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Abstract - In this paper, we address the relative navigation problem of a chaser circumnavigat-
ing a target. The chaser has an on-board camera and observes a set of features on the target;
the goal is to obtain a detailed map of the landmarks. By controlling the yaw-rotation of the
sensor it is possible to maximize the time allocated to landmark observation. An Extended
Kalman Filter (EKF) provides state uncertainty information, which can then be used to design
a cost function to be minimized by the optimal yaw controller. Three different cost functions
are designed and simulated, and their performances are compared with the case of a fixed,
nadir-pointing camera. The analysis of localization uncertainties for different sets of initial
conditions confirmed the superior performance of the proposed novel control methodology.

I. Introduction

Recent advantages in the field of computing hard-
ware, coupled with the enhancement of sensor per-
formance, have paved the way for autonomous navi-
gation to become a reality. In this framework, map
generation and localization are the key for successful
autonomous operation and navigation of robots. This
is particularly true in the case of orbiting vehicles,
in which autonomous formation flying and docking
could enable new designs of space systems and enable
operations such as inspection, refurbishment, repair,
refueling, etc.1

Autonomy is heavily dependent on the capability
for a satellite to accurately estimate its position with
respect to another target. State-of-the-art proximity-
navigation policies solve the problem of control and
estimation separately. That is, the mutual effects the
controller induces on the estimator (and vice versa)
are not considered.2–6

In this work, we depart from the separation princi-
ple of stochastic control, and integrate planning and
stochastic optimization with localization in order to
perform control of autonomous spacecraft under un-
certainty conditions. We approach the problem of a
chaser satellite circumnavigating a target satellite in
a simplified two-dimensional orbit. The chaser has
a vision sensor and observes a set of landmarks on
the target: its goal is to obtain a detailed map of
these features. The control acts on the yaw-rotation
of the sensor in order to maximize the time allocated

to landmark observation.
A certain cost function (e.g., the estimation accu-

racy of the detected landmarks) drives which feature
to be selected next, and hence also drives the next
control action. An Extended Kalman Filter (EKF)
provides the state uncertainty, which can then be
used to design the cost function. Since the opti-
mization problem is difficult to solve, we resort to
cross-entropy (CE) minimization, which iteratively
searches for the near-optimal control action. The fi-
nal result is a trajectory that achieves the predefined
goal in the state space and reduces total localization
uncertainty, while limiting actuation cost.

Three different cost functions are proposed and
simulated, and their performances compared with the
case of a fixed, nadir-pointing camera.

II. Problem Formulation

II.i Relative Navigation in Orbit

We consider an observer and a chaser satellite cir-
cumnavigating along a circular trajectory of radius
Rorb having linear velocity V and orbital velocity
ωϕ = V/Rorb. Typical relative orbits of two satellites
flying in formation would result in a 2 × 1 elliptical
orbit.7 The incorporation of an elliptical reference
orbit for the chaser satellite is straightforward.

The objective of the chaser satellite is to obtain a
map of a certain set of landmarks that are present
on the target satellite. These are features such as
edges, patches, arrays of LEDs, etc. For the sake
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Fig. 1: Problem set up and frame of reference defini-
tion

of simulations, we are considering the landmarks as
single points distributed in the xy plane. The process
of gathering information on the landmark positions is
achieved through the application of a Simultaneous
Localization and Mapping Algorithm (SLAM), which
also allows for the simultaneous improvement of the
chaser localization.

The satellite has an onboard sensor which is free
to rotate around the axis that is normal to the xy
plane going through its center of mass. According to
the notation in Fig. 1, frame {G} denotes the Global
frame∗, {R} the Local non Rotating Frame attached
to the chaser and {S} the Local Rotating Frame at-
tached to the satellite sensor. In addition, we define
the angles ϕ and θ, which respectively represent the
heading direction of the satellite and the sensor bear-
ing. Note that in this notation, frame {S} has a pos-
itive π/2 angular offset with respect to {R}: that is,
when the sensor points to Nadir, the bearing is set to
zero.

Detection of the landmarks — whose number and
locations are to be determined — can be obtained
with the aid of various sensors, i.e., sonars, lasers,
LIDARs, cameras, ecc. In this paper, we use a range
and bearing sensor, which outputs the distance and
angular displacement of the detected feature in the
{S} reference frame.

