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In this work we present an analysis of rally-racing
driving techniques using numerical optimization. We
provide empirical guidelines for executing a Trail-
Braking ( TB) maneuver, one of the common cornering
techniques used in rally-racing. These guidelines are
verified via experimental data collected from TB
maneuvers performed by an expert rally driver. We
show that a TB maneuver can be generated as a special
case of the minimum-time cornering problem subject to
specific boundary conditions. We propose simple
parameterizations of the driver’s steering, throttle and
braking commands that lead to an alternative formu-
lation of the optimization problem with a reduced
search space. We show that the proposed parametriza-
tion of the driver’s commands can reproduce TB
maneuvers along a variety of corner geometries,
requiring only a small number of parameters.

Keywords: Trajectory optimization, vehicle dynamics,
technical driving, autonomous vehicles.

1. Introduction

The state of the art in autonomous ground vehicles
was demonstrated during the 2005 DARPA Grand
Challenge, where several teams raced their vehicles

*Correspondence to: E. Velenis, E-mail: efstathios.velenis@brunel.
ac.uk

**E-mail: tsiotras@gatech.edu

***E-mail: jlulO@ford.com

autonomously over 131.2 miles of unpaved road in
the Mojave desert within 10 hours [1]. The winning
team, from Stanford University, completed the course
at an average speed of approximately 19 mph. It is
envisioned that the next generation of autonomous
ground vehicles will be able to travel autonomously
faster than these moderate speeds, and perhaps as fast
as human (expert) car drivers. It is therefore of interest
to develop mathematical models and control algo-
rithms that will be able to deal with the trajectory
generation and tracking problem under high-speed
and/or other abnormal (e.g., off-road, rough surface)
driving conditions. In this paper we initiate such a
program, starting with the investigation of the optim-
ality properties of these expert driver techniques. Our
ultimate objective is to use these highly specialized
maneuvers in the overall control architecture.

The problem of trajectory planning for high-speed
ground vehicles over rough terrain presents an
enormous technical challenge. For paved roads some
results do exist, obtained using numerical optimization
[6, 7, 12, 18]. These results demonstrate that numerical
techniques allow one to incorporate accurate, high
order dynamical models, thus producing realistic
results. On the other hand, these numerical optimiza-
tion approaches are computationally intensive, and
they cannot be readily implemented on-board the
vehicle in real-time. Analytical approaches have also
been proposed in the literature for minimum-time
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control strategies for land vehicles along paths of
fixed geometry [10, 13, 17, 19]. These analytical meth-
odologies are computationally less intensive than
numerical approaches. However, the assumptions used
in these works tend to oversimplify the problem.

A new approach to real-time path planning of
autonomous vehicles, which can be used to overcome
the limitations of both numerical and analytical
optimization techniques, has been developed in [8, 9]
for aggressive autonomous operation of robotic heli-
copters. In these references the optimal trajectory is
computed by scheduling on-the-fly a series of pre-
computed maneuvers from a maneuver library using a
finite state machine (maneuver automaton). One is
then able to perform real-time path planning by
pasting together these maneuvers from the maneuver
library. The scheme of [8, 9] is particularly appealing
to the problem of path planning of high-speed off-
road ground vehicles that mimic the aggressive driving
techniques used by expert human drivers. Indeed, it
has long been known that expert drivers competing in
off-road racing (rally-racing) utilize a series of spe-
cialized aggressive maneuvers (Trail-Braking (TB),
Pendulum turn, power oversteer, etc.) to control the
vehicle at high speed during cornering. It is therefore
natural to consider an approach similar to the one in
[8, 9], whereby one computes off-line a collection of
aggressive maneuvers and subsequently use them on-
line for vehicle control in high-speed regimes. In this
paper we present the details of one of the maneuvers in
the maneuver library for high-speed control of
wheeled vehicles. Note that unlike paved road racing
or closed-circuit racing of high-performance vehicles
(e.g., F1), to date there has been no concrete amount
of work correlating driving techniques used by expert
rally drivers with mathematical models. In order to
achieve the previous task we therefore start with the
use of empirical information collected from our
interactions with expert rally race drivers, along with
experimental results. We then develop a mathematical
and computationally tractable framework that suc-
cinctly formalizes this empirical information and
encapsulates the essential optimality features of these
maneuvers.

