding the initial point
xinit into the vertex set of the underlying graph. Then, it
incrementally grows the graph in Xfree by sampling randomly
a point xrand from Xfree and extending the graph toward

Algorithm 3: Auxiliary Procedures#

1 Initialize(x, x′)
2 g(x)←∞;
3 lmc(x)←∞;
4 parent(x)← x′;
5 if x′ 6= ∅ then
6 lmc(x)← g(x′) + c(x′, x);

7 UpdateQueue(x)
8 if g(x) 6= lmc(x) and x ∈ q then
9 q.update(x,Key(x));

10 else if g(x) 6= lmc(x) and x /∈ q then
11 q.insert(x,Key(x));

12 else if g(x) = lmc(x) and x ∈ q then
13 q.delete(x);

14 Key(s)
15 return k = (lmc(x) + h(x),lmc(x));

Algorithm 4: Extend Procedure#

1 Extend(G,x)
2 (V ,E)← G; E′ ← ∅;
3 xnearest ← Nearest(G, x);
4 xnew ← Steer(xnearest, x);
5 if ObstacleFree(xnearest, xnew) then
6 Initialize(xnew, ∅);
7 Xnear ← Near(G, xnew, |V |);
8 foreach xnear ∈ Xnear do
9 if ObstacleFree(xnear, xnew) then

10 lmc′(xnew) = g(xnear) + c(xnear, xnew);
11 if lmc(xnew) > lmc′(xnew) then
12 lmc(xnew) = lmc′(xnew);
13 parent(xnew) = xnear;

14 E′ ← E′∪{(xnear, xnew), (xnew, xnear)};

15 if IncludeVertex(xnew) then
16 V ← V ∪ {xnew};
17 E ← E ∪ E′;
18 UpdateQueue(xnew);

19 return G′ ← (V ,E);

xrand. In this paper we utilize adaptive rejection sampling
into the extension step of the RRT# algorithm, and propose
a new Extend procedure, which is given in Algorithm 4.
The Replan procedure, which is provided in Algorithm 2,
then propagates the new information due to the extension
across the whole graph in order to improve the cost-to-come
values of the promising vertices in the graph. This process is
repeated for a given fixed number of iterations. The spanning
tree of the final graph which is rooted at the initial vertex,
and which contains the lowest-cost path information for the
promising vertices and v∗goal, is returned at the end.

IV. PROPOSED SAMPLING STRATEGIES

A. Adaptive Sampling Strategies

Along with planning algorithms, sampling methods are
crucial components of randomized motion planners and have
a huge impact on the overall performance of the search
process. Since randomized motion planners are not provided
the search space explicitly a priori, they may perform poorly,

or even fail to find a solution, if the sampling method used
is not capable of generating a good number of high quality
samples for a fixed number of iterations. Properties of high
quality samples (at least naı̈vely) can be stated as: first being
collision-free, and second yielding a significant improvement
on the quality of the path computed thus far. This is owing to
the fact that asymptotically optimal motion planners aim to
find the lowest-cost path as the number of iterations goes to
infinity. Achieving these two properties for randomly drawn
samples makes the sampling process a challenging task,
essentially implying that the samples should be drawn from a
(unknown) nonuniform probability density function defined
over the whole configuration space, a difficult task in general.

Several heuristics have been proposed in the past and
integrated to sampling-based motion planners to help effi-
cient exploration. The main idea of these approaches is to
efficiently evaluate the potential of a sample to be part of
the optimal solution in a given query. Note that one can
give a characterization of all samples that form the optimal
solution using the equality c∗(xinit, x) + c∗(x, xgoal) =
c∗(xinit, xgoal), where c∗(x, x′) denotes the optimal cost
connecting points x and x′. Since the optimal cost of these
connections are not known in a priori, the previous condition
is relaxed, and a heuristic is used, instead, to evaluate the cost
of a potential path starting from xinit to xgoal and passing
through x. Therefore, the main challenge in developing good
sampling strategies is to compute efficiently a highly accurate
estimate of the optimal connection costs between xinit, x and
xgoal.

