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Abstract— In this work we initiate a mathematical analysis
of rally racing techniques. We provide an empirical description
of Trail-Braking (TB) and Pendulum-Turn (PT) cornering, two
of the most common rally racing maneuvers. We introduce a
low order vehicle model that can be efficiently used within an
optimization scheme. The model incorporates the appropriate
level of detail to reproduce modes of operation typical of those
encountered in rally, off-road racing. We use a numerical
scheme to study different trajectory optimization scenarios
during cornering. We show that our modeling approach is
capable of reproducing TB and PT as special cases of the
minimum-time solution with additional constraints.

I. INTRODUCTION

The state of the art in autonomous ground vehicles was
perhaps demonstrated in the 2005 DARPA Grand Challenge,
where several teams raced their vehicles autonomously over
131.2 miles of unpaved course in the Mojave desert within
10 hours. Technical reports of the teams participating in
the final event can be found in [1]. The winning team was
from Stanford University, which completed the course at an
average speed of approximately 19 mph. It is envisioned that
the next generation of autonomous ground vehicles will be
able to travel autonomously such long distances faster than
these moderate speeds, and perhaps as fast as human (expert)
car drivers.

The problem of trajectory planning for high-speed ground
vehicles is typically dealt with in the literature by means
of numerical optimization [2], [3], [4], [5]. These results
demonstrate that numerical techniques allow one to incorpo-
rate accurate, high order dynamical models, thus producing
realistic results. On the other hand, these numerical opti-
mization approaches are computationally intensive, and they
cannot be readily applied in cases where the environment
changes unpredictably. Analytical approaches have also been
introduced in the literature [6], [7], [8], [9], [10] These
analytical methodologies are computationally less intensive
than numerical approaches. However, the assumptions used
in the formulation of trajectory optimization problems aiming
at analytic solutions tend to oversimplify the problem.

A new approach to real-time path planning of autonomous
vehicles, which overcomes the limitations of both numerical
and analytical optimization techniques has been developed
in [11], [12] for aggressive autonomous operation of robotic
helicopters. In these references the path optimization is
solved by first producing (off-line) a library of maneuvers.
By scheduling these maneuvers on the fly using a maneuver
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automaton one is able to perform real-time path optimization
by numerically pasting together the prerecorded maneuvers
from the maneuver library.

The scheme of [11], [12] is promising also for path
planning of ground vehicles. For off-road aggressive driving
scenarios the maneuver repertoire must be enriched with
expert rally racing techniques. Unlike paved road racing
or closed-circuit racing of high-performance vehicles (e.g.,
F1), to date there has been no concrete amount of work
correlating driving techniques used by expert rally drivers
with mathematical models. In this work, we use empirical
information collected from our interaction with expert rally
race drivers in order to develop a mathematical and compu-
tationally tractable framework that succinctly formalizes this
empirical information.

In the following, we first present an empirical descrip-
tion of Trail-Braking (TB) and Pendulum-Turn (PT), two
of the most common rally racing cornering maneuvers. A
low order vehicle model is introduced that incorporates a
sufficient level of fidelity to reproduce modes of operation in
accordance to the empirical descriptions of rally maneuvers.
Because of this low complexity, the model can be used
efficiently within an optimization scheme. We propose such
a numerical optimization scheme in order to study several
cases of the minimum-time cornering problem. First, a
smooth trajectory that maintains small vehicle slip angle is
generated as the minimum-time solution in accordance to
previous results in the literature [5]. Trail-Braking, which is
characterized by higher vehicle slip angles, is generated as
a special case of the minimum-time cornering problem. A
simple parametrization of the input space of the minimum-
time maneuver that applies to both the small slip angle
solution and the Trail-Braking is presented, and is compared
against the full space of allowable inputs. The Pendulum-
Turn maneuver is generated as the minimum-time solution
after varying the initial and final conditions of the minimum-
time problem according to the empirical description of the
maneuver. A simple parametrization of the input space is
also presented for the Pendulum-Turn maneuver.