In the following, we first present (Section 2)
empirical guidelines for TB, one of the common cor-
nering techniques used in rally racing. These guide-
lines are verified using data collected from tests
performed by an expert rally driver. In Section 3 we
introduce a low-order vehicle model that incorporates
a sufficient level of fidelity to reproduce modes of
operation in accordance to the empirical descriptions
of rally mancuvers. Because of its low complexity, the
model can be used efficiently within an optimization
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scheme. We use a nonlinear programming algorithm,
in conjunction with the above vehicle model, to solve
several cases of the minimum-time cornering problem.
TB appears as the solution to the minimum-time
problem subject to appropriate boundary conditions
at the exit of the corner. Subsequently, in Section 4
we propose a simple parameterization of the driver’s
steering, braking and throttle control inputs for a
TB maneuver, in accordance to the empirical guide-
lines and experimental data. We use the simplified
description of the input signals in an alternative
optimization scheme with a greatly reduced search
space. This new optimization scheme allows us to
reproduce TB maneuvers efficiently along a variety of
corner geometries using a high fidelity vehicle model.
Finally, the last section summarizes our conclusions.

2. Empirical Description of the TB
Maneuver

Rally-racing has traditionally provided a research and
development platform for improving the safety and
performance of passenger vehicles. As an example,
the development of All-Wheel-Drive road vehicles
entered commercial production after the successful
introduction of the Audi Quattro in rally racing in the
1980s. Despite these technological successes, the
techniques and driving style of expert rally race drivers
have not yet been fully analyzed via a rigorous
mathematical framework, at least not in a way that it
could help researchers to develop control systems that
are able to operate a vehicle during extreme or
abnormal driving conditions. This knowledge remains
empirical and exclusive to a select few expert rally race
drivers. In this article we initiate a study of expert rally
driving techniques. We start by presenting empirical
information on TB, one of the commonly used rally
racing maneuvers.

2.1. Empirical Guidelines for TB

TB is a technique used by rally drivers to negotiate
single corners at high speeds [14]. Typically, an aver-
age/novice driver negotiates a corner by first braking
to regulate the speed, then by releasing the brakes and
steering the vehicle along the corner, and finally by
accelerating after the exit of the corner. In TB decel-
eration of the vehicle by braking continues even after
steering has commenced. It is used when the approach
speed to the corner is high.

Consider, for example, a 90 deg left corner as shown
in Fig. 1. Approaching the corner at high speed from
the outer edge of the road, TB begins by braking the
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Fig. 1. Empirical description of the Trail-Braking maneuver;
from [15].

vehicle without steering. The driver adjusts the brake
pressure such that the maximum available friction
is generated by the tires. This means that the max-
imum available deceleration is generated; subse-
quently, no friction for steering is available. As
the vehicle approaches the corner, the driver starts
steering the vehicle. In TB this is done by progressively
releasing the brake (in order to allow cornering forces
at the tires) and simultaneously—and progressively—
increasing the steering angle. As the vehicle decele-
rates, the weight of the vehicle transfers from the rear
axle to the front axle and thus, the front tires generate
higher friction (cornering force) than the rear ones.
Due to the increased cornering force at the front axle
and decreased cornering force at the rear axle, the
vehicle tends to oversteer and it rotates about the
vertical axis counterclockwise, at a high rate. As
the vehicle reaches the apex and its attitude is aligned
with the exit of the corner, the driver accelerates and
counter-steers (steers toward the opposite side of the
corner) to stop the rotation of the vehicle and start the
acceleration toward the exit of the corner. The accel-
eration causes the weight of the vehicle to transfer
from the front axle to the rear axle. As a result, the
rear tires generate more friction, resisting the
counterclockwise rotation of the vehicle.

E. Velenis et al.

Fig. 2. The 340 BHP, 510 Nm, All-Wheel-Drive CPD Racing
Subaru Impreza used during the tests.

Overall, TB involves high vehicle slip angles and
yaw rates. This aggressive rotation brings the vehicle
to a controllable, straight line driving state in a short
distance after the corner, and allows the driver to react
to unexpected changes in road conditions ahead of the
corner, which are typical during off-road rally racing.
The resulting trajectory ends up close to the inner limit
of the road and is known as the late apex line [14].

