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ABSTRACT
A new dynamic friction force model for the longitudinal
road/tire interaction for wheeled ground vehicles is val-
idated via experiments with an actual passenger vehicle.
Contrary to common static friction/slip maps, this new
dynamic friction model is able to accurately capture the
transient behavior of the friction force observed during
transitions between braking and acceleration. A velocity-
dependent, steady-state expression of the friction force vs.
the slip coefficient also allows easy tuning of the model
parameters by comparison with steady-state experimental
data. Our experimental results validate the accuracy of this
new tire friction model in predicting the friction force dur-
ing transient vehicle motion.
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1. Introduction

In the past several years, the problem of modeling and
predicting tire friction has become an area of intense re-
search in the automotive community. In particular, ABS
and traction control systems rely on knowledge of the fric-
tion characteristics. Such systems have enhanced safety
and maneuverability to such an extend, that they have be-
come almost mandatory for all passenger vehicles. There-
fore, the study of the friction force characteristics at the
road/tire interface is of paramount importance for the de-
sign of anti-lock brake systems (ABS) and/or traction con-
trol systems (TCS). Moreover, tire friction models are also
indispensable for accurately reproducing friction forces for
simulation purposes. Active control mechanisms, such as
TCS, ABS, steering control, active suspension, etc. may be
tested and optimized using vehicle mechanical 3D simula-
tors with suitable tire/road friction models.

The most common tire friction models used in the lit-

erature are those of algebraic slip/force relationships. They
are defined as one-to-one (memoryless) maps between the
friction force F , and the longitudinal slip rate s. The most
widely used such static model is Pacejka’s “Magic For-
mula” [1]. Other such models have been developed in
[2, 3]. These static friction models are appropriate when
we have steady-state conditions for the linear and angular
velocities of the vehicle. In fact, the experimental data used
to validate the friction/slip curves are obtained using spe-
cialized equipment that allow independent linear and angu-
lar velocity modulation so as to transverse the whole slip
range. This steady-state point of view is rarely true in re-
ality, especially when the vehicle goes through continuous
successive phases between acceleration and braking. For
this reason, kinematic models have been proposed in the
literature. A brush model for the longitudinal tire dynam-
ics has been derived in [4, 5].

In this paper, we briefly review the major properties
of a new, velocity-dependent, dynamic friction model that
can be used to describe the tire/road interaction, devel-
oped in [6, 7]. This model has the advantage that it is
developed from first principles based on a simple, point-
contact dynamic friction model [8]. Hence, the parameters
entering the model have a physical significance allowing
the designer to tune the model parameters using experi-
mental data. The proposed friction model is also velocity-
dependent, a property that agrees with experimental obser-
vations. In contrast to other static models, our model is
well-defined everywhere (even at zero rotational or linear
vehicle velocities) and hence, is appropriate for any vehicle
motion situations as well as for control law design. This is
especially important during transient phases of the vehicle
operation, such as during braking or acceleration.

In order to validate the proposed dynamic friction
model for tire/ground interaction, we have collected several
actual data using the “BASIL” car which is a laboratory car
based on a Renault Mègane 110 Kw. This car is equipped
with several sensors in order to study the behavior of the



vehicle during braking and traction phases. We believe that
data from an actual passenger vehicle is more relevant than
measurements obtained in a highly controlled laboratory
environment. We have used the data to first identify the
important parameters in our model and then generate the
time-histories of the friction forces using our model. The
results show excellent agreement between steady-state and
transient forces from the experimental results and the sim-
ulated friction forces predicted from our model.

2. The LuGre Dynamic Friction Model

A new dynamic friction model (called the LuGre model)
for point dry friction has been proposed in [8]. This dry
friction model has been extended in [6] in order to cap-
ture the complex friction phenomena occurring between
the tires and the ground. By introducing a contact patch
of length L at the tire/surface interface, we obtain the fol-
lowing partial differential equation for the internal friction
state z(ζ, t) along the patch

∂ z

∂ζ
(ζ, t) |rω| + ∂ z

∂t
(ζ, t) = vr − σ0|vr |

g(vr)
z(ζ, t) (1)

with g(vr) = µc + (µs − µc)e−|vr/vs|α where σ0 is the
rubber longitudinal lumped stiffness, σ1 the rubber longi-
tudinal lumped damping, σ2 the viscous relative damping,
µc the normalized Coulomb friction, µs the normalized
static friction, (µc ≤ µs), vs the Stribeck relative veloc-
ity, vr = rω − v the relative velocity. The distributed in-
dependent variable z(ζ, t) is the internal friction state that
describes the deflection of an elementary rubber element
at time t situated at location ζ along the patch. The con-
stant parameter α is used to capture the steady-steady fric-
tion/slip characteristic.