II. EMPIRICAL DESCRIPTION OF TRAIL-BRAKING AND

PENDULUM-TURN MANEUVERS

Rally-racing provides an excellent platform for research
and development of automotive systems for improving the
safety and performance of passenger vehicles. As an exam-
ple, we mention the development of All-Wheel-Drive (AWD)
road vehicles after the successful introduction of the Audi
Quattro in rally racing in the 1980’s. Despite these techno-
logical successes, the techniques and driving style of expert
rally race drivers have not yet been fully analyzed using a



rigorous mathematical framework, at least in a way such
that it can help researchers develop control systems which
can operate a vehicle during extreme or abnormal driving
conditions. This knowledge remains empirical and exclusive
to few expert rally race drivers. In this section we present
empirical information on Trail-Braking and Pendulum-Turn,
two of the most commonly used rally racing maneuvers [13].

Trail-Braking is one of the techniques used by rally drivers
to negotiate single corners at high speeds. Typically, the
average driver negotiates a corner by first braking to regulate
the speed, then releasing the brakes and steering the vehicle
along the corner, and finally accelerating after the exit of the
corner. Trail-Braking is used when the approach speed to the
corner is high and the braking must continue even after the
steering of the vehicle has started.

Consider for example a 90 deg left corner as in Fig. 1.
Approaching the corner at high speed from the outer edge of
the road, Trail-Braking begins by braking the vehicle without
steering. The driver adjusts the brake pressure such that the
maximum available friction is generated by the tire. This
means that the maximum available deceleration is generated;
subsequently, no friction is available for steering. As the
vehicle approaches the corner, the driver starts steering. In
Trail-Braking this is done by progressively releasing the
brake (in order to allow cornering forces at the tires) and
simultaneously–and progressively–increasing the steering an-
gle. As the vehicle decelerates, the weight of the vehicle
transfers from the rear to the front axle and thus, the front
tires generate higher friction than the rear ones. The vehicle
rotates about the vertical axis, counterclockwise. As the
vehicle reaches the apex of the corner and its attitude is
aligned with the exit of the corner, the driver accelerates and
counter-steers (steers towards the opposite side of the corner)
to stop the rotation of the vehicle and start the acceleration
towards the exit of the corner. Acceleration causes weight
transfer from the front axle to the rear. As a result, the rear
tires generate more friction, resisting the counterclockwise
rotation of the vehicle. Overall, TB involves high vehicle
slip angles and yaw rates. This allows the vehicle to reach a
controllable, straight line driving state as quickly as possible,
and allow the driver to react to unexpected road condition
changes ahead of the corner, which are typical in off-road
rally racing.

Using the previous guidelines, we reproduced a TB ma-
neuver for a FWD vehicle on a low µ surface (µ = 0.5)
using CarSim, a high fidelity vehicle dynamics simulation
software [15]. The commands are manually provided in real
time (Fig. 2(a)) and are shown in Fig. 2(b). The resulting
trajectory is shown in Fig. 3.

The Pendulum-Turn is another high speed cornering ma-
neuver. It is typically used when the vehicle approaches the
corner at high speed coming from the inner edge of the road,
for S-turns, or for connecting successive sharp corners. If
there is not enough time for the driver to place the vehicle
at the outer edge of the road and use TB, the pendulum
turn is then appropriate. Consider again a 90deg left corner
(Fig. 4). The PT technique starts with the driver releasing
the throttle. This action results in load transfer from the rear
to the front axle. The driver then steers the vehicle towards
the outer edge of the road, opposite to the direction of the

BRAKE 0% GAS 100%

TURN 10o

TURN 90o

BRAKE 10% GAS 10%

TURN 60o

BRAKE 30% GAS 10%

BRAKE 70% GAS 10%

GAS 10%
(0% on pavement)