2.2. Data Collection and Analysis

The above guidelines for a TB maneuver were verified
using data collected during the execution of several TB
maneuvers by Mr. Tim O’Neil, a five times US and
North American Rally Champion and rally driving
instructor. The test took place at the facilities of Team
O’Neil Rally School and Car Control Center in
Dalton, New Hampshire. The vehicle used was a
Group A 2004 Subaru Impreza WRX STI (Fig. 2)
owned by CPD Racing and prepared by ProDrive.
The maneuvers were executed on gravel surface (typ-
ical friction coefficient u = 0.5-0.6).

The vehicle was instrumented with the following
sensors (Fig. 3): An Oxford Technical Solutions
RT3000 inertial measurement and GPS unit [2] to
measure three-axes accelerations, three-axes rota-
tional rates, and absolute vehicle position and head-
ing. The RT3000 was provided by the Research and
Advanced Engineering department of Ford Motor
Company. Two string extension potentiometers were
fitted on the steering column and the throttle cable
to measure the steering wheel angle and throttle
position respectively. In addition, a pressure trans-
ducer was placed at the brake line using a T-fitting to
measure the brake pressure. More information on
these sensors can be found in [3]. A DL2 data logger
and GPS system [3] was used to collect the data from
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(b) (c)

Fig. 3. (a) The RT3000 inertial measurement and GPS unit; (b) String extension potentiometer for steering wheel angle measurement;

(c) Pressure transducer for brake pressure measurement.

y{(m)
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Fig. 4. A Trail-Braking trajectory reproduced from experimental
data.

the potentiometers and the pressure transducer.
The data from the RT3000 was directly logged to a
portable PC.

The goal of the test was to capture the actions of the
driver (steering, braking and throttle commands) and
the resulting vehicle response as a rigid body, rather
than internal dynamics dealing with the engine, trans-
mission, brake, suspension and steering subsystems.

The test driver executed a TB maneuver around a
tight corner, approximately 80-90 deg. Fig. 4 shows
the trajectory of the vehicle using the absolute position
and heading measurements. Cones were used to mark
the limits of the road and the apex of the corner. These
are denoted by triangles in Fig. 4. In this figure the
origin has been moved to the apex of the corner. Fig. 5
shows the driver’s steering, brake and throttle com-
mands, normalized by the maximum steering position,
brake pressure and throttle position measurements as
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Fig. 5. Experimental data from Trail-Braking maneuver.
(a) normalized steering command; (b) normalized braking
command; (c) normalized throttle command; (d) vehicle speed;
(e) vehicle slip angle at the rear axle; (f) vehicle pitch angle.

a function of time, as well as the vehicle speed v, the
vehicle slip angle Sg at the rear axle and the vehicle
pitch angle 6, in accordance to the ISO 8855
coordinate system.

The sequence of the driver’s actions and the
resulting vehicle response are summarized below:

During 0 < ¢ < 2 sec the driver regulated the speed
to approximately 75-80, km/h, traveling in a
straight line.
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At ¢ = 2 sec the car reached the 25 m mark (distance
from the apex—Fig. 4) and the driver braked hard.
During 2 < ¢t < 3.5sec the driver progressively
released the brakes and increased the stecring angle
towards the direction of the corner. Deceleration of
the vehicle resulted in normal load transfer from the
rear to the front wheels, which can be seen from the
increase of the pitch angle (Fig. 5(f) ). As the rear axle
load was reduced, the friction of the rear tires was
also reduced and the wvehicle started rotating
counterclockwise, oversteering with increasing slip
angle (Fig. 5(e)).

During 3.5 <t < 4 sec the vehicle approached the
apex of the corner at a high slip angle and the driver
took action to stabilize the vehicle and exit the
corner. The driver subsequently reduced the steer-
ing angle, progressively released the brakes and
applied throttle.

During 4 < ¢t < 5 sec the driver counter-steered and
progressively increased the throttle command. As the
vehicle accelerated, the rear axle normal load
increased, and hence so did the friction of the rear
tires. The counterclockwise rotation was damped, the
slip angle was reduced to zero and the vehicle accel-
erated straight while exiting the corner. For safety,
and due to the limited space, the driver chose to
accelerate only until the vehicle exited the corner,
cutting-off the throttle just before the = 5 sec mark.