Given such an admissible heuristic h, a sampling
strategy can be developed by rejecting samples outside
the hyper-ellipse defined by h(xinit, x) + h(x, xgoal) <
cbest(xinit, xgoal), where cbest is the cost of the current
best path computed by the algorithm [9], [22]. Although
this sampling strategy is the easiest to implement, it will
add many useless samples if the heuristic function h gives
bad lower-bound estimates of the exact connection costs. To
remedy this drawback, the authors in [9] run many instances
of the RRT algorithm. During each run of RRT, the cost
of the best path computed by the previous run of RRT
is used to reject samples and/or connections by checking
the inequality ck(xinit, x)+h(x, xgoal) < ck−1best(xinit, xgoal),
where ck(x, x′) denotes the cost of the path between x and
x′ formed by the kth run of RRT. Although this approach is
more promising than using a heuristic function, it does not
provide any optimality guarantees since all ck(x, x′) values
are computed by a suboptimal algorithm. Sampling strate-
gies with optimality guarantees have also been developed,
particularly using RRT∗ to compute the c(x, x′) values [1],
[22], [10]. Nonetheless, despite ensuring optimality, slow
convergence of the underlying search algorithms still remains
an issue in developing good sampling strategies. Specifically,
setting the cost estimates to highly suboptimal initial values,
may result in the rejection of many useful samples or the
inclusion of many useless samples. In this work, the proposed
sampling strategies yield good performance by leveraging the
fast convergence properties the RRT# algorithm, and they
are integrated to the search process at almost no cost.

B. Three Variants
The sole process of collecting collision-free samples on a

configuration space itself can be a very tedious task due to
the complex geometry of obstacles and the computationally
expensive collision-checking process. Therefore, most of
the state-of-the-art motion planners implement a form of
rejection sampling, mainly due to its simplicity. This method
can be summarized in three steps: (a) sample uniformly
on the configuration space, (b) perform collision checking
for the randomly generated sample, and (c) throw away the
sample if it collides with an obstacle, or keep it and store it
in a list, otherwise. In the proposed algorithm, we extend
the rejection sampling method so as to collect not only
collision-free samples but also those that have the potential of
improving the path quality significantly. Given an admissible
heuristic, we know that the optimal path between the initial
state and the goal region lies inside the relevant region
Xrel, defined by equation (1). Based on this observation,
we employ an adaptive rejection sampling method to collect
samples from the relevant region Xrel ∈ Xfree.

Collecting samples from Xrel is much more difficult than
collecting samples from Xfree. First, Xrel is a potentially
much smaller subset of Xfree and its measure depends on
the goodness of the admissible heuristic. Therefore, it is
less likely to get a sample on Xrel by using rejection
sampling since the probability of getting a sample from Xrel

is µ(Xrel)/µ(X) which is less than that of Xfree where µ
denotes the measure of a set. The second reason is that it is
not easy to determine if an arbitrary point x is in Xrel, since
answering this question requires information of the optimal
cost-to-come values of x and x∗goal to check the inequality
in Equation (1). On the other hand, drawing samples from
Xfree is relatively simpler, since we can always check if an
arbitrary point x is in Xobs at the expense of implement-
ing a (numerically expensive) collision-checking procedure.
Nonetheless, since the RRT# algorithm provides estimates
of the optimal cost-to-come values of the vertices of the
constructed graph at each iteration, one can approximate the
relevant region Xrel by relaxing Equation (1) and collect
samples from its approximate set which is defined as

X̂rel = {x ∈ Xfree : lmc(x) + h(x) < lmc(x∗goal)}. (2)

Careful analysis of the RRT# algorithm reveals that after the
exploitation step of the algorithm each vertex v is classified
into one of the following four categories, based on the values
of its (g(v), lmc(v)) pair:
• stationary, finite key value (green)

g(v) <∞, lmc(v) <∞ and g(v) = lmc(v)
• stationary, infinite key value (black)

g(v) =∞, lmc(v) =∞
• nonstationary, finite key value (blue)

g(v) <∞, lmc(v) <∞ and g(v) 6= lmc(v))
• nonstationary, infinite g-value and finite lmc-value (red)

g(v) =∞, lmc(v) <∞
At a given iteration, the set of black, red and blue vertices

are always non-promising by definition, whereas the set
of green vertices may contain both promising and non-
promising vertices. Therefore, X̂rel does not contain any
point belonging to neighborhoods of black, red and blue

vertices. It is rather formed by the union of neighborhoods
of a subset of green (i.e., promising) vertices. Based on the
previous vertex classification we use simple vertex inclusion
criteria in order to prevent the graph branching off into
an unfavorable region of the search space. Equivalently,
we try to reduce the number of vertices which are outside
the relevant region Xrel. The three vertex inclusion/rejection
criteria checked in the IncludeVertex procedure for the
proposed algorithm are given as follows:

