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ABSTRACT
In this paper we derive a new dynamic friction force
model for the longitudinal road/tire interaction for wheeled
ground vehicles. The model is based on a dynamic fric-
tion model developed previously for contact-point friction
problems, called the LuGre model [1]. By assuming a con-
tact patch between the tire and the ground we develop a
partial differential equation for the distribution of the fric-
tion force along the patch. An ordinary differential equa-
tion (the lumped model) for the friction force is developed
based on the patch boundary conditions and the normal
force distribution along the contact patch.
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1. Introduction

The problem of predicting the friction force between the
tire and the ground for wheeled vehicles is of enormous
importance to automotive industry. However, accurate
tire/ground friction models are difficult to obtain analyti-
cally. Subsequently, in the past several years, the problem
of modeling and predicting tire friction has become an area
of intense research in the automotive community. In partic-
ular, Anti-lock Braking Systems (ABS) and Traction Con-
trol Systems (TCS) rely on knowledge of the friction char-
acteristics. Such systems have enhanced safety and maneu-
verability to such an extend, that they have become almost
mandatory for all future passenger vehicles.

The main difficulty in designing ABS and TCS sys-
tems is the nonlinearity and uncertainty of the tire/road
models. In either case, the friction force at the tire/road
interface is the main mechanism for converting wheel an-
gular acceleration or deceleration (due to the motor torque
or braking) to forward acceleration of deceleration (longi-
tudinal force). Therefore, the study of the friction force
characteristics at the road/tire interface is of paramount im-
portance for the design of ABS and/or TCS systems.

A common assumption in most tire friction models is
that the normalized tire friction µ

µ =
F

Fn
=

Friction force
Normal force

is a nonlinear function of the normalized relative velocity

between the road and the tire (slip coefficient s) with a dis-
tinct maximum; see Fig. 1. In addition, it is understood that
µ also depends on the velocity of the vehicle and road sur-
face conditions, among other factors (see [2] and [3]). The
curves shown in Fig. 1 illustrate how these factors influence
the shape of µ.
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Figure 1. Typical variations of the tire/road friction profiles for
different road surface conditions (left), and different vehicle ve-
locities (right). Curves given by Harned et al. [3].

The curves shown in Fig. 1 are derived empirically,
based solely on steady-state (i.e., constant linear and an-
gular velocity) experimental data [3] in a highly controlled
laboratory environment or using specially designed test ve-
hicles. Under such steady-state conditions, experimental
data seem to support the force vs. slip curves of Fig. 1.
In reality, the linear and angular velocities can never be
controlled independently and hence, such idealized steady-
state conditions are not reached except during the rather un-
interesting case of cruising with constant speed. The devel-
opment of the friction force at the tire/road interface is very
much a dynamic phenomenon. Experiments performed in
commercial vehicles, have shown that the tire/road forces
do not necessarily vary along the curves shown Fig. 1, but
rather “jump” from one value to another when these forces
are displayed in the µ − s plane [4]. In addition, in real-
istic situations, these variations are most likely to exhibit
hysteresis loops, clearly indicating the dynamic nature of
friction.

In this paper, we develop a new, velocity-dependent,
dynamic friction model that can be used to describe the
tire/road interaction. The proposed model has the advan-
tage that is developed starting from first principles based
on a simple, point-contact dynamic friction model [1]. The
parameters entering the model have a physical significance



allowing the designer to tune the model parameters using
experimental data. The proposed friction model is also
velocity-dependent, a property that agrees with experimen-
tal observations. A simple parameter in the model can also
be used to capture the road surface characteristics. Finally,
in contrast to many other static models, our model is shown
to be well-defined everywhere (even at zero rotational or
linear vehicle velocities) and hence, is appropriate for any
vehicle motion situations as well as for control law design.
This is especially important during transient phases of the
vehicle operation, such as during braking or acceleration.

2. Static slip/force models

u, u,

Wheel with
lumped friction F

r

F
Fn

v

Fn

ωω

r

F

v

L

O
p

ζ
dF

Wheel with
distributed friction F

Figure 2. One-wheel system with lumped friction (left), and dis-
tributed friction (right).