The experimental data collected during the execu-
tion of the previous TB maneuver are in accordance to
the empirical guidelines discussed in Section 1. That is,
the driver applied progressively decreasing braking
with increasing steering command, followed by
counter-steering and progressive acceleration. The
result was an aggressive cornering maneuver utilizing
high vehicle slip angles.

3. Minimum-Time Cornering

In this section we reproduce the TB maneuver using
numerical optimization. A low order vehicle model
is introduced and the minimum-time problem for a
90 deg corner is formulated. The TB maneuver is
reproduced as a special case of the optimal solution
subject to certain endpoint boundary conditions.

3.1. Vehicle Model

In this section we introduce a vehicle model suitable
for studying aggressive driving maneuvers such as TB.
The vehicle model has low dimensionality, and can be
efficiently incorporated in a numerical optimization
scheme. It is shown that the model is capable of
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reproducing vehicle responses as those described in
Figs 1 and 4.

Rally drivers routinely take advantage of the load
transfer from the front to the rear axle and vice versa
in order to control the yaw motion of the vehicle. As a
matter of fact, most of vehicle steering driving at high
speed on loose surfaces is done by using load transfer
as the primary control input, rather than the direct use
of the steering wheel [14]. Because load transfer is so
important for vehicle control on loose surfaces, we use
a half-car model (Fig. 6) that incorporates longitud-
inal load transfer effects.

3.1.1. Equations of Motion

The equations of motion of the half-car model (Fig. 6)
are given as follows.

ms = fx cOS(4 + 8) — fry Sin(¥ + 6) + frx cOS ¥

~ frysiny (1)
mj = frysin(¢ + 6) + fpy €08(¢ + 6) + frx sin Y

+frycosy (2)
LY = (fiy c08 & + [ sin 6)Lr — fylr (3)
Irir = Tr = frer (4)
Irwr = TR — fRxt (5)

In the above equations m is the vehicle’s mass, I is the
polar moment of inertia of the vehicle, I; (i = F, R) are
the moments of inertia of the front and rear wheels
about the axis of rotation, » is the radius of each wheel,
x and y are the cartesian coordinates of the center of
mass in the inertial frame of reference, 1/ is the yaw

Fig. 6. Half-car vehicle model.
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angle of the vehicle, and w; (i = F, R) is the angular
rate of the front and rear wheel respectively. By
Jfi (i=F,R and j = x,y) we denote the longitudinal
and lateral friction forces at the front and rear wheels,
respectively. In this model the inputs are the driving/
braking torques 7y and Tk at the front and rear
wheels, and § is the steering angle of the front wheel.

Remark 1: The equations of motion (1)—(5) are valid
only for a vehicle traveling on a flat and level surface.
Because actual rally driving usually takes place in roads
with various undulations and banks, a more realistic
model should use the following equation in lieu of (3)

Lw, = (fp},COS5+foSin 6)€F_fRy€R (6)
where
w- = cos pcosf — fsin @, (7)

and where ¢ and 6 are the roll and pitch angles of
the vehicle. If the vehicle suspension dynamics are
neglected, then ¢ and @ are the same as the bank and
grade angles of the driving road. Similarly, in this case
equations (1) and (2) need to include the gravity terms
owing to nonzero values of ¢ and 6. Therefore, if ¢
and # are known, it is not hard to incorporate them
into a more realistic model used in the optimiza-
tion discussed later on, but at the expense of increased
computational complexity. However, the simplified
model in (1)—(5), assuming level road, helps in
revealing the primary characteristics of interest with-
out a great loss of generality.

3.1.2. Tire Forces

Assuming linear dependence of the friction forces on
the normal load at each wheel, one obtains

Jij = Sizpviis

where f;. is the normal load at each of the front and
rear axles, and p; is the longitudinal and lateral fric-
tion coefficients of the front and rear tires. The fric-
tion coefficients p; can be calculated using, for
instance, Pacejka’s Magic formula [5], normalized by
the corresponding axle normal load f;;.