1) Key(xnew) ≺ (∞,∞)
2) Key(parent(xnew)) ≺ Key(v∗goal)
3) Key(xnew) ≺ Key(v∗goal)
Which of the above vertex inclusion/rejection criterion is

used results in a different algorithm. In the sequel we use
a subscript to denote the particular rejection criterion used
in the proposed algorithm. In the RRT#

1 algorithm, after
the creation and initialization of a new vertex xnew, the
vertex is included in the graph only if it has a finite key
value, i.e., the local minimization performed in Lines 8-14
of Algorithm 4 yields a finite lmc-value. On the other hand,
the RRT#

2 and the RRT#
3 algorithms are more selective

in terms of vertex inclusion. They include a new vertex
only if its parent is a promising vertex or if itself is a
promising vertex, respectively. The RRT#

3 truly implements
an adaptive rejection sampling method which includes new
samples only from X̂rel, whereas other algorithms check
other (more relaxed) vertex inclusion criteria, which re-
sult in collecting samples from supersets of X̂rel. In fact,
the vertex inclusion criterion can be written compactly as
αKey(xnew) ≺ Key(v∗goal) where α ∈ [0, 1] is a selectivity
factor. For α = 0 the algorithm includes any new vertex as
in the baseline RRT# algorithm, for α = 1 the algorithm
includes a new vertex only if it is a promising vertex during
its creation as in the RRT#

3 algorithm, and for 0 < α < 1
the algorithm behaves similarly to the RRT#

2 algorithm. The
selectivity factor needs to be tuned properly depending on
the application. For example, since the RRT#

3 algorithm is
the most selective one, this may result in the rejection of
many useful samples, i.e., a lot of false negatives during
the search process since the vertex inclusion decision is
made using estimated information of the cost-to-come values.
Samples from Xrel can be classified as non-promising and
rejected frequently in case of unfortunate cases in which
the constructed graph forms very long paths to reach these
samples. In this case large values of lmc-values for new
samples may result. On the other hand, since the RRT#

1
is the least selective algorithm, it may include too many
samples that are outside Xrel. This may be inefficient in
terms of speed and memory usage since the computational
complexity of the primitive procedures used in the RRT#

algorithm (e.g., Nearest, Near, etc.), increases with the
number vertices. It is therefore important to be able to have
as a small number of vertices from Xrel in the graph as
possible. Next, we investigate how the resulted algorithms
behave in different types of path-planning problems.

Remark 1 In [3] and [14] asymptotic optimality is achieved
by imposing uniform sampling. A careful study of [14]
reveals, however, that the only requirement of the sampling
strategy to ensure asymptotic optimality is that any point

in the relevant space is sampled with non-zero probability
infinitely often. As long as this condition is satisfied, the
asymptotic optimality of all three proposed algorithms fol-
lows directly from the asymptotic optimality of the original
RRT# algorithm. Our numerical results confirm this.

V. NUMERICAL SIMULATIONS

We tested the three proposed algorithms on several sce-
narios to evaluate their performance, and also compared
them with the RRT∗ and RRT# algorithms. We used three
different settings, one in which the environment is simple
enough (2D) and whose aim is to visualize the results of
the proposed sample rejection methods. It is shown how
these methods lead to a desirable, natural “multi-resolution”
sampling, whereby the search space is divided into dense
sampled areas (insides the relevant region) and sparse sam-
pled areas (obstacle space and non-relevant free space).
This is achieved by keeping a larger number of samples
in the region where the optimal path is more likely to
be found, and fewer samples elsewhere. It is important to
note, however, that the selection of samples is not done
arbitrarily, but rather using the information obtained from the
key values of the vertices, as described in Section IV. Hence
the exploration and exploitation steps are tightly coupled. We
next considered a pathological – “bug-in-a-trap” – case (see,
for example [20]) to show the effectiveness of the approach
even in challenging scenarios, specifically in cases where the
heuristic is not very informative. The third set of numerical
experiments involves a relatively high-dimensional search
space (6D and 12D, respectively) arising in typical robotic
manipulation problems. In both cases it is shown that the
proposed algorithms outperform both the RRT∗ and RRT#

by a wide margin.

A. Path Planning in an Environment with Several Obstacles
The objective in this problem is to find an optimal path in a

square environment where there are some box-like obstacles,
while minimizing the Euclidean path length. The Euclidean
distance from a given state to the goal set was used as an
admissible heuristic for that state. The trees computed by
the three variant algorithms at different stages are shown in
Figure 1. The initial state is plotted as a yellow square and
the goal region is shown in blue with magenta border (upper
middle). The minimal-length path is shown in red. As shown
in Figure 1, the best path computed by the variant algorithms
converges to the optimal path like the baseline RRT# and
RRT∗ algorithms.