The total friction force is given by

F (t) =
∫ L

0

(σ0z(ζ, t) + σ1
∂z

∂t
(ζ, t) + σ2vr)fn(ζ)dζ (2)

where fn(ζ) is the normal force density function (force per
unit length) along the contact patch.

2.1 Steady-State Behavior

The steady-state characteristics of the model (1)-(2) is ob-
tained by setting ∂ z

∂ζ (ζ, t) ≡ 0 and by imposing that the
velocities v and ω are constant. The resulting expression
depends on the normal force distribution fn(ζ) along the
patch as follows [9]:

• Constant norm distribution. For uniform normal load

fn(ζ) =
Fn

L
, 0 ≤ ζ ≤ L (3)

and one obtains,

Fss =
(

sgn(vr)g(vr)
[
1 − Z

L
(1 − e−L/Z)

]
+ σ2vr

)
Fn

(4)

where Z = |ωr|g(vr)/|vr|σ0. This simple result has
been also reported in [6] and [10].

• Exponentially decreasing distribution. In this case,
the decrease of the normal load along the patch is ap-
proximated with an exponentially decreasing function

fn(ζ) = e−λ( ζ
L )fn0, 0 ≤ λ, 0 ≤ ζ ≤ L (5)

where fn(0) = fn0 denotes the distributed normal
load at ζ = 0. With the choice (5) one obtains [9]

Fss = σ0c2k1

(
1 − e−λ + k2e

(−λ+c1L) + k2

)

+ σ2vrk1(1 − e−λ)
(6)

where k1 = Fn

(1−e−λ) , k2 = λ
c1L−λ and where c1 =

− σ0
g(vr)

∣∣ vr

ωr

∣∣ , c2 = sgn(vr)
g(vr)

σ0
.

Other normal force distributions that satisfy the
boundary conditions can also be used; see [7, 9] for details.
Remark: Note that the above expressions can be written
in terms of the slip s which is defined by s = sb = rω

v − 1
if v > rω and v �= 0 (braking) and s = sd = 1 − v

rω
if v < rω and ω �= 0 (driving). Comparisons with the
steady-state expressions (such as the “Magic Formula”) can
therefore be made. The expressions (4) and (6) depend not
only on the slip s, but also on either the vehicle velocity v
or the wheel velocity ω, depending on the case considered
(driving or braking). Therefore static plots of F vs. s can
only be obtained for a specified (constant) velocity. This
dependence of the steady-state force/slip curves on vehicle
velocity is evident in experimental data found in the liter-
ature. Nonetheless, it should be stressed here that it is im-
possible to reproduce such a curves form experimental data
obtained from standard vehicles during normal driving con-
ditions, since v and ω cannot be independently controlled.
For that, specially design equipment is needed. Figure 1(a)
shows the steady-state dependence on the vehicle velocity
for the braking case, using the data given in Table 1.
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Figure 1. Static view of the distributed LuGre model with uni-
form force distribution (braking case) under: (left) different val-
ues for v, (right) different values for θ with v = 20m/s =
72 Km/h. These curves show the normalized friction µ =
F (s)/Fn, as a function of the slip velocity s.

The level of tire/road adhesion, can be modeled by in-
troducing a multiplicative parameter θ in the function g(v r)
as follows g̃(vr) = θg(vr) ,. Computation of the func-
tion F (s, θ), as a function of θ, gives the curves shown in
Fig. 1(b).



Table 1. Data used for the plots in Fig. 1

Parameter Value Units
σ0 181.54 [1/m]
σ2 0.0018 [s/m]
µc 0.8 [-]
µs 1.55 [-]
vs 6.57 [m/s]
L 0.2 [m]

We note that the steady-state representation of equa-
tions (4) can be used to identify most of the model pa-
rameters by fitting this model to experimental data. These
parameters can also be used in a simple one-dimensional
lumped model, which can be shown to suitably approxi-
mate the (average) solution of the partial differential equa-
tion (1). This approximation is discussed next.