The sensor is a faithful representation of a real
device, having a limited field of view, a fixed angular
span and maximum angular acceleration.

∗For example, {G} could represent the base frame of a
Clohessy-Wilthshire transformation for a relative navigation
problem.

II.ii State Model

The state model of the orbiting satellite, aug-
mented with the position of the landmarks and ex-
pressed in differential form, is the following:

dx(t)
dy(t)
dϕ(t)
dθ(t)
dp1(t)

...
dpN (t)


=



V cosϕ(t)dt
V sinϕ(t)dt
ωϕ(t)dt
ωθ(t)dt

0
...
0


+

[
I4

02N×4

]
dw(t) [1]

where x and y indicate the position of the chaser
satellite in the {G} frame, whereas angles ϕ and θ are
the rotation of the chaser and the sensor expressed in
frames {G} and {R} respectively. The landmark po-
sitions are expressed in the global frame, and yield
an augmented state x ∈ R2N+4.

In the model, dw ∈ R4 represents Wiener
process noise, with covariance matrix Σw =
diag(σ2

1 , σ
2
2 , σ

2
3 , σ

2
4).

In the simulations, a discrete-time state model de-
rived from [1] using Euler discretization will be used:

xk+1

yk+1

ϕk+1

θk+1

p1k+1
...

pNk+1


=



xk
yk
ϕk
θk
p1k
...

pNk


+



V cos(ϕk) δt
V sin(ϕk) δt
ωϕk

δt
ωθk δt

0
...
0


+

[
I4

02N×4

]
w(tk)

[2]
where δt is the discretization step and w(tk) denotes
white Gaussian noise. In this model, the only control
parameter is the angular velocity of the sensor ωθk
at time tk. Since the sensor has a limited field of
view, the capability of controlling ωθk may have a
significant influence on the uncertainty reduction of
the state estimate.

II.iii Measurement Model

Detection of the landmarks occurs only if they are
within the field of view and range of the sensor. When
a feature is detected, the sensor outputs z = (r, α),
where r is the range and α is the bearing of the
observed landmark . The measurement model, ex-
pressed in continuous form, is given by:

z(t) = S
RR(θ(t))RGR(ϕ(t))(pi(t)− pR(t)) + v(t) [3]

where pi = (pxi , pyi) and pR = (x, y) are the posi-
tion of the landmarks and the observer satellite, re-
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spectively. The term v(t) corresponds to the observa-
tion noise of the sensor which is considered zero-mean
Gaussian with covariance matrix Σv = diag(σ2

I , σ
2
II).

The matrices S
RR(θ(t)) and R

GR(ϕ(t)) express rota-
tional transformations from the global {G} to the
observer frame of reference {R} and from {R} to the
sensor reference frame {S}, respectively. In compact
form the observation model is written as:

z(t) = h(x(t)) + v(t). [4]

However, in a real scenario, measurements will be
taken discretely, according to the sampling strategy
adopted. The measurement model, in discrete time
form, can therefore be expressed as:

zk = h(xk) + vk, [5]

where h(xk) is given by:

h(xk) =

 √
(xL − xk)2 + (yL − yk)2

tan−1

(
yL − yk
xL − xk

)
− ϕk − θk

 [6]

In order to proceed, we consider the discretized
version of the dynamics in [2]. The dimension of the
state is initially x ∈ R4 and is augmented every time
a new landmark is detected. We divide the design
of the Extended Kalman Filter into prediction and
update (see Section III.v).

III. Main problem

We want to estimate the position of the landmarks
by evaluating the measurements taken by the sensor.
To do this, we control the rotation of the sensor in the
x-y plane to maximize the performance over a finite
time horizon. The objective is to minimize a cost
function that encloses both the final uncertainty of
the estimate and the actuation cost. The cost func-
tion can be written as:

L(x,u) = ∥e2(tN )∥+
∫ tN

0

(
Q(x) +

1

2
uTRu

)
dt [7]

where ∥e2(tN )∥ is the terminal cost at a certain time
horizon setpoint T = tN . Since we do not know this
error, a strategy for its approximation needs to be
designed.