The most common tire friction models used in the lit-
erature are those of algebraic slip/force relationships. They
are defined as one-to-one (memoryless) maps between the
friction F , and the longitudinal slip rate s, which defined
as

s =

⎧⎪⎨
⎪⎩

sb =
rω

v
− 1 if v > rω, v �= 0 for braking

sd = 1 − v

rω
if v < rω, ω �= 0 for driving

(1)
The absolute value of the slip rate is defined in the in-

terval [0, 1]. When s = 0 there is no sliding (pure rolling),
whereas |s| = 1 indicates full sliding/skidding. It should
be pointed out that in this paper we always define the rela-
tive velocity as vr = rω−v. As a result, the slip coefficient
in (1) is positive for driving and negative for braking.

The slip/force models aim at describing the shapes
shown in Fig. 1 via static maps F (s) : s �→ F . They may
also depend on the vehicle velocity v, i.e. F (s, v), and vary
when the road characteristics change. Some of the most
typical static models are the Pacejka’s model (see, Pacejka
and Sharp [5]), also known as the “Magic Formula” and the
models by Burckhardt [2] and Kiencke and Daiss [6].

2.1 The Lumped LuGre Model

As an alternative to the static F (s) maps dynamic mod-
els can be adopted. The so-called “dynamic friction mod-

els” attempt to capture the transient behavior of the tire-
road contact forces under time-varying velocity conditions.
Generally speaking, dynamic models can be formulated ei-
ther as lumped or as distributed models, as shown in Fig. 2.
A lumped friction model assumes a point tire-road friction
contact. As a result, the mathematical model describing
such a model is an ordinary differential equations that can
be easily solved by time integration. Distributed friction
models, on the other hand, assume the existence of a con-
tact patch between the tire and the ground with an associ-
ated normal pressure distribution. This formulation results
in a partial differential equation, that needs to be solved
both in time and space [7].

A number of dynamic models have been proposed in
the literature that can be classified under the term “dynamic
friction models.” One such model, for example, has been
proposed by Bliman et al. in [7]. Another lumped dynamic
model that can be used to accurately predict the friction
forces during transients is the LuGre friction model [8].

The LuGre model is an extension of the Dahl model
that includes the Stribeck effect (see, [1]). The lumped,
LuGre model as proposed in [8, 9], is given as,

ż = vr − σ0|vr|
g(vr)

z (2)

F = (σ0z + σ1ż + σ2vr)Fn (3)

with
g(vr) = µc + (µs − µc)e−|vr/vs|α (4)

where σ0 is the rubber longitudinal lumped stiffness, σ1 the
rubber longitudinal lumped damping, σ2 the viscous rela-
tive damping, µc the normalized Coulomb friction, µs the
normalized static friction, (µc ≤ µs), vs the Stribeck rela-
tive velocity, Fn the normal force, vr = rω − v the relative
velocity, and z the internal friction state. The constant pa-
rameter α is used to capture the steady-steady friction/slip
characteristic1.

3. The LuGre Distributed model

Distributed models assume the existence of an area of con-
tact (or patch) between the tire and the road, as shown in
Fig. 2. This patch represents the projection of the part of
the tire that is in contact with the road. With the contact
patch is associated a frame Op, with ζ-axis along the length
of the patch in the direction of the tire rotation. The patch
length is L.

In order to extend the point friction model (2)-(3) to a
distributed friction model we let z(ζ, t) denote the friction
state (deflection) of the bristle/patch element located at the
point ζ along the patch at a certain time t. The model (2)-
(3) implies that

d z

dt
(ζ, t) = vr − σ0|vr|

g(vr)
z, F =

∫ L

0

dF (ζ, t) , (5)

1The model in (3) differs from the point-contact LuGre model in [1]
in the way that the function g(v) is defined. Here we propose to use
α = 1/2 instead of α = 2 as in the LuGre point-contact model in order
to better match the pseudo-stationary characteristic of this model (map
s �→ F (s) ) with the shape of the Pacejka’s model.



with g(vr) defined as in (4) and where

dF (ζ, t) =
(

σ0 z(ζ, t) + σ1
∂z

∂t
(ζ, t) + σ2vr

)
dFn(ζ, t) ,

This model assumes that the contact velocity of each dif-
ferential state element is equal to vr.