BRAKE 90%TRAIL-BRAKING 60 MPH

45 MPH

35 MPH

30 MPH

25 MPH

20 MPH

Load Rear

Suspension

Countersteer

Accelerate

to Stop

Rotation

Continue to turn

in and release

brake slowly

Begin to turn in

Load Front

Suspension

Lift and brake

APEX

Fig. 1. Empirical description of the Trail-Braking maneuver; from [14].
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Fig. 2. (a) Steering wheel and throttle/brake pedals for real time manual in-
puts to the CarSim simulation; (b) Steering, throttle and braking commands
used for Trail-Braking.

corner. As steering begins, the driver applies the brakes to
decrease further the vertical load on the rear axle, which
results in a high rate clockwise rotation of the vehicle. As the
vehicle builds distance from the inner edge of the road, the
driver turns the steering wheel to the left aiming now to the
direction of the corner. As the load on the rear wheel has been
reduced the change in the direction of the vehicle’s rotation
from clockwise to counterclockwise is fast (the rear wheels
always damp the vehicle’s yaw motion). As the vehicle aligns
with the exit of the corner the driver releases the brakes and
applies the throttle to start accelerating. Throttle and counter-
steer are used as in the TB case to stop the counterclockwise
rotation of the vehicle at the exit of the corner. The attitude of
the vehicle at the end of this maneuver can be fine-tuned by
throttle and brake commands as necessary: throttle to reduce
oversteer and brake to reduce understeer. This fine tuning is
achieved with simultaneous application of throttle and brakes
using both feet, which is called left-foot-braking (LFB) [14].

Once again, using the previous guidelines, we reproduced
a PT maneuver for a FWD vehicle on a µ = 0.5 surface
using CarSim. The resulting trajectory is shown in Fig. 5.
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Fig. 3. Trail-Braking maneuver: 1. Hard braking with no steering, 2.
Progressive increase of steering command and decrease of brake pressure,
3. Counter-steer and begin acceleration, 4. Hard acceleration.
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III. VEHICLE MODELING

In this section we introduce a vehicle model suitable for
studying maneuvers such as TB and PT. The vehicle model
has low order, such that it can be efficiently incorporated in
a numerical optimization scheme. Nonetheless, we require
that the model is capable of reproducing vehicle responses
as those described in Figs. 1 and 4.

Rally drivers routinely take advantage of the load transfer
from front to rear axles and vice versa in order to control
the yaw motion of the vehicle. As a matter of fact, most of
vehicle steering on loose surfaces at high speeds is done by
using primarily load transfer as the control input rather than
the steering wheel [13]. Since load transfer is so important
for vehicle control on loose surfaces we choose a half-car
model (Fig. 6) that incorporates longitudinal load transfer as
a static map of the longitudinal acceleration. This has the
benefit of avoiding the additional equations arising from the
suspension dynamics [16].
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Fig. 5. Pendulum-Turn maneuver: 1. Stop accelerating, 2. Steer towards
the opposite of the corner and progressively apply brakes, 3. Release brakes
and steer towards the direction of the corner, 4. Accelerate and counter-steer.
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A. Equations of Motion

The equations of motion of the half-car model (Fig. 6) are
given as follows.

mẍ = fFx cos(ψ + δ) − fFy sin(ψ + δ)
+ fRx cosψ − fRy sinψ (1)

mÿ = fFx sin(ψ + δ) + fFy cos(ψ + δ)
+ fRx sinψ + fRy cosψ (2)

Izψ̈ = (fFy cos δ + fFx sin δ) �F − fRy�R (3)

Iiω̇i = Ti − fixr , i = F,R. (4)

In the above equations m is the vehicle’s mass, Iz is the
polar moment of inertia of the vehicle, Ii (i = F,R) are the
moments of inertia of the front and rear wheels about the
axis of rotation, r is the radius of each wheel, x and y are
the cartesian coordinates of the center of mass in the inertial
frame of reference, ψ is the yaw angle of the vehicle, ωi

(i = F,R) is the angular rate of the front and rear wheel
respectively. By fij (i = F,R and j = x, y) we denote
the longitudinal and lateral friction forces at the front and
rear wheels, respectively. In this model the inputs are the
driving/braking torques TF and TR at the front and rear
wheels, and δ is the steering angle of the front wheels.