This strategy is obtained by approximating the er-
ror with a measure of the estimation uncertainty. We
introduce a strategy based on the covariance matrix
trace, along with alternative strategies based deriv-
ing from the observation of the landmarks. All these
strategies evaluate both the terminal performances
of the piecewise control trajectory and the actuation
cost needed to achieve it.

III.i Trace of the covariance matrix (TCM)

The first strategy uses the trace of the covariance
matrix as a measure of the uncertainty for the state
estimate given by an Extended Kalman Filter (EKF):

L(x,u) = ψ1(xtN )+

N∑
k=0

(
Q(xtN ) +

1

2
u(tk)

T
Ru(tk)

)
[8]

in which the terminal cost is:

ψ1(xtN ) = trace(Σ(tN )). [9]

For simplicity, let in the following Q(x) = 0 to obtain:

Ltcm = trace(Σ(tN )) +

N∑
k=0

(
1

2
u(tk)

T
Ru(tk)

)
[10]

III.ii Time under observation (TUO)

In this second strategy, the cost is defined as the
time under observation of the landmarks by the sen-
sor. For each sampled trajectory, we count the num-
ber of landmarks seen by the sensor at each iteration
(Ti). The total number of observed landmarks is then
summed:

ψ2(xtN ) =

N∑
i=1

Ti [11]

The complete function, taking into account the actu-
ation cost, is then:

Ltuo =
∑
i

Ti +

N∑
k=0

(
1

2
u(tk)

T
Ru(tk)

)
[12]

III.iii Modified Time under observation (MTUO)

The previous strategy maximizes the time under
observation of the target, but may lead to overlook-
ing features in relatively remote areas of the working
space. In order to avoid this situation, we modify
Eq. [14] by defining the trajectory cost based not only
on the TUO, but also on the number of different land-
marks observed. That is, we count the TUO and the
number of different landmarks observed for each iter-
ation (Nlndi

) and we define MTUO as the normalized
sum:

ψ3(xtN ) =
∑
i

(T̂i + N̂lndi) [13]

Normalization is mandatory in order to correctly
compare and sum the two partial costs. We normalize
the two terms as follows:

T̂i =
Ti − Ti,min

Ti,max − Ti,min
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N̂lndi
=

Nlndi −Nlndi,min

Nlndi,max
−Nlndi,min

So that {T̂i, N̂lndi
} ∈ [0, 1] and the new cost Lmtuo ∈

[0, 2].
The complete function, taking into account the ac-

tuation cost, is then:

Lmtuo =
∑
i

[T̂i + N̂lndi
] +

N∑
k=0

(
1

2
u(tk)

T
Ru(tk)

)
[14]

III.iv Cross Entropy Minimization

We now present the Cross Entropy minimization
algorithm, and show how it can be used to solve a
certain class of stochastic optimal control problems.
Assume that the following stochastic dynamics sys-
tem is given:

dx = f(x,u)δt+ g(x)dw [15]

where x ∈ Rn is the state of the system, u ∈ Rp is the
control input, and w ∈ Rl is a zero-mean Gaussian
Wiener process with covariance Σw. Our objective is
to minimize a cost function of the form:

minEp[L(x,u)], [16]

where the expectation in [16] is with respect to the
trajectories of [15]. Assuming that u(t) depends on a
parameter vector λ ∈ Rm, we can rewrite the control
input as u(t;λ). The result of this parametrization is
that we will minimize the cost function with respect
to the finite dimensional parameters vector λ. Ac-
cording to the CE minimization method,8 we rewrite
the cost function as follows:

J(λ) = Ep [L(λ)] =
∫
p(λ) L(λ)dλ [17]

where p(λ) is the probability density function corre-
sponding to sampling trajectories based on [15]. This
cost function can be approximated as follows, per-
forming importance sampling from a proposal prob-
ability density q(λ),

Ĵ(λ) ≈ 1

Ns

Ns∑
i=1

[
p(λi;µ)

q(λi)
L(λi)

]
[18]

where Ns is the number of samples drawn. The prob-
ability density that minimizes the variance of the es-
timator Ĵ is:

q∗(λ) = argmin
q

Var

[
p(λ;µ)

q(λ)
L(λ)

]
=

[
p(λ;µ)L(λ)

J(λ)