Calculation of the normal load at each axle f;;
is straightforward in cases where the suspension
dynamics are included in the vehicle model [16, 18].
Otherwise, a static map of the longitudinal accelera-
tion of the vehicle can be used to calculate the normal
load transfer from the front to the rear axle and vice
versa during acceleration and braking [20]. In this
work we neglect the suspension dynamics so as not to
increase the order of the vehicle model.

i=F,R,J'=X,y’ (8)
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Equilibrium of forces in the vertical direction and
equilibrium of moments about the point of contact of
the rear wheel with the ground result in the following
expressions

mg :sz +fR: (9)

mglr = (frxc0S& — frySin 6 + fre )+ Lfr..  (10)

Equations (9) and (10) can be solved for front and rear
axle normal loads:

Lrmg — hmgpipy

Je: = L+ h(ppxcosé — pp,siné — qu)

fRz =mg _fF:.'7 (12)

where L = {r + {r and & is the vertical distance of the
center of mass of the vehicle from the ground.

3.1.3. Control Inputs

Neglecting engine, transmission, brake and steering
system dynamics, we use the following maps to calcu-
late the inputs, Tr, Tr and 6 from the nondimensional
command signals wur € [-1,1](throttle and brake
command) and s € [—1, 1] (steering command):

6= Csus,
{—sign(w,-)Cibrkur for ur >0, (13)
T =
—Clacclir for ur <0,

where i = F, R. The constants Cs, Craces CRaces CFbrk
and Crpk determine the performance of the steering,
engine and brake system. In this work we assume a
Front Wheel Drive vehicle, hence Cracc = 0.

The vehicle parameters used in this work are shown
in Table 1. The parameters B, C and D refer to
Pacejka’s Magic Formula tire friction model [5], under
the assumption of uniform tire characteristics along
the longitudinal and lateral directions.

3.2. Baseline Solution

In this section we calculate the solution to the
minimum-time cornering problem for a 90 deg corner
on a low y surface (u = 0.5), as shown in Fig. 7. The
minimum-time cornering problem has been addressed
n [18], where numerical optimization was used to
compare minimum-time versus maximum exit speed
cornering. In [18] independence of the inputs 7 and
Tr was assumed.
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Table 1. Vehicle Parameters.

Parameter Value
m (kg) 1450
I (kg m?) 2740
£F (m) 1.1
Zp (m) 1.6
¥ (m) 0.3
IF.R (kg m') 1.8
h (m) 0.4
Cs (deg) 60
Crace (Nm) 1000
CRace (Nm) 0
Crrk (Nm) 700
Crork (Nm) 700
7
C 1.6
D 0.52

20}

y(m)

-40 -30 -20 -10 0 10 20
X(m)

Fig. 7. Baseline minimum-time cornering: vehicle trajectory.

We use collocation to transcribe the optimal control
problem to a nonlinear programming problem by
discretizing the continuous system dynamics (1)—(5).
Consequently, the control inputs are approximated
with constant functions during each time interval.
The numerical calculations where performed using
EZOPT, by Analytical Mechanics Associates Inc.,
which provides a gateway to NPSOL, a well-known
nonlinear optimization program (for details see [11]).

The index to be minimized is the final time

J =15 (14)

By defining
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Cs(x,v)é{‘/x2+y2 for x>0,y>0 (15)

. 15 otherwise

the road limits of the corner constitute the state
inequality constraints of the problem, as follows

10 m < Cy(x,y) <20 m. (16)

The boundary conditions consist of the fixed initial
position, orientation and velocity of the vehicle, par-
tially fixed final position and orientation, and free final
speed. The following values were used in the numerical
example below

Xo = 18 m, Yyo= —30m,

%o =60 km/h, y,=0,
77[;0:71./27 ¢O:0a d]f:ﬂ-v
Ur=0, xy=-30m, y=0. (17)

The final speed Xy, as well as the final lateral position
yr are free parameters to be determined by the
optimization algorithm.