Assuming a steady-state normal force distribution
dFn(ζ, t) = dFn(ζ) and introducing a normal force den-
sity function fn(ζ) (force per unit length) along the patch,
i.e., dFn(ζ) = fn(ζ)dζ one obtains the total friction force
as

F (t) =
∫ L

0

(σ0z(ζ, t) + σ1
∂z

∂t
(ζ, t) + σ2vr)fn(ζ)dζ (6)

Noting that2 ζ̇ = |rω| we have that equation (5) describes
a partial differential equation, i.e.

∂ z

∂ζ
(ζ, t) |rω| + ∂ z

∂t
(ζ, t) = vr − σ0|vr |

g(vr)
z(ζ, t) (7)

that should be solved in both in time and space.

3.1 Steady-State Characteristics

The time steady-state characteristics of the model (5) are
obtained by setting ∂ z

∂ζ (ζ, t) ≡ 0 and by imposing that the
velocities v and ω to be constant. Enforcing these condi-
tions in (7) results in

∂z(ζ, t)
∂ζ

=
1

|ωr|
(

vr − σ0|vr|
g(vr)

z(ζ, t)
)

(8)

At steady-state, v, ω (and hence vr) are constant, and (8)
can be integrated along the patch with the boundary condi-
tion z(0, t) = 0. A simple calculation shows that

zss(ζ) = = c2(1 − ec1ζ) (9)

where c1 = − σ0
g(vr)

∣∣ vr

ωr

∣∣, c2 = sgn(vr)
g(vr)

σ0
.

The steady-state value of the total friction force is cal-
culated from (6)

Fss =
∫ L

0

(σ0zss(ζ) + σ2vr)fn(ζ)dζ (10)

To proceed with the calculation of Fss we need to postu-
late a distribution for the normal force fn(ζ). The typical
form of the normal force distribution reported in the litera-
ture [10, 11], is shown in Fig. 3. However, for the sake of
simplicity, other forms can be adopted. Some examples are
given next.

• Constant norm distribution. A simple result can be de-
rived if we assume uniform load distribution, as done
in [8] and [12]. For uniform normal load

fn(ζ) =
Fn

L
, 0 ≤ ζ ≤ L (11)

2It is assumed here that the origin of the ζ-frame changes location
when the wheel velocity reverses direction, such that ζ̇ = rω, for ω > 0,
and ζ̇ = −rω, for ω < 0.

v
w

F
n

f
n

F
n

L

Figure 3. Typical normal load distribution along the patch; taken
from [11].

and one obtains,

Fss =
(

sgn(vr)g(vr)
[
1 − Z

L
(1 − e−L/Z)

]
+σ2vr) Fn

(12)

where Z = |ωr|g(vr)/|vr| (σ0).
• Exponentially decreasing distribution. In this case,

the decrease of the normal load along the patch shown
in Fig. 3 is approximated with an exponentially de-
creasing function

fn(ζ) = e−λ( ζ
L )fn0, 0 ≤ λ, 0 ≤ ζ ≤ L (13)

where fn(0) = fn0. This particular choice will be-
come clear later on, when we reduce the infinite di-
mension distributed model to a simple lumped one
having only one state variable. Moreover, for λ > 0
we have a strictly decreasing function of fn. With the
choice (13) one obtains

Fss = σ0c2k1

(
1 − e−λ + k2e

(−λ+CL) + k2

)
+ σ2vrk1(1 − e−λ)

(14)

where k1 = fn0L
λ , k2 = λ

c1L−λ and fn0 =
Fnλ/(1 − e−λ)L.