As mentioned in [3], the RRT# algorithm gives a good
characterization of the vertices based on their key values once
an initial estimate of the optimal solution is computed, and
this characterization is used to propagate the new information
efficiently, i.e., replanning only on a subset of the graph.
In the variant algorithms, this characterization is leveraged
further, and is used to reduce the number of vertices that are
outside the relevant region Xrel. As shown in Figure 1 (d)-
(f), the RRT#

1 algorithm does not add any black vertices to
the graph, i.e., the ones which have infinite key value. Still,
it adds too many vertices around the branches of the tree
that are created outside of Xrel before the first connection to
the goal set. This issue can be solved somewhat by using

a stricter sample rejection criterion for vertex inclusion.
In the RRT#

2 and the RRT#
3 algorithms, a new vertex

is included into the graph only if its parent a promising
vertex or itself is a promising vertex, respectively. As shown
in Figures 1 (g)-(i), the RRT#

2 algorithm greatly reduces
the number red vertices, i.e., the ones which have a finite
lmc-value and infinite g-value. Finally, since the RRT#

3
algorithm is the most selective one for vertex inclusion, no
red vertex is included to the graph during the search, except
those sampled in the goal set, as shown in Figures 1 (j)-
(l). Detailed animations of these examples can be found
under “Optimal Motion Planning” playlist in the first author’s
youtube channel (http://www.youtube.com/oarslan3).

B. Path Planning in a “Bug-in-a-Trap” Environment
In this problem, we investigate how the algorithms perform

when they are run with less informative heuristics. Due to
location and shape of the walls in this environment, the
Euclidean distance heuristic is not a good measure of the
exact cost-to-go for a given state for this problem. Also, for
this example we use a slightly different implementation of
the algorithms, that is, the tree is rooted to the goal set instead
of the initial state, in order to demonstrate that the proposed
sample rejection scheme will still perform well even if the
growth direction of the tree is reversed. The results for this
case are shown in Figure 2.

Fig. 3: Initial and goal configurations of HUBO (6D)

C. Motion Planning for Single-Arm Manipulation (6 DoFs)
In this section, we test all algorithms on planning problems

in high-dimensional search spaces. First, we simulate a
simple workspace in which there are a table and two boxes
along with a humanoid robot (HUBO), as shown in Figure 3.
At the initial step, the HUBO is at rest with its right arm on
one side of the two boxes, and is tasked to move its right
arm to the other side of the boxes as, shown in the left-most
and right-most subfigures of Figure 3, respectively.

TABLE I: Results for Single-Arm Planning Problem
Solution RRT∗ RRT# RRT#

1 RRT#
2 RRT#

3

First Time (s) 15.38 (7.45) 14.26 (7.71) 13.88 (7.48) 13.84 (6.97) 13.81 (6.52)
Cost (rad) 6.22 (2.20) 4.55 (1.49) 4.56 (1.71) 4.67 (1.69) 4.63 (1.48)

Final Time (s) 1316.67 (338.89) 1187.92 (270.23) 1195.90 (283.00) 1079.40 (249.38) 675.39 (122.59)
Cost (rad) 5.43 (2.20) 2.60 (0.36) 2.65 (0.43) 2.65 (0.42) 2.62 (0.35)

of Vertices 4360.17 (121.83) 4237.25 (84.36) 3394.96 (433.75) 2256.34 (235.21) 1572.20 (292.14)

A Monte-Carlo study was performed in order to compare
the convergence rate and variance for all algorithms. All
algorithms were run for 5,000 iterations and their results
were averaged over 100 trials. The averaged results of all
algorithms are summarized in Table I. As seen below, the
RRT# algorithm and its three variants outperformed the
RRT∗ algorithm in all cases at finding the lower-cost path.
Among all of them, the RRT#

3 is the fastest algorithm and
computes the best solution in a much shorter amount of time.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

Time [s]

C
os

t [
ra

d]

RRT*

RRT#

RRT#
1

RRT#
2

RRT#
3

Fig. 4: The convergence rate of the algorithms in 6D

The convergence rate, the variance in trials, as vertical
bars, and the completion time, as filled circles, of all algo-
rithms are shown in Figure 4. The RRT∗ algorithm has the
slowest convergence rate and the largest variance, and the
RRT#

3 algorithm has the fastest convergence rate and the
smallest variance in the trials.