B. Tire Forces

Assuming linear dependence of the friction forces on the
normal load at each wheel, one obtains

fij = fizµij , i = F,R, j = x, y, (5)

where fiz is the normal load at each of the front and rear
axles, and µij is the longitudinal and lateral friction coef-
ficients of the front and rear tires. The friction coefficients
µij can be calculated using, for instance, Pacejka’s Magic
Formula [17].

In this work we neglect the suspension dynamics so as not
to increase the order of the vehicle model. The normal loads
at the front and rear axle are given by [16]

fFz =
�Rmg − hmgµRx

L+ h (µFx cos δ − µFy sin δ − µRx)
(6)

fRz = mg − fFz, (7)

where L = �F + �R and h is the vertical distance of the
center of mass of the vehicle from the ground.

C. Control Inputs

Neglecting engine, transmission, brake and steering sys-
tem dynamics, we use the following maps to calculate
the inputs, TF , TR and δ from non-dimensional command
signals uT ∈ [−1, 1] (throttle and brake command) and
uδ ∈ [−1, 1] (steering command) as follows:

δ = Cδuδ,

Ti =
{ −sign(ωi)CibrkuT for uT ≥ 0,

−CiaccuT for uT < 0, (8)

with i = F,R. The constants Cδ, CFacc, CRacc, CFbrk and
CRbrk determine the performance of the steering, engine and
brake system. In this work we assume a Front Wheel Drive
(FWD) vehicle, hence CRacc = 0.

The vehicle parameters used in this work are shown in
Table I. The parameters B, C and D refer to Pacejka’s Magic
Formula tire friction model [17], under the assumption of
uniform tire characteristics along the longitudinal and lateral
directions.

TABLE I

Vehicle Parameters.

Parameter Value
m (kgr) 1450

Iz (kgr m2) 2740
�F (m) 1.1
�R (m) 1.6
r (m) 0.3

IF,R (kgr m2) 1.8
h (m) 0.4

Cδ (deg) 60
CFacc (Nm) 1000
CRacc (Nm) 0
CFbrk (Nm) 700
CRbrk (Nm) 700

B 7
C 1.6
D 0.52

IV. MINIMUM-TIME CORNERING

A. Baseline Solution

In this section we calculate the solution to the minimum-
time cornering problem along a 90 deg corner, as shown in
Fig. 7. The minimum-time cornering problem was addressed
in [5], where numerical optimization was used to compare
minimum-time versus maximum exit speed cornering. In [5]
independence of the TF and TR inputs was assumed. In
this section we calculate the optimal uT and uδ profiles
for minimum-time cornering on a low µ surface (µ =
0.5). The optimal control problem is solved numerically
using EZOPT, a direct optimization software available by
Analytical Mechanics Associates Inc. It uses collocation
to transcribe an optimal control problem to a nonlinear
programming problem. It provides a gateway to NPSOL, a
nonlinear optimization program (for details see [18]). The
optimization algorithm involves discretization of the inde-
pendent variable (time). The control inputs are approximated
with constant functions for each time interval. The user is
required to provide the continuous system dynamics, the cost
to be optimized, state constraints, boundary conditions and
an initial guess for the optimal control inputs and states time
history.

The index to be minimized is the final time tf . The
road limits constitute the state constraint of the problem.
The boundary conditions consist of fixed initial position,
orientation and velocity of the vehicle, fixed final position
and orientation, and free final speed. In particular, we use

x0 = 18 m, y0 = −45 m, ẋ0 = 70 km/h, ẏ0 = 0,
ψ0 = π/2, ψ̇0 = 0, ψf = π, ψ̇f = 0,
xf = −45 m, yf = 15 m, ẏf = 0. (9)