]
[19]

and it is the optimal (with respect to variance) im-
portance sampling density. The goal of CE is to find
the parameters ψ ∈ Ψ in the parametric class of pdfs
p(λ;ψ), such that the probability distribution p(λ;ψ)
approaches the optimal distribution q∗(λ) given in
[19]. The optimal parameters can be approximated
numerically as:

ψ∗ ≈ argmax
ψ

1

Ns

∑
L(λ) ln[p(λ;ψ)], [20]

in which the Kullback-Leibler divergence was used as
the distance metric between q∗(λ) and p(λ;ψ). We
want to compute the value of λ that satisfies the fol-
lowing equation:

P(L ≤ ϵ) = Ep(λ;µ)[I{L≤ϵ}] [21]

where ϵ is a small constant and I is the indicator func-
tion. Using [18], this probability can be numerically
approximated:

P̂(L ≤ ϵ) ≈ 1

Ns

∑[
p(λi;µ)

p(λi;ψ)
I{L(λi)≤ϵ}

]
where λi are i.i.d samples drawn from p(λ;ψ). Based
on [20], the goal is to find the optimal ψ∗, which is
defined as:

ψ∗ ≈ argmax
ψ

1

Ns

∑
I{L(λi)≤ϵ} ln[p(λi;ψ)], [22]

where now the samples λi are generated according
to probability density p(λ;µ). In order to estimate
the above probability, it is infeasible to use a brute
force method, e.g. Monte-Carlo:9 this is because the
event {L ≤ ϵ} is rare. An alternative is to start with
ϵ1 > ϵ for which the probability of the event {L ≤ ϵ1}
is equal to some ρ > 0. Thus, the value ϵ1 is set to
the ρ-th quantile of L(λ) which means that ϵ1 is the
largest number for which:

P(L(λ) ≤ ϵ1) = ρ.

The parameter ϵ1 can be found by sorting the samples
according to their cost in increasing order and setting
ϵ1 = LρN . The optimal parameter ψ1 for the level ϵ1
is calculated according to [22] using the value ϵ1. This
iterative procedure terminates when ϵk ≤ ϵ, in which
case the corresponding parameter ψk is the optimal
one and thus ψ∗ = ψk.

To summarize, in order to find the optimal tra-
jectory λ∗ and the corresponding optimal parameters
ψk, the process of estimating rare event probabilities
is iterated until ϵ → ϵ∗, where ϵ∗ = minL(ϵ). Since
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Fig. 2: Recognition phase (a-c) and Cross Entropy minimization (d-f) at different timesteps: note the
progressive numbering assigned to the landmarks by the algorithm. The uncertainty of each feature is

displayed as a covariance ellipse.

ϵ∗ is not known a priori, we choose as ϵ∗ the value
of ϵ for which no further improvement within a pre-
defined tolerance in the iterative process is observed.
The overall problem is summarized in the table be-
low.

The proposed algorithm consists of two phases:

• the recognition phase, during which the first or-
bit the measurements taken by the chaser pro-
vide a first estimation of all the landmarks,

• the incremental estimation phase, during which
the chaser keeps taking measurements in order
to improve the overall state estimation.

The recognition phase is necessary, since the chaser
does not know the number and the position of the
landmarks and, in turn, the dimension of the over-
all system state. During the recognition phase the

Cross Entropy Algorithm

1: Draw N samples for λ from a probability dis-
tribution p(λ, ξ), e.g. a Gaussian distribution
N (µξ,Σξ).

2: Compute the cost L(λ) for each λ and sort them
in ascending order.

3: Select the best performing ρ-th percentile and
find the optimal parameters (µ∗

ξ ,Σ
∗
ξ) which max-

imize

(µ∗
ξ ,Σ

∗
ξ) = argmax

µξ,Σξ

1

|E|

|E|∑
e=1

ln p(λ, ξ)

4: Set (µξ,Σξ) = (µ∗
ξ ,Σ

∗
ξ)

5: Repeat from (1) until the variation of (µξ,Σξ) is
smaller than a predefined threshold.
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chaser runs an Extended Kalman filter algorithm
whose state is augmented whenever a measurement
related to a new landmark is collected.