• Distributions with zero boundary conditions. As
shown in Fig. 3, a realistic force distribution has,
by continuity, zero values for the normal load at the
boundaries of the patch. Several forms satisfy this
constraint. Some possible examples proposed herein
are given below:

fn(ζ) = 3Fn

2L

[
1 −

(
ζ−L/2

L/2

)2
]

(15a)

fn(ζ) = πFn

2L sin(πζ/L) (15b)

fn(ζ) = γ2L2+π2

πL(e−γL+1) exp−γζ sin(πζ/L) (15c)

where (15a), (15b) and (15c) describe a parabolic, si-
nusoidal and sinusoidal/exponential distributions, re-
spectively.

where Fn denotes the total normal load.



3.2 Relation with the Magic Formula

The previously derived steady-state expressions, depend on
both v and ω. They can also be expressed as a function of s
and either v or ω. For example, for the constant distribution
case, we have that Fss(s), can be rewritten as:

• Driving case. In this case v < rω, see also (1), and
the force at steady-state is given by

Fd(s) = sgn(vr)Fng(s)
(

1 +
g(s)

σ0L|s|(e
−σ0L|s|

g(s) − 1)
)

+ Fnσ2rωs
(16)

with g(s) = µc + (µs − µc) e−|rωs/vs|α , for some
constant ω, and s = sd.

• Braking case. The steady-state friction force for the
braking case can be written as

Fb(s) = sgn(vr)Fng(s)
(

1 +
g(s)|1 + s|

σ0L|s| (e−
σ0L|s|

g(s)|1+s| − 1)
)

+ Fnσ2vs
(17)

where g(s) = µc + (µs − µc) e−|vs/vs|α , for constant
v, and s = sb; see also (1).
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Figure 4. Static view of the distributed LuGre model with uni-
form force distribution (braking case) under: (left) different val-
ues for v, (right) different values for θ with v = 20m/s =
72 Km/h. These curves show the normalized friction µ =
F (s)/Fn, as a function of the slip velocity s.

3.3 Dependency on Road Conditions

The level of tire/road adhesion, can be modeled by intro-
ducing a multiplicative parameter θ in the function g(v r).
To this aim, we substitute g(vr) by

g̃(vr) = θg(vr) ,

where g(vr) is the nominal known function given in (4).
Computation of the function F (s, θ) as a function of θ,
gives the curves shown in Fig. 4(b). These curves match
reasonably well the experimental data shown in Fig. 1(a),
for several coefficients of road adhesion. Hence, the pa-
rameter θ, can suitably describe the changes in the road
characteristics.

We also note that the steady-state representation of
the equations (16) or (17) can be used to identify most of
the model parameters by fitting this model to experimental
data. These parameters can also be used in a simple one-
dimensional lumped model, which can be shown to suitably
approximate the (average) solution of the partial differen-
tial equation (5). This approximation is discussed next.

4. Average Lumped Model

The disadvantage of a distributed model is that it requires a
possibly large number of states to describe the friction gen-
erated at each tire. Alternatively, one could define a mean
friction state z̄ for each tire and then derive an ordinary
differential equation for z̄. This will simplify the analysis
and can also lead to much simpler control design synthesis
procedures for tire friction problems.

To this end, let us define

z̄(t) ≡ 1
Fn

∫ L

0

z(ζ, t)fn(ζ)dζ (18)

where Fn is the total normal force, given by Fn =∫ L

0 fn(ζ) dζ. Thus,

˙̄z(t) =
1

Fn

∫ L

0

∂z

∂t
(ζ, t)fn(ζ)dζ (19)

Using (7) we get

˙̄z(t) =
1

Fn

∫ L

0

(
vr − σ0|vr|

g(vr)
z(ζ, t) − ∂z(ζ, t)

∂ζ
|ωr|

)
fn(ζ)dζ

= vr − σ0|vr|
g(vr)

z̄(t) − |ωr|
Fn

[
z(ζ, t)fn(ζ)

]L

0

+
|ωr|
Fn

∫ L

0

z(ζ, t)
∂fn(ζ)

∂ζ
dζ

The term in the square brackets describes the influence
of the boundary conditions, whereas the integral term ac-
counts for the particular form of the force distribution.