The minimum-time trajectory, the optimal velocity profile,
the vehicle slip angle β and the optimal control inputs are
shown in Figs. 7, 8, 9 and 11, respectively (dashed lines). The
minimum-time solution consists of a smooth trajectory that
is tangent to the inner boundary of the road and a velocity
profile that is decreasing before the apex of the corner and
increasing after the apex, in accordance to the results in [5].
The control inputs of Fig. 11 agree with the guidelines of
Section II on TB as far as the sequence of control actions
is concerned: hard braking (0 ≤ t < 1), followed by
progressive increase of the steering input and simultaneous
decrease of the braking input (1 ≤ t < 3.5), followed by
progressive decrease of the steering input, counter-steering
and beginning of acceleration (3.5 ≤ t < 7.5), followed by
hard acceleration (7.5 ≤ t ≤ tf ). The vehicle slip angle
β remains small throughout the minimum-time trajectory,
indicating almost neutral steering.

We can efficiently approximate the minimum-time control
inputs by simple mathematical functions (e.g., constants and
ramps). To this end, consider the steering and throttle/brake
input profiles (uδ and uT ) of Fig. 10. These input profiles
are constructed using constant and linear functions, and
are characterized by a set of 18 parameters (tsi, csi), i =
1, 2, 3, 4 and (tbj , cbj), j = 1, .., 5. The number of parameters
can be further reduced by such assumptions as cs1 = cs4 = 0
and cb3 = cb4. Notice that the input profiles of Fig. 10
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qualitatively agree with the sequence of control actions for
the TB maneuver, described in Section II, namely, hard
braking, followed by increase of steering and progressive
decrease of braking, followed by progressive acceleration
with progressive decrease in steering and counter-steering,
followed by hard acceleration.

Using the same state constraints and boundary conditions,
we resolve the minimum time problem using (tsi, csi) and
(tbj , cbj) as the free parameters. This time we use the Nelder-
Mead minimization algorithm in MATLAB. The minimum-
time velocity profile, vehicle slip angle and control inputs
are shown in Figs. 8, 9 and 11 (solid lines). The resulting
vehicle response using the previous parametrization of the
control inputs is essentially the same as the one calculated
by optimizing the control inputs at each time step. The
calculated minimum time (tf = 8.03 sec) is the same using
both methods, within a tolerance of 0.01 sec.
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Fig. 10. Steering and throttle/brake command parametrization.

B. Trail-Braking

In this section we consider an alternative optimization sce-
nario than the one presented in Section IV-A, motivated by
high-speed rally driving. Unlike road racing and track driving
of high-performance (e.g., F1) vehicles, off-road rally-racing
involves the additional challenges of an unpredictably chang-
ing environment and the lack of detailed information on the
condition of the road. Rally drivers aim at bringing their
vehicle in a controllable straight line driving state that will
allow them to react to emergencies and unexpected changes
in the environment, immediately after each corner.

Consider again the 90 deg corner of Section IV-A. We
solve the minimum-time problem using the same boundary
conditions as before, except for xf , which is now set to
xf = −15 m. That is, we enforce the condition that the
vehicle reaches straight line driving (ẏf = 0, ψf = π and
ψ̇f = 0) at 30 m ahead of the previous final state.

The minimum-time trajectory, the optimal control inputs,
the optimal velocity profile and the vehicle slip angle are
shown in Figs. 12, 13, 14 and 15 respectively (dashed
lines). Once again, we observe the same control sequence
as in Sections II (on the TB maneuver) and IV-A. This
time, however, we also observe high vehicle slip angles,
which are necessary for the vehicle to reach the straight line
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Fig. 11. Baseline minimum-time cornering: control inputs.

driving condition in such a short distance after the corner.
This minimum-time solution fits the description of a TB
maneuver. The time till the vehicle reaches the final position
(xf = -15 m) is 5.9 sec.

In the following, we re-solve the minimum time prob-
lem using (tsi, csi) and (tbj , cbj) as the parameters. The
parametrized control inputs, the velocity profile and the
vehicle slip angle and normal load of the front and rear axles
are shown in Figs. 13, 14 and 15 respectively (solid lines).
The normal load of the front and rear axles are shown in
Fig. 16.