III.v Recognition Phase

Let Ñ be the number of landmarks recognized up
to the time instant k so the current state of the EKF
is given by:

x
(Ñ)
k =

[
xk yk ϕk θk p

(1)
k p

(2)
k . . . p

(Ñ)
k

]T
.

We divide the design of the EKF into prediction and
update steps.

Prediction step

The update equation is

x̂k+1|k
ŷk+1|k
ϕ̂k+1|k
θ̂k+1|k

p̂
(1)
k+1|k

p̂
(2)
k+1|k
...

p̂
(Ñ)
k+1|k


=



x̂k|k
ŷk|k
ϕ̂k|k
θ̂k|k
p̂
(1)
k|k

p̂
(2)
k|k
...

p̂
(Ñ)
k|k


+



V cos(θ̂k|k)δt

V sin(θ̂k|k)δt
ωϕk

δt
ωθkδt
0
0
...
0


,

or, in a more compact form,

x̂
(Ñ)
k+1|k = f(x̂

(Ñ)
k|k , ωϕk

, ωθk).

The update of the covariance matrix is given by

P
(Ñ)
k+1|k = FkP

(Ñ)
k|k F

T
k +Qk, [23]

where

Fk =
∂f

∂x
. [24]

The matrix Fk has the following structure

F =

[
Fmot
k 0
0 IÑ

]
, [25]

where Fmot
k is given by the following expression

Fmot
k =


∂f1
∂x

∂f1
∂y

∂f1
∂ϕ

∂f1
∂θ

. . . . . . . . . . . .
∂f4
∂x

∂f4
∂y

∂f4
∂ϕ

∂f4
∂θ



=


1 0 −V sin(ϕ̂k|k)δt 0

0 1 V cos(ϕ̂k|k)δt 0
0 0 1 0
0 0 0 1

 .
[26]

Finally the matrix Qk is of the form

Qk =

[
Σw 0
0 0N

]
,

where 0N is a null matrix of dimension N .

Update step

Assuming we have the information provided by the
range and bearing sensor z = [r, α], we collect multi-
ple measurements at the same time instant k+1, e.g.
z̄k+1. This vector can be divided in two components,

the first component z
(1)
k+1 which is given by all the

measurements collected from already seen landmarks,

and the second z
(2)
k+1 which represents measurements

collected by observing new landmarks. The measure-
ment model can be written as

z̄k+1 =

[
z
(1)
k+1

z
(2)
k+1

]
=

[
h(1)(x̂k+1) + v

(1)
k+1

h(2)(x̂k+1) + v
(2)
k+1

]
.

Let us compute the Jacobian of the observation model
with respect to the robot pose and the observed land-
mark coordinates. At iteration k + 1 we obtain

Hk+1 =
∂h

(1)
k+1

∂x(Ñ)

∣∣∣∣∣
x̂k+1|k

[27]

With the output matrix Hk+1 we can update the
state related to all chaser attitute and all the already
seen landmarks

Kk+1 = P
(Ñ)
k+1|kH

T
k+1

(
Hk+1P

(Ñ)
k+1|kH

T
k+1 +Rk+1

)−1

x
(Ñ)
k+1|k+1 = x

(Ñ)
k+1|k +Kk+1z

(1)
k+1.

P
(Ñ)
k+1|k+1 = (I−Kk+1Hk+1)P

(Ñ)
k+1|k

Without loss of generality, suppose that z
(2)
k+1 refers

to just one new landmark p(Ñ+1), then we have that

p̂
(Ñ+1)
k+1|k+1 =

[
x̂k+1|k
ŷk+1|k

]
+

[
r cos(α+ ϕ̂k+1|k + θ̂k+1|k)

r sin(α+ ϕ̂k+1|k + θ̂k+1|k)

]
.