The minimum-time trajectory, the optimal steering
and throttle/brake commands us and u7, the optimal
velocity profile and the vehicle slip angle 3 are shown
in Figs 7, 8(a—d), respectively. The minimum-time
trajectory, starts close to the outer edge of the road,
approaches the inner edge of the road at the midpoint
of the corner, and finally decreases its curvature
to meet the specified boundary conditions, taking
advantage of the available width of the road. In
accordance to the results in [6, 10, 18] the optimal
trajectory compromises between the minimum dis-
tance (in order to minimize time of travel) and the
minimum overall curvature (in order to allow the
vehicle to maintain high speeds). There is only partial
agreement between the optimal control inputs of
Fig. 8(a, b) and the guidelines of Section 2. In
particular, hard braking (0.5 < 7 < 1 sec), is followed
by progressive decrease of the braking input
(1 < r< 2 sec), which is followed by a progressive
increase of the throttle command (2 < r < 4.5 sec), in
accordance to the guidelines of Section 2. The optimal
steering command consists of an initial transient
phase (0.5 < ¢ < 1.5 sec), an approximately constant
value (1.5 < r < 4.5 sec), and a final transient counter-
steer (4.5 <t < 5.5 sec) at the end of the cornering
maneuver. Furthermore, the steering profile does not
capture the characteristic progressive increase and
decrease of the steering command as described at
Section 2, and also seen in Fig. 5(a). Finally, the
vehicle slip angle S8 remains small throughout the
minimum-time trajectory, as opposed to the high
vehicle slip angle evident in Fig. 5(e).
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Fig. 8. Baseline minimum-time cornering. (a) normalized steering
command; (b) normalized braking command; (¢) vehicle speed;
(d) vehicle slip angle.

3.3. Trail-Braking

In this section we consider an alternative optimization
scenario to the one presented in Section 3.2. The
scenario is motivated by the challenges encountered
during high-speed rally driving. Unlike closed circuit
driving of high-performance vehicles (e.g., F1), off-
road rally-racing involves an unpredictably changing
environment and lack of detailed information about
the condition of the road. Rally drivers bring their
vehicles in a controllable straight line driving state
early on into the corner, a strategy that allows them to
react to emergencies and unexpected changes in the
environment after each corner.

Consider again the 90 deg corner of Section 3.2. We
will solve the minimum-time problem using the same
cost (14), state constraints (16) and boundary condi-
tions (17) as before, except for xy, which is now set to
xr=0. Namely, we enforce the condition that the
vehicle reaches straight line driving condition (3y = 0,
Yy = mand ¢, = 0) at 30 m ahead of the previous final
state. Once again, the final speed X, as well as the final
lateral position yy are free parameters.

The minimum-time trajectory, the optimal steering
and throttle/brake inputs, the optimal velocity profile
and the vehicle slip angle are shown in Figs. 9, 10(a—e)
respectively (dashed curves). We observe that the
vehicle exits the corner close to the inner limit of the
road (Fig. 9), rather than taking advantage of the
whole width of the road as in Fig. 7. We also observe
that the apex is now at the end of the path (x = 0m)
rather than at the midpoint of the corner. The optimal
control inputs shown in Fig. 10(a) and 10(b) are
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in qualitative agreement with the description of
Section 2 and Fig. 5(a—c). In particular, hard brak-
ing (0.1 << 1.5sec), is followed by a progressive
decrease of the braking input (1.5 < ¢ < 3sec). The
steering command increases toward the direction of
the corner (1 < f< 2 sec), then decreases with sub-
sequent counter-steering (2 < r < 3 sec). A progres-
sively increasing throttle command is applied and
counter-steering is reduced to zero (3 <t < 4 sec).
As shown in Fig. 10(e), the vehicle negotiates the
corner with a high slip angle. The optimal solution in
this case follows closely a TB trajectory.

Next, we demonstrate that the previous TB man-
euver can be generated using a simplified numerical
optimization formulation. In particular, we approx-
imate the control inputs #s and ur using fixed
sequences of constant and ramp functions, determined
by two sets of parameters (fy, cg;) and (2, cp;), as in
Fig. 10(c). We re-solve the minimum-time problem
using (s, ¢g) and (1, cp;) as the parameters to be
optimized (instead of the control inputs at each time
step). This simplified optimization scheme will be
described in greater detail in the following section.
The parameterized steering and throttle/brake control
inputs, the velocity profile and the vehicle slip angle
are shown in Fig. 10(a, b, d, e) respectively (solid
lines). We observe that using the simple para-
meterization of the control inputs of Fig. 10(c) we are
able to reproduce essentially the same solution as the
one using nonlinear programming. For comparison,
we have included in Fig. 10(d, ¢) the velocity profile
and vehicle slip angle of the Baseline solution obtained
in the previous section.