We observe that the TB maneuver results in a slightly
smaller velocity at the x = 45 m mark (Fig. 14) than the
baseline (small-β) minimum-time maneuver of Section IV-
A. The time to reach x = 45 m is also higher for the TB case
by 0.14 sec. In the TB maneuver however the vehicle yaw
dynamics have been completely stabilized by t = 6.5 sec, as
opposed to the small-β minimum-time maneuver, where the
yaw dynamics are stabilized at t = 8 sec (Fig. 15).

Comparing the control inputs of the baseline minimum-
time cornering and TB cornering (Figs. 11 and 13), we
observe that qualitatively are very similar. In fact, the same
input parametrization applies to both maneuvers. Quantita-
tively, however, they defer significantly. We observe that TB
involves smaller steering commands and a larger change
in uT at t = 2.6 sec, when switching from braking to
acceleration occurs. This sudden change in uT results in a
more pronounced normal load transfer as it can be verified
in Fig. 16. This is consistent with the discussion at the
beginning of Section III.

C. Pendulum-Turn

The Pendulum-Turn is a rally driving technique applied
when connecting sharp corners. It is often applied when
the vehicle is initially placed on the inside of the road
with respect to the corner. In this section we solve the
minimum-time problem along the same 90 deg corner as
before, replacing the following in (9):

x0 = 12 m, ẋ0 = 50 km/h, xf = 0 m. (10)

The PT cannot be performed at the same high initial speed
as the TB because it requires an almost immediate steering
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Fig. 13. Trail-Braking: control inputs.

command, in contrast to the TB which is initiated by hard
deceleration before any steering command is applied. For
the same reason, PT is not applied for high center of gravity
vehicles or on paved roads. We have thus chosen a lower
initial speed in (10). The PT maneuver is used to quickly
change the orientation of the vehicle. Thus, we require
that the vehicle reaches a straight line driving condition
immediately after the exit of the corner.

The minimum-time trajectory, the optimal control inputs,
the optimal velocity profile and the vehicle slip angle are
shown in Figs. 17, 18, 19 and 20, respectively (dashed lines).
We observe the same control sequence as in the empirical
description of the PT in Section II: reducing acceleration
and turning towards the opposite direction of the corner,
followed by progressive increase in braking, followed by
steering towards the direction of the corner and reducing the
brake pressure, followed by acceleration and counter-steer.

Similar to Sections IV-A and IV-B we can efficiently
approximate the PT control inputs by simple functions
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(constants and ramps) as in Fig. 18 (solid lines). Using the
same state constraints and boundary conditions as before,
we re-solve the minimum-time problem using this simple
parameterization of the control inputs. The optimal velocity
profile and the vehicle slip angle are shown in Figs. 19 and
20, respectively (solid lines). We observe that the proposed
parameterization of the control inputs generates essentially
the same trajectory. The normal load of the front and rear
axles are shown in Fig. 21.

V. CONCLUSIONS

In this paper we have initiated a mathematical analysis
of rally racing techniques. We have concentrated our efforts
on two specific techniques for high speed cornering used
extensively by rally drivers, namely Trail-Braking and the
Pendulum-Turn. We have introduced a simple dynamical
model, which can be efficiently incorporated in a numerical
optimization scheme. We have verified this model on the
minimum-time cornering problem. When this problem is
solved over a short horizon, the solution results in maneuvers
reminiscent of Trail-Braking. We have also proposed a
parametrization of the control input space that is shown to be
appropriate for both standard (close to neutral) steering and
Trail-Braking during cornering. Similar results are provided
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Fig. 16. Normal load on front and rear axles; comparison between Trail-
Braking and the baseline minimum-time maneuver.
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Fig. 17. Pendulum-Turn: vehicle trajectory.

for the case of the Pendulum-Turn, which is a technique used
to negotiate very sharp corners or for connecting successive
corners at high speed.
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