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Abstract. In this paper we consider the problem of controlling the rotational motion of a rigid body using
three independent control torques. Given a quadratic cost we seek stabilizing state feedback controllers which
are suboptimal in the sense that, given a scalar �, they guarantee that all motions starting within a specified
bounded set result in a cost bounded by �. For a special class of cost functions, we present explicit expressions
for suboptimal stabilizing controllers yielding a cost arbitrarily close to the infimal cost. For the general case, we
present sufficient conditions which guarantee the existence of linear, suboptimal, stabilizing controllers.
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1. Introduction

In this paper we consider the problem of controlling the rotational motion of a rigid body
using three independent control torques. The minimal requirement on the controller is to
stabilize the body about a specified orientation. In addition to this, we require the controller
to guarantee that a specified quadratic cost, or performance index, is bounded for all initial
states lying in a given set. Ideally, we would like to minimize the cost, but since this is,
in general, a difficult task we are contented with obtaining an upper bound for the cost.
By minimizing this upper bound, it is hoped that one can achieve acceptable performance
close to the optimal one.

The problem addressed in this paper is of significant importance in aerospace engineering
since it corresponds to the control of the orientation of a spacecraft. This problem has
received a great deal of attention in the literature; the main thrust of previous research,
however, has been directed towards the time or fuel-optimal control problem; see, for
example, [1, 4, 7, 11] and the recent survey paper [16].

As far as the optimal regulation of the angular velocity or the angular momentum vector
is concerned, the earliest results seem to be the ones reported in [6, 14] and [18]. More
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recently Dabbous and Ahmed [5] and Bourdache-Siguerdidjane [2] have also considered
the optimal regulation of the angular momentum (dynamic) equations. In this work we are
interested however with the more complicated problem of optimal control for the complete
attitude equations, i.e. dynamics and kinematics.

The equations describing the rotational motion of a rigid body are nonlinear. Thus,
in general, to obtain optimal feedback controllers for nonlinear systems one has to solve
the associated Hamilton-Jacobi equation (HJE). This is a partial differential equation and
except for very special cases, one cannot obtain solutions. As a result of the difficulty in
obtaining optimal controllers, in this paper we look for suboptimal stabilizing feedback
controllers.

We consider the following problem: Given a subset of the state space, find a feedback
controller which results in an asymptotically stable closed loop system and which guarantees
bounded cost for all initial states in the given set. For a special class of cost functions,
we present an explicit expression for suboptimal controllers which achieve a cost which is
arbitrarily close to the infimal cost. The main result of the paper is a sufficient condition
which guarantees the existence of linear suboptimal controllers for a general quadratic cost.
This condition involves the solution of a matrix inequality. The motivation for considering
linear controllers stems from the fact that, with the kinematic description used here, the
equations describing the rotational motion of a rigid body have the nice property that,
although nonlinear, they admit linear controllers which yield global asymptotic stability
and finite cost for any initial state.

The paper is organized as follows. In section 2 we present the equations of motion of
a rotating rigid body and we state the optimal control problem; we call it the Quadratic
Regulation Problem (QRP). The description of the dynamics is standard, whereas for the
kinematics we choose the Cayley-Rodrigues kinematic parameters. Section 3 presents sim-
ple linear controllers which render the systems under consideration globally asymptotically
stable. The results here motivate our approach to later results. A special class of cost
functions without penalty on the control input is considered in section 4. We first focus on
the kinematics only with the angular velocity as the control input. We explicitly exhibit the
optimal controller for this system and the optimal cost function. This is achieved by solving
the Hamilton-Jacobi equation for the associated optimization problem. We then consider
the full system (i.e., dynamics plus kinematics) and present controllers which yield cost
values arbitrarily close to the cost obtained by considering the kinematics only. The main
results are contained in section 5. For the general quadratic cost, we present sufficient
conditions which, if satisfied, guarantee the existence of a linear, suboptimal, stabilizing
controller. These conditions take the form of a convex optimization problem plus a line
search. We provide an algorithm—based on Linear Matrix Inequalities—for the numerical
solution of this problem.

1.1. Notation

A� is the transpose of matrix A.

A � B �A � B�, where A and B are real symmetric matrices, means A � B has
positive (nonnegative) eigenvalues.
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In the identity matrix of size n.

kxk � p
x�x.

B��d� � fx � IRs j kxk � dg.

B��d� � fx � IRs j jxij � d for i � �� � � � � sg.

V � IRn � IR is positive definite if V �x� � � for all x � IRn, V �x� � � only if x � �,
and limx�� V �x� ��.

Vx�x� �
�V �x�
�x

(�� n row matrix).

CofSg � convex hull of the set S.

2. Problem Formulation

We consider the rotational motion of a rigid body subject to three independent scalar control
torques; these torques are applied about axes which are fixed in the body and aligned with
the body principal axes. The rotational motion of a rigid body can be described by a system
of six first order differential equations. Three of these equations govern the angular velocity
(dynamic equations) while the other three describe the evolution of the body orientation
(kinematic equations).