Comparing the Baseline solution of the previous
section with the TB, we observe that the Baseline
solution reaches the x = —30 m position in approxi-
mately 5.8 sec, where as the TB solution reaches the
same point in 7.5 sec. Nonetheless, the TB maneuver is
the minimum-time solution when we require that the
vehicle completes the cornering maneuver and returns
to a straight line driving condition much earlier when
compared to the Baseline solution. Furthermore, TB
involves significantly larger vehicle slip angles than the
Baseline solution, as seen in Fig. 10e). Although in
the Baseline solution the vehicle utilizes the whole
width of the road (Fig. 7), TB results in a “late-apex”
trajectory (Fig. 9). Finally, in Fig. 10(f) we see that
the changes in the normal load balance between front
and rear axles are of higher rate of change (more
aggressive) in the case of TB than the Baseline solu-
tion. The load transfer from the rear to the front axle
during braking results in more oversteer and a more
aggressive change in the vehicle slip angle during
cornering. Conversely, the load transfer from the
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front to the rear axle during acceleration results in
more understeer and is used to stabilize the vehicle
while exiting the corner.

4. Input Parameterization and
High-fidelity Validation

In the previous sections we used a simple model to
numerically solve the minimum-time cornering prob-
lem for a variety of terminal boundary conditions. The
results obtained by this optimization algorithm cor-
roborate the TB characteristics observed using actual
test data. Nonetheless, owing to the simplicity of the
model and the fixed geometry used, there is still a need
to validate these numerical results against more
sophisticated models that capture all effects that were
neglected during optimization, and to do so for a
variety of corner geometries. In this section we
reproduce TB maneuvers via numerical optimization
using a high fidelity vehicle model for a variety of
corner geometries. As the main simulation engine we
use CarSim [4], a program that allows us to integrate
the full-car vehicle dynamics of an All-Wheel-Drive
sedan into the overall optimization scheme. The
vehicle model incorporates realistic engine, transmis-
sion and braking system characteristics. Besides the
steering command, the control inputs to be optimized
are independent throttle and brake commands (rather
than the composite control input u7 used in the pre-
vious sections). A direct transcription of the system
equations used in CarSim is out of the question.
Furthermore, working directly with the original input
functions (which normally have to be discretized over
time into small time intervals) also leads to a problem
of high computational complexity. For this reason, in
this section we use an alternative method to solve the
optimization problem. Specifically, instead of NPSOL
we use a Newton method, where a cumulative error is
iteratively optimized by numerically computing its
gradients with respect to a given set of free (control)
optimization parameters. Furthermore, in order to
reduce the optimization search space, we introduce a
simple parameterization of the control commands in
accordance to the description of Section 2.

4.1. Input Parameterization

We propose a steering, braking and throttle command
parameterization for the TB maneuver as shown in
Fig. 11. According to the discussion in Section 2, the
TB maneuver starts with the vehicle braking hard while
driving straight (see braking command in Fig. 11 for
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Fig. 11. Parameterized (a) steering, (b) braking and (c) throttle
inputs for Trail-Braking.

12 <t < tp3). The driver then increases steering toward
the direction of the corner (#;; < ¢ < t;3) and progres-
sively decreases braking (753 < ¢ < p4). Next, the driver
decreases steering and counter-steers (fp < < fg3),
while progressively applying the throttle (¢,; < t < 1)
to stabilize the vehicle at the exit of the corner. The
steering angle is reduced to zero (t3 <t < ty) and
the vehicle exits the corner while accelerating hard
(t > tz). The driver commands of Fig. 11 are steering
angle, throttle position and brake pressure normalized
by the corresponding maximum allowable value.

4.2. Optimal Control Formulation

A simplified numerical optimization scheme was used
to reproduce TB maneuvers along several corner
geometries using the control input parameterization
shown in Fig. 11. The dynamics of the vehicle cor-
respond to a light weight (1000 kg), All-Wheel-Drive
(50/50 torque distribution), 2.5L-115kw engine
sedan, whereas the friction coefficient of the road was
assumed to be p = 0.5. for all corner geometries we
assumed an inner corner radius of 10m and an outer
corner radius of 20m. The corner angles are 60,
90, 135, and 180deg. The initial conditions for all
optimization scenarios were the same.