3. Average Lumped Model

Although the distributed model (1)-(2) captures reality bet-
ter than a lumped, point contact model it is desirable to
have a discrete/lumped model that is capable of capturing
the essential friction characteristics. This can be achieved
by defining a mean friction state z̄ for each tire and then
deriving an ordinary differential equation for z̄. This will
simplify the analysis and can also lead to much simpler
control design synthesis procedures for tire friction prob-
lems. Following [9], if we define the average friction state
as

z̄(t) ≡ 1
Fn

∫ L

0

z(ζ, t)fn(ζ)dζ (7)

we obtain the following ordinary differential equation

˙̄z(t) = vr − σ0|vr|
g(vr)

z̄(t) − κ(t)|ωr|z̄(t) (8)

F (t) = (σ0z̄(t) + σ1 ˙̄z(t) + σ2vr)Fn (9)

where Fn is the total normal force, given by Fn =∫ L

0
fn(ζ) dζ.

The value of κ in (8) depends on the normal force
distribution:

• Parabolic Distribution. In the case of parabolic nor-
mal force distribution κ takes the values [9, 7] 1/L ≤
κ ≤ 2/L.

• Exponentially Decreasing Distribution. Assuming (5)
one obtains κ = λ/L, with λ ≥ 0.

• Uniform Normal Distribution. The case of the uni-
form normal distribution can be viewed as a special
case of (5) with λ = 0. In this case one obtains
κ(t) = κ0(t)/L. The function κ0(t) is chosen in [10]
so that the steady state solutions of the total friction
force for the average/lumped model in (8)-(9), and the

one of the distributed model (4) are the same. This
approximation results in the following expression for
κ0

κ0 = κ0(Z) =
1 − e−L/Z

1 − Z
L (1 − e−L/Z)

(10)

In [10] it is also shown that, such a κ0 belongs to the
range 1 ≤ κ0(t) ≤ 2 for all t ≥ 0. Often, a constant
value for κ0 ∈ [1, 2] can be chosen, without signif-
icantly changing the steady states of the distributed
and lumped models [9].

4. Experimental Results

In this section we present experimental results used to vali-
date the average dynamic friction model in (8)-(9). We first
give the measurements collected during three brakings of
a specially equipped test vehicle. The measurements for
the three brakings were taken under the same vehicle op-
erational and road conditions. We have used this data to
identify the parameters of the average/lumped LuGre tire
friction model. We then used these parameters to validate
the dynamic friction model by comparing the time histo-
ries of the friction force predicted by our model with the
friction force from the three experiments.

4.1 Testbed Car Description

The friction data were collected using the “BASIL” car
which is a laboratory car based on a Renault Mègane 110
Kw. The car is equipped with several sensors to study the
behavior of the vehicle during braking and traction phases.
These sensors are (see Fig. 2):

• an optic cross-correlation sensor that measures the
transverse and longitudinal vehicle velocities

• a basic inertial unit with a piezoelectric vibrating gy-
roscope that measures the yaw rate; a separate sensor
measures the roll velocity

• a magnetic compass that provide directional informa-
tion

• two acceleration sensors that measure the longitudinal
and lateral accelerations

• an ABS-system used to derive – via suitable signal
processing – the wheels’ velocities; the ABS system
was not enabled during the experiments, it was used
only as a wheel velocity sensor

• a Differential GPS system used to locate the vehicle
and compute its trajectory with great accuracy (less
than one centimeter); this allows repeated experiments
at the same road location

• other specific-purpose sensors (not described herein)
used to measure the throttle angle (which reflects the
command acceleration) and collector pressure (which
reflects the braking command)



Figure 2. Sensors and measurement parameters.

For this application, a Kistler wheel force transducer
has been installed at the place of the standard right rim to
measure the dynamic forces and moments acting between
the road and the vehicle at the wheel center. Its inertial ef-
fects are small and hence have been neglected. The Kistler
sensor gives the complete wrench in real time, namely
forces the Fx, Fy , Fz and the moment Mz . These vari-
ables are shown in Fig. 3. A schematic of the completely
equipped “BASIL” vehicle, along with the corresponding
measurement parameters is presented in Fig. 2.

Fy- Fx

Fz

Mz

Sensor

Figure 3. View of the equipped wheel with the Kistler sensor
and variables measured.