A video of the animation of the 6DOF and 12DOF
cases shown in Figures 3 and 5 can be found in
http://www.youtube.com/oarslan3.

Fig. 5: Initial and goal configurations of HUBO (12D)

D. Motion Planning for Dual-Arm Manipulation (12 DoFs)

In the final set of simulations, we tested all algorithms for
a planning problem in a 12D search space. At the initial step,
both arms of the HUBO lie on each side while it is standing,
and then the HUBO is commanded to move its right and left
arms to pre-grasp poses for the stick and steering wheel,
respectively, as shown in Figure 5.

TABLE II: Results for Dual-Arm Planning Problem
Solution RRT∗ RRT# RRT#

1 RRT#
2 RRT#

3

First Time (s) 111.47 (45.17) 108.73 (48.22) 107.42 (43.14) 103.14 (44.37) 100.07 (40.71)
Cost (rad) 10.57 (2.12) 6.71 (1.70) 6.65 (1.76) 6.67 (1.62) 6.59 (1.45)

Final Time (s) 6390.98 (714.09) 5455.71 (610.22) 4811.12 (305.10) 4170.12 (272.15) 2457.38 (221.71)
Cost (rad) 9.72 (3.71) 4.96 (0.84) 4.93 (0.78) 4.94 (0.72) 4.92 (0.67)

of Vertices 22470.14 (571.40) 21347.72 (351.74) 16147.81 (315.77) 8451.78 (307.97) 6187.18 (312.15)

A Monte-Carlo study is performed in order to compare the
convergence rate and variance in the trials of all algorithms.
All algorithms were run for 20,000 iterations, and their
results were averaged over 25 trials. The averaged results for
all algorithms are summarized in Table II. The RRT# and its
variant algorithms outperform the RRT∗ algorithm at finding
lower-cost paths at the final iteration on average. Among
them, the RRT#

3 is the fastest algorithm, and computes the
best solution in a much shorter amount of time.

The convergence rate, the variance in trials, as vertical
bars, and the completion time, as filled circles, of all al-
gorithms are shown in Figure 6. Among them, the RRT∗

algorithm has the slowest convergence rate and the largest
variance in the trials. The RRT#

3 algorithm has the fastest
convergence rate and the smallest variance.

https://www.youtube.com/playlist?list=PL684E0F98CF29A97E
https://www.youtube.com/playlist?list=PL684E0F98CF29A97E

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(g)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(j)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(h)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(k)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(i)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(l)
Fig. 1: The evolution of the tree computed by RRT#, RRT#

1 , RRT#
2 and RRT#

3 algorithms is shown in (a)-(c), (d)-(f),
(g)-(i) and (j)-(l), respectively. The configuration of the trees (a), (d), (g) and (j) is at 250 iterations, (b), (e), (h) and (k) is
at 2500 iterations, and (c), (f), (i) and (l) is at 25000 iterations.

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6

8

10

12

14

Time [s]

C
os

t [
ra

d]

RRT*

RRT#

RRT#
1

RRT#
2

RRT#
3

Fig. 6: The convergence rate of the algorithms in 12D

VI. CONCLUSIONS AND FUTURE WORK

Three extensions of the RRT# algorithm, initially pro-
posed in [3], are presented and their performance is com-
pared with the RRT# algorithm both in terms of conver-
gence rate to optimal solution and the variance in trials. The
behaviors of the proposed algorithms, e.g., growth of the tree,
and vertex rejection, are first shown on two 2D problems (an
“easy” one and a “pathological” scenario), and then all al-
gorithms are benchmarked using two more challenging path-
planning problems in high dimensional search spaces. Owing
to the design of the RRT# algorithm, the search space
is naturally decomposed into promising and non-promising
vertices once an initial solution is computed. The proposed
algorithm utilizes this information and uses simple rejection
criteria to control the growth of the search tree and to avoid

branching off into unfavorable regions. This leads to a natural
non-uniform sampling that is naturally adapted to the specific
problem at hand. The simulation results demonstrate that the
proposed algorithms store a fewer number of vertices in the
tree, yet they compute lower cost solutions than those of the
RRT∗ or the RRT# algorithm much faster.