The vehicle starts at 45m from the center of the
corner, traveling straight with a speed of 70 km/h. The
lateral velocity, slip angle and yaw rate are all initially
zero. The vehicle starts at a lateral distance of 2 m from
the outer limit of the road. The optimization takes
place until the vehicle reaches 15 m beyond the center
of the corner. It is desired that the vehicle will reach this
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Fig. 12. The numerical optimization scheme using the proposed
input parameterization and vehicle response calculations with
CarSim.
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final position traveling straight with zero lateral velo-
city, slip and yaw rate. It is also desired that the vehicle
remains close to the inner limit of the road such that a
“late apex trajectory” is enforced, in accordance to the
empirical guidelines. The final velocity of the vehicle is
a free parameter in our optimization.

As in Section 3.2, we reproduce the TB maneuver as
a special case of the minimum-time cornering prob-
lem, subject to the above boundary conditions. We
assume that the trajectory is known at discrete times
O0=t<ti<---<ty=tr and we wish to find the
optimal parameters Zy, Psi, Ipis Pbi» Lai» Dai» that min-
imize the following cost function:

J= W, tr+ W,.e + Wded(tf) + Ww e¢(tf)
+ Wye(ty) + Wyey(ty), (18)

where, # is the final time, e, = Zf:l e, (t;) is the
cumulative absolute value of the position error from
the road limits, e4(#) is the absolute value of the lat-
eral deviation of the vehicle from the inner limit of the
road at #7, ey (ty) is the final absolute orientation error,
ey(ty) is the final absolute lateral velocity of the vehi-
cle, and e,(#/) is the final absolute yaw rate error of the
vehicle. The weights W; (i = t,¢,d, 4, v, ¥) are used for
nondimensionalization and to adjust the relative sig-
nificance between the terms in the right-hand-side of
(18). The optimization was performed in Matlab using
an unconstrained nonlinear minimization algorithm
(Nelder-Mead) as shown in Fig. 12.

In Fig. 13 the optimal steering, braking and throttle
commands are shown. Notice that certain parameters
(psi, pyi and p,;) are common to all cases. We have
deliberately fixed the values of these parameters in
order to reduce the optimization search space further.
This simplified optimization scheme, nonetheless, was
successful at reproducing TB maneuvers for all corner
geometries. In Fig. 14 we show the velocity profile and
vehicle slip angle along each optimal trajectory. In the
same figure we also show the front and rear normal
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Fig. 14. Optimal vehicle speed (a), vehicle slip angle (b), front and
rear axle normal loads (c), (d) through the 60, 90, 135 and 180 deg
corners.

loads in order to demonstrate the longitudinal load
transfer that takes place during acceleration and
deceleration, and which plays a key role in a TB
maneuver, as described earlier. As expected, a braking
command results in load transfer from the rear to the
front axle, assisting in the initial rotation of the vehi-
cle. Conversely, a throttle command results in load
transfer from the front to the rear axle, and controls
the yaw motion while exiting the corner.

E. Velenis et al.

Fig. 15 shows the optimal trajectories of the vehicle
along the 60, 90, 135 and 180 deg corners respectively.
The simulation continues up to 45 m distance after the
center of the corner (that is, 30 m after the end of the
optimization) with maximum acceleration, in order to
demonstrate that the boundary conditions at the end
of the corner have been satisfied. Fig. 16 also
demonstrates the resulting optimal trajectories using
the 3D rendering tool of CarSim.

These numerical results demonstrate the validity of
the empirical guidelines introduced in Section 2.1 and
the proposed input parameterization for a variety of
corner geometries.

5. Conclusions

In this paper we have initiated a mathematical analysis
of rally racing techniques. We have concentrated on a
high speed cornering technique used extensively by
rally drivers, namely TB. We explored the optimality
properties of TB by formulating several minimum-
time cornering scenarios, which were solved using
nonlinear programming. We concluded that TB cor-
responds to the minimum-time cornering solution
when the vehicle is required to return to the straight
line driving condition right after it reaches the geo-
metric end of the corner. The solution generated by
the optimization scheme showed excellent agreement
with the guidelines provided by expert rally drivers, as
well as with experimental data. Finally, and in order
to reduce the numerical complexity during optimiza-
tion, we proposed a parameterization of the control
inputs that can be used to reproduce TB maneuvers
for a variety of corner geometries.
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