Experimental procedure: For safety reasons, the trials
were carried out on a straight test track under dry weather
conditions. After an accelerating phase, the vehicle speed
is maintained constant at a pre-defined speed. Then, the
test driver releases the clutch for a few seconds in order to
match ISO conditions before the braking phase. The ISO
conditions are defined as:

• slip velocity near zero value

• steering wheel angle near zero value

• small, approximately constant, values of forces Fx

and Fz

The speed of the vehicle decreases slightly down to
the desired speed. Then, the test driver starts the braking
phase and brakes strongly until the grip limit of the front
wheels is reached. Finally, he releases the brake pedal and
the front wheels reach again normal grip conditions (small
value of slip velocity). Then, the driver accelerates again to
repeat the same sequence several times. Three such braking
phases were performed and the results were stored in a file
for analysis.

4.2 Collected Data

The collected data obtained from the experiments are
shown in Figs. 4 and 5. Figure 4 shows the measurements
of the braking pressure, the longitudinal speed of the vehi-
cle and the right front wheel (RFW) velocity, for the three
braking phases. Figure 5 shows the measurements of the
forces Fx, Fy and Fz , and the lateral acceleration Gt. The
values of Fy and Gt clearly show the lateral excitation of
the vehicle during braking. This is mainly due to geometri-
cal aspects of the suspension system that result in nonzero
wheel camber angles.

Figure 4. Braking experiments: measurements of the braking
pressure, the longitudinal speed of the vehicle and the RFW ve-
locity.

4.3 Parameter Identification

The experimental data consist of measurements of the lon-
gitudinal slip s, friction coefficient µ, and linear velocity
v. We also know the sampling frequency of the measure-
ments which allows us to re-construct the complete time
vector history. The experimental data consist of three dis-
tinct brakings shown in Fig. 5. Braking #1 consists of all
data collected between 80 and 83.5 sec, Braking #2 con-
sists of all data collected between 97 and 100 sec, and Brak-
ing #3 consists of the data collected approximately between
115 and 118 sec; see also the top plot of Fig. 5. First, we



Figure 5. Braking experiments: time-profiles of forces Fx, Fy

and Fz, and the lateral acceleration Gt.

compared the 3-D steady-state solution of the distributed
dynamical LuGre model at the mean velocity of one of
the experiments (Braking #2) with the friction coefficient
µ given by the experiments. We then used the s−µ plot of
Braking #2 to identify the parameters for the steady state
solution. We plotted the corresponding µ vs. slip curves
and determined the parameters of the model (σ0, σ2, µs, µc

and vs). By comparing the time histories of the friction
force given by our model, with the ones given by the ex-
periments we can determine the rest of the parameters (e.g.,
σ1).
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Figure 6. 3-D Plots of the corresponding (µ,s,v) curves for the
collected data and the estimated predicted steady-state LuGre av-
erage lumped model, with α = 2.

In order to identify the model parameters the
lsqnonlin command of MATLAB was used by fitting the
3-D (µ,s,v) steady-state solution of the distributed model to
the data of Braking #2. The command lsqnonlin solves
an associated nonlinear least squares problem. The previ-
ous analysis was done for uniform normal load distribution
with κ0 = 1 and 2 (case (i)), and with varying κ0 (case (ii)).
The case with exponential normal distribution (5) gives the
same results as the ones in Fig. 7 and hence it is omitted.

In all cases the patch length was chosen as L = 0.2 m. The
results of the identification algorithm are shown in Table 2.

Table 2. Data used for the plots in Figs 7-8.

Parameter Value
σ0 178 m−1

σ1 1 m−1

σ2 0 sec /m
µc 0.8
µs 1.5
vs 5.5 m/ sec

The comparison between the experimental results and
the simulation results using the LuGre dynamic friction
model for the three cases are shown in Figs. 7-8.

These figures indicate that our proposed model cap-
tures very well both steady-state and transient friction force
characteristics.

5. Conclusions

Experimental results are presented that corroborate the
theoretical developments for a new dynamic tire friction
model. This model captures both steady-state and transient
effects and is thus more realistic than similar steady-state
models. A properly equipped passenger vehicle was used
to collect friction measurement data during three succes-
sive brakings. These experimental results suggest that the
proposed model, although simple, is accurate for analyzing
tire friction. It is thus expected that the proposed model
will be useful in the automotive community, both for sim-
ulation purposes, as well as for control design of ABS and
TCS systems.
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