Then we can extend the state

x
(Ñ+1)
k+1|k+1 =

x(Ñ)
k+1|k+1

p̂
(Ñ+1)
k+1|k+1

 ,
and the covariance matrix

P
(Ñ+1)
k+1|k+1 =

[
P

(Ñ)
k+1|k+1 P (Ñ,Ñ+1)

P (Ñ+1,Ñ) P (Ñ+1)

]
,
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Fig. 3: Discretization strategy for cross-entropy algo-
rithm

where

P (Ñ+1,Ñ) =
(
P (Ñ,Ñ+1)

)T
=



∂p̂
(Ñ+1)

k+1|k+1

∂xk

∂p̂
(Ñ+1)

k+1|k+1

∂yk
∂p̂

(Ñ+1)

k+1|k+1

∂ϕk

∂p̂
(Ñ+1)

k+1|k+1

∂θk



∣∣∣∣∣∣∣∣∣∣∣∣∣
(x̂k+1|k,z̄k+1)

.

and

P (Ñ+1) =
∂p̂

(Ñ+1)
k+1|k+1

∂zk+1

∣∣∣∣∣∣
(x̂k+1|k,z̄k+1)

.

III.vi Incremental Estimation Phase

After the recognition phase an initial guess of the
landmark’s position is stored in the state of the sys-
tem. At this point the core of the algorithm runs to
improve the estimate of the state, and this informa-
tion is exploited to control the vision sensor.
Specifically, for any orbit the following steps are
repated:

1. We draw Ntraj random possible acceleration tra-
jectories for the sensor, λ = {λ1, λ2, . . . , λNtraj

},
from a Gaussian distribution with parameter vi
(the particular controller used in this paper will
be explained in Section III.vii).

2. For all λ we simulate the behavior of the camera
running an Extended Kalman filter as explained
in Section III.v.

3. Once the state has been estimated at any time
instant we can evaluate one of the cost function

presented in Section III and perform the CE al-
gorithm. Basically we have to select the ρ − th
best performing percentile, i.e. the trajectories
with an associated lower cost.

4. From these reduced subset of samples the new
parameters for the distribution are inferred. The
aforementioned procedure is repeated up to the
convergence of the cross entropy method and
then the optimal solution is applied.

III.vii Controller

The controller acts on the angular velocity of the
sensor, ωθ. Recalling Eq. [12], we can rewrite the
discretized cost as:

L̂(x,u) ≈ ψ(xN ) +
1

2
R

N∑
k=0

ω2
θk
, [28]

where in Eq. [8] we let Q(x) = 0 and ψ(xN ) =
∥e2(N)∥. The control law is parametrized as follows:

ωθk = u(ωθk−1
, η(k − 1;λ))

= ωθk−1
+ η(k − 1;λ)δt

[29]

where η(k−1;λ) is the rotational acceleration, which
is parameterized as a piecewise trajectory composed
by m constant pieces. The choice of parameterizing
the acceleration allows to have smooth (at least of
class C1) angular trajectories.

Each constant acceleration ηm is being applied for
a constant duration δti, where tsect =

∑m
i=1 δti. The

sum of all time intervals is fixed and equal to the time
horizon corresponding to the duration of each sector s
(refer to the table in Section IV). The parameter vec-
tor λ is defined as λT = (t1, η1, . . . , tm, ηm) ∈ R2m.

Each parameter vector λ corresponds to a unique
control vector u, which generates a trajectory x =
[x1,x2, . . . ,xtN ].

In the numerical simulations, and without loss of
generality, we maintain the controller timestep con-
stant δti = δtm = tsect/m. The accelerations ηi
are initially obtained from a uniform distribution
U([ηmin, ηmax]), where the bounds are dictated by
the specifics of the sensor.

III.viii Algorithm Set Up

To evaluate the proposed control policies, we con-
sider the scenario of a satellite circumnavigating an-
other satellite in orbit, while observing a set of feature
points (landmarks) on the target satellite. The objec-
tive of observing the satellite is to accurately localize
the landmarks.
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(b) Cost policy based on the Ltuo cost. CE optimization for different orbit sectors.
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(c) Cost policy based on the Lmtuo cost. CE optimization for different orbit sectors.

Fig. 4: Cross Entropy optimization for the proposed cost policies. The solid black line represents the null
cost. In this case, NCE = 15.

Problem Algorithm

1: for s = 1 to total sectors per turn do
2: Selected initial distribution parameters v0

3: for i = 1 to total CE optimization steps do
4: Draw Ntraj random acceleration vectors λ ∈

Rm from distribution with parameters vi
5: for j = 1 to Ntraj do

6: Run a simulated EKF with the input N j
traj

7: Evaluate the cost function [8] and store the
value

8: end for
9: Sort all the cost function values in ascending

order
10: Take the ρ-th quantile Run the cross entropy

optimization [22] and extract the new distri-
bution parameters vi+1

11: end for
12: Apply the obtained near optimal control law

λ ∈ Rm to sector s.
13: end for

The optimization step follows a first full orbit
around the object in which the chaser satellite ob-
serves the landmarks in a recognition mode: in this
first part, no control is applied to the sensor, which,
for example, points towards the center of the orbit at
all times.