The work in this paper can be extended along several
directions. Since it is crucial for the algorithm to reach
the target set as early as possible in order to converge to
the optimal solution faster, a bi-directional version of the
proposed algorithm can be developed in order to shorten
the first time-to-connect to the goal set. Also, a parallel
version of the algorithms could be implemented by running
the Extend and Replan procedures as separate threads. A
possible implementation would be to have multiple threads
implementing the Extend procedure and a single thread
implementing the Replan.

ACKNOWLEDGEMENTS

The authors are grateful to late Prof. Mike Stilman and to
the students of Humanoid Robotics Lab at Georgia Tech for
providing support on how to use the GRIP + DART software
platform. This work has been supported in part by ARO
MURI award W911NF-11-1-0046 and ONR award N00014-
13-1-0563.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(g)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(j)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(h)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(k)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(i)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(l)
Fig. 2: The evolution of the tree computed by RRT#, RRT#

1 , RRT#
2 and RRT#

3 algorithms is shown in (a)-(c), (d)-(f),
(g)-(i) and (j)-(l), respectively. The configuration of the trees (a), (d), (g) and (j) is at 250 iterations, (b), (e), (h) and (k) is
at 2500 iterations, and (c), (f), (i) and (l) is at 25000 iterations.

REFERENCES

[1] B. Akgun and M. Stilman. Sampling heuristics for optimal motion
planning in high dimensions. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2640–2645, 2011.

[2] O. Arslan, E. A. Theodorou, and P. Tsiotras. Information-theoretic
stochastic optimal control via incremental sampling-based algorithms.
In IEEE Symposium on Adaptive Dynamic Programming and Rein-
forcement Learning (ADPRL), pages 1–8, 2014.

[3] O. Arslan and P. Tsiotras. Use of relaxation methods in sampling-
based algorithms for optimal motion planning. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2413–2420,
2013.

[4] D. P. Bertsekas. Dynamic Programming and Optimal Control, vol-
ume 1. Athena Scientific, Belmont, MA, 2000.

[5] D. P. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, Belmont, Massachusetts,
January 1997.

[6] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. The MIT Press, 2005.

[7] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[8] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion
planning. Journal of the Association for Computing Machinery,
40(5):1048–1066, November 1993.

[9] D. Ferguson and A. Stentz. Anytime RRTs. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5369–
5375, 2006.

[10] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed RRT*:
Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2997–
3004, 2014.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[12] V. A. Huynh, S. Karaman, and E. Frazzoli. An incremental sampling-
based algorithm for stochastic optimal control. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2865–2872,
2012.

[13] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms
for a class of pursuit-evasion games. In Algorithmic Foundations of
Robotics IX, pages 71–87. Springer, 2011.

[14] S. Karaman and E. Frazzoli. Sampling-based algorithms for opti-
mal motion planning. International Journal of Robotics Research,
30(7):846–894, 2011.

[15] L. E. Kavraki and J.-C. Latombe. Randomized preprocessing of
configuration space for fast path planning. Technical Report STAN-
CS-93-1490, Dept. Computer Science, Stanford University, Stanford,
CA, 1993.

[16] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[17] S. Koenig and M. Likhachev. D∗ lite. In Eighteenth National
Conference on Artificial Intelligence, pages 476–483, Menlo Park, CA,
2002. American Association for Artificial Intelligence.

[18] S. Koenig and M. Likhachev. Fast replanning for navigation in
unknown terrain. IEEE Transactions on Robotics, 21(3):354–363,
2005.

[19] S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A*.
Artificial Intelligence Journal, 155(1-2):93–146, 2004.

[20] S. M. LaValle. Planning Algorithms. Cambridge Univ Pr, 2006.
[21] S. M. LaValle and J. J. Kuffner, Jr. Randomized kinodynamic

planning. International Journal of Robotics Research, 20(5):378–400,
May 2001.

[22] M. Otte and N. Correll. C-FOREST: Parallel shortest path planning
with superlinear speedup. IEEE Transactions on Robotics, 29(3):798–
806, 2013.

	I Introduction
	II Problem Formulation
	II-A Notation and Definitions
	II-B Problem Statement

	III Motion Planning Algorithms
	III-A The RRT# Algorithm

	IV Proposed Sampling Strategies
	IV-A Adaptive Sampling Strategies
	IV-B Three Variants

	V Numerical Simulations
	V-A Path Planning in an Environment with Several Obstacles
	V-B Path Planning in a ``Bug-in-a-Trap'' Environment
	V-C Motion Planning for Single-Arm Manipulation (6 DoFs)
	V-D Motion Planning for Dual-Arm Manipulation (12 DoFs)

	VI Conclusions and Future Work
	References