From (6) the friction force is

F (t) =
∫ L

0

(
σ0 z(ζ, t) + σ1

∂z

∂t
(ζ, t) + σ2vr

)
fn(ζ) dζ

= (σ0z̄(t) + σ1 ˙̄z(t) + σ2vr) Fn

As a general goal, one wishes to introduce normal
force distributions, that leads to the following form for the
lumped LuGre model,

˙̄z(t) = vr − σ0|vr|
g(vr)

z̄(t) − κ(t)|ωr|z̄(t) (20)

F (t) = (σ0z̄(t) + σ1 ˙̄z(t) + σ2vr)Fn (21)

where κ(t) is defined as:

κ(t) =
1

Fn z̄

{[
z(ζ, t)fn(ζ)

]L

0
−

∫ L

0

z(ζ, t)
∂fn(ζ)

∂ζ
dζ

}
(22)



and Fn as above. When comparing this model with the
point contact LuGre model (2)-(3), it is clear that κ cap-
tures the distributed nature of the former model. It is also
expected that κ > 0, so that the map vr(t) �→ F (t) pre-
serves the passivity properties of the point contact LuGre
model [1].

For the case of normal load distributions with zero
boundary conditions we have fn(0) = fn(L) = 0 and
equation (22) yields

κ(t) = −
∫ L

0
z(ζ, t)f ′

n(ζ)dζ∫ L

0
z(ζ, t)fn(ζ)dζ

(23)

where f ′
n(ζ) = ∂fn(ζ)/∂ζ.

4.1 Influence of Force Distribution on κ(t)

Depending on the postulated normal force distribution den-
sity function, several expressions for the average lumped
model can be developed. For instance, κ may be a constant,
an explicit or an implicit function of the mean friction state
z̄. We study some of these forms next.

Parabolic Distribution: For a parabolic normal force
distribution fn(ζ) is given by (15a). In order to com-
pute κ from (23) we now make the assumption that z(ζ, t)
is a separable function of ζ and t, namely, z(ζ, t) =
ϕ(ζ)θ(t) for some (time-independent) deflection function
ϕ(ζ), 0 ≤ ζ ≤ L and some (space-independent) time
function θ(t), t ≥ 0. From the previous discussion ϕ(ζ)
can be interpreted as the deflection of the bristle along the
patch at position ζ. We impose the boundary condition that
ϕ(0) = 0, since there is no deflection for the first bristle el-
ement. Under the reasonable assumption that the deflection
of the bristles builds gradually along the patch, we postu-
late that ϕ(ζ) = ζ and hence

κ = −
∫ L

0
ϕ(ζ)θ(t)f ′

n(ζ)dζ∫ L

0 ϕ(ζ)θ(t)fn(ζ)dζ
= −

∫ L

0
ζf ′

n(ζ)dζ∫ L

0 ζfn(ζ)dζ
(24)

A direct calculation gives that

∫ L

0

ζfn(ζ)dζ = Fn
L

2
and

∫ L

0

ζf ′
n(ζ)dζ = −Fn

(25)
where fn(ζ) as in (15a). Finally, κ = 2

L . A more realistic
model will assume that the deflection builds gradually but
the rate of deflection build-up is reduced along the patch.
This effect can be modeled by choosing ϕ(ζ) = ζ

1
2 . Using

such a ϕ and repeating the previous steps, one computes
that κ = 7

6
1
L ≈ 1.1667 1

L . A more accurate estimate of κ
can be computed assuming that the contact patch is divided
into two separate regions, the sliding region and the adhe-
sive region [10]. The sliding region can be modeled by lin-
ear bristle deflection. In the adhesive region the deflection
of the bristles has reached a maximum and hence it stays
constant. Therefore, we can choose the deflection function
as ϕ(ζ) = b sat(ζ/b), where 0 < b < 1 is a parameter

that determines the transition between the sliding and ad-
hesive regions of the contact patch. Using this expression
for ϕ and tracing the same steps as before, one obtains the
following value of κ as a function of the parameter b