After a first turn has been completed, and the state
vector x has been augmented to dimension R 4+2×N

through landmark observations†, the CE routine is
implemented.

Since the trajectory simulated in the EFK predic-
tion routine is dependent on the intrinsic uncertainty
of the sensor, a long time horizon will result in a
build up of errors and uncertainties. The CE routine
is then applied to a finite time horizon, equal to a
fraction of the orbital period.

In this simulation, the orbit has been divided in s
sectors: each sector is divided in m sampling boxes,
where m is the size of the control action vector λ.
Depending on the implemented discretization, each
box consists of l iterations. That is, for each box
mi, constant control parameters λi are applied for l

†N ≤ N
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Fig. 6: Landmark observations’ potential map in the uncontrolled and controlled cases.

number of iterations of the box. Fig. 3 illustrates the
discretization strategy.

The cross entropy control strategy for the simula-
tion is listed in the Problem Algorithm routine: Ntraj

random control laws are drawn by using the starting
distribution parameters v0. An EKF simulation is
then run for each of the Ntraj control laws, leading to
different trajectories; these are ordered according to
their respective cost and a quantile q− th is selected.
The best q− th quantile provides the new parameters
vi from which the next Ntraj control laws are drawn.
The process iterates for the NCE cross-entropy opti-
mization steps. The output of the algorithm is the
near-optimal control law λ ∈ Rm with m being the
number of boxes in which the si sector is divided.

IV. Simulation results

We present the results for the three proposed cost
policies. All the simulations, in order to maintain
consistency, comprise the same number and location
of landmarks, with the same orbit and sensor char-
acteristics. The simulation parameters are listed in
Table 1.

The position of the landmarks is obtained by ran-
domly extracting Nlnd × 2 values in N (0, R2 ).

The simulation starts with a first orbit in recog-
nition mode, during which the sensor is kept Nadir-
pointing (that is, x(4) = θ = 0). Data regarding the
landmarks is collected, along with the uncertainty of
the EKF extimate. Graphically, the uncertainty can

Table 1: Simulation parameters

Orbit
Orbit radius R 5

Angular velocity ω 0.2

Set up

Sectors per turn s 6
Boxes per sector m 10
Iterations per box l 20

Number of landmarks Nlnd 10

Sensor
Range r 4.7
Bearing α 5

Max acceleration amax 2

Noise
Model σω 0.002

Measurement σv 0.002

be represented with covariance ellipses.

In Fig. 2 (a-c), the recognition mode simulation
is illustrated at different steps during the first turn.
Initial uncertainty is dictated by the simulation and
sensor noise and is influenced by the number of mea-
surements taken.

After this first initial turn, the cross entropy con-
trol is applied. The algorithm’s ability to drastically
reduce the uncertainty and to improve the mutual
localization has been demonstrated for all three dif-
ferent control strategies.

In Fig. 2 (d–f), the cross entropy minimization or-
bit is depicted at three different steps, in which the
shrinking in the size of the covariance matrix ellipses
can be clearly seen (in this particular case, the cost
strategy based on Ltcm has been implemented). Note
that the beam points always towards a group of land-
marks, whereas in the recognition mode the sensor is
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Fig. 7: Cumulative landmark detection in he uncontrolled and controlled cases.

kept pointed at the center of the orbit.

Analysis of the proposed optimization strategies is
presented in Fig. 4. These plots represent the aver-
age and maximum cost associated with the parame-
ter vector λi for i = 1 . . . NCE , for different sectors
s along the circular orbit. Due to the design of the
cost policies, the objective is to find the minimum for
Ltrace and the maxima for Ltuo,Lmtuo.

The cost strategy based on the trace of the co-
variance matrix enables the top λi quantile to con-
verge almost immediately to the optimal trajectory
(blue line in Fig. 4 (a)). On the contrary, the costs
based on the landmark observation inferences (Ltuo

and Lmtuo) show a slower convergence rate towards
the optimal value, albeit the latter is always reached
without significant oscillations (Fig. 4 (b-c)). In all
the performed simulations, the proposed cost strate-
gies outperform the non controlled case (solid hori-
zontal line in Fig. 4).

A further analysis to gain an insight of the perfor-
mance takes into account the overall uncertainty re-
duction made possible with the proposed cost strate-
gies. A good estimate of this uncertainty is again
the trace of the covariance matrix: in Fig. 5 the trace
behavior is plotted for the non controlled and the con-
trolled cases. The trace increase in the first leg of the
curve is due to the landmark acquisition and popula-
tion of the (initially empty) covariance matrix during
the first orbit. Since ωθ = 0 during the recognition
phase, this first part is identical (with the obvious
differences due to noise) for all cases.

The second part of the curve is influenced by the
strategy under analysis. As expected, the decay of
trace(Σ(tN )) is faster in the controlled case (Ltcm,
Ltuo and Lmtuo) compared to the non-controlled sce-
nario (Fig. 5 (a)). In particular, the cost Ltcm allows
for the best performance in terms of uncertainty re-
duction, with Ltuo and Lmtuo performing very simi-
larly (Fig. 5 (c-d)).

Finally, we studied how the different costs lead to
differences in landmark detection. To do this, we rep-
resented the time spent under observation as the po-
tential map in Fig. 4, in which the color intensity rep-

resents the number of times each landmark has been
measured in the same orbital portion. The scatter
plot has then been interpolated and a 3D surface was
computed. As expected, in the non controlled case
most observations happen in the proximity of the or-
bit’s center, Fig. 4 (a). The cost based on the trace,
Fig. 4 (b), presents fairly good performances in terms
of duration and distribution of the observations. Cost
strategies based on Ltuo and Lmtuo present a very
similar shape in terms of observed landmarks: how-
ever, the cost Lmtuo allows for an even distribution of
the observations. This is due to the additional term
in Eq. [14], which takes also into account the num-
ber of different features: in the potential plot, this is
confirmed by the more uniform gradient among the
landmarks.

Overall, strategies based on Ltuo and Lmtuo al-
low for a higher number of observed features: we
present another performance indicator for the algo-
rithm. In Fig. 7, the cumulative landmark observa-
tions are shown with the aid of bar charts: each bar
represents a landmark and the height of each bar rep-
resents the number of detection during a turn.

It is interesting to note how the non-controlled
case, Fig. 7 (a), performs poorly, both in terms of
number of detected landmarks and distribution (some
landmarks, for example, are never detected). The
first control policy, based on Ltcm, allows for a signif-
icant performance increase, both in terms of number
and frequency of the observations (Fig. 7 (b)). Cases
Ltuo and Lmtuo show again a similar structure in the
observation frequency, but with the substantial dif-
ference of a much more even distribution in the case
of Lmtuo.

In conclusion, based on the potential and cumu-
lative analyses, the modified Lmtuo allows for more
frequent and more even observations if compared to
the performance of Ltcm.

V. Conclusions

We analyzed the performances of three differ-
ent control strategies for solving the active self-
localization problem during relative navigation in or-
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bit using Cross Entropy (CE) minimization.10

By jointly considering the planning, control and
estimation problems it is possible to balance the con-
trol actuation costs and the obtainable localization
uncertainty: this has been obtained by incorporating
an uncertainty measure in the cost functions, which
is then utilized to select near-optimal trajectories in
terms of estimation uncertainty. Costs based on the
trace of the covariance matrix and on the time under
observation have been designed and tested, showing
good performances in terms of convergence and map-
ping/tracking capabilities.

In particular, the cost Lmtuo outperformed its sim-
pler version Ltuo by taking into account a higher
landmark cardinality while maintaining a similar ab-
solute number of observations. The cost based on
the trace, Ltcm, although outperforming the non-
controlled case, provided slightly worse performances
compared to Lmtuo, both in terms of quantity of fea-
tures observed and their respective frequency.

Future work will focus on the corroboration of the
presented method through the aid of experimental
data, and high-fidelity simulation using a satellite
simulator and a realistic orbital scenario.
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