κ =
2b(3 − 2b)

L (b3 − 2b2 + 2)
(26)

This expression is shown in Fig. 5(a). A comparison of
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Figure 5. (left): Variation of κL with b. Realistically, b varies
between 0.3 ≤ b ≤ 0.9. (right): Comparison of bristle deflection
distribution function ϕ(ζ) along the patch for ϕ1 = ζ

1
2 , ϕ2(ζ) =

ζ, ϕ3(ζ) = b sat(ζ/b).

several candidates for the bristle deflection function ϕ are
shown in Fig. 5(b). Several other choices of the bristle
deflection function ϕ(ζ) and the normal load distribution
function fn(ζ) can be used, yielding similar results. For
most cases it is reasonable to chose κ in (20) to be a con-
stant, somewhere in the range 1/L ≤ κ ≤ 2/L.

Exponentially Decreasing Distribution: Assuming (13)
along with z(0, t) = 0 one obtains

κ(t) =
1

Fnz̄
z(L, t)e−λfn0 +

λ

L
(27)

Next, recall that we require λ ≥ 0. For large values of
λ it is possible to ignore the term containing z(L, t) in the
equation above, and approximateκ(t) by a constant κ = λ

L ,
wit 0 ≤ λ.

Uniform Normal Distribution The case of the uniform
normal distribution can be viewed as a special case of (13)
with λ = 0. In this case fn(ζ) = fn0 = Fn/L and we
obtain the following expression

κ(t) =
1

Fnz̄
z(L, t)fn0 =

1
Lz̄

z(L, t) (28)

Deur [12] proposed that the boundary condition for the last
element z(L, t) be approximated by a linear expression of
the average deflection z̄, z(L, t) ≈ κ0(t)z̄ resulting in the
relation, κ(t) = κ0(t)/L. The function κ0(t) is chosen
in [12] so that the steady state solutions of the total fric-
tion force for the average/lumped model in (20)-(21), and
the one of the distributed model (12) are the same. This
approximation results in the following expression for κ 0

κ0 = κ0(Z) =
1 − e−L/Z

1 − Z
L (1 − e−L/Z)

(29)



In [12] it is also shown that, such a κ0 belongs to the range
1 ≤ κ0(t) ≤ 2 for all t ≥ 0. Often, a constant value for
κ0 ∈ [1, 2] can be chosen, without significantly changing
the steady states of the distributed and lumped models. This
can be verified from Fig. 6. Interestingly, this range of κ 0

is in agreement with the results of a parabolic normal load
distribution; see Fig. 5(a).

The plots 6 show the steady-state friction force as
a function of the slip coefficient for the distributed model
with uniform (Fig. 6(a)) and non-uniform normal load dis-
tribution (Fig. 6(b)), along with the steady-state plots of
both average models.For comparison, a fit with the Pace-
jka’s “Magic Formula” is also shown.
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Figure 6. Steady-state plots assuming: (left) uniform normal
load distribution using the approximation from [12] with κ0 =
1.2, and (right) the non-uniform normal load distribution given in
(13) with λ = 3.

5. Conclusions

In this paper we have revisited the problem of character-
izing the friction at the tire/surface interface for wheeled
vehicles. We have shown that static friction models are
inadequate for describing the transient nature of friction
build-up. Dynamic friction models are thus necessary
to capture such transients during abrupt braking and ac-
celeration phases. We propose a new dynamic friction
model that accurately captures friction transients, as well
as velocity-dependent characteristics and tire/road proper-
ties. The model is developed by extending the well-known
LuGre point friction model to the case of a contact patch at
the tire/surface interface. Contrary to common static fric-
tion/slip maps, it is shown that this new dynamic friction
model is able to accurately capture the transient behavior
of the friction force observed during transitions between
braking and acceleration.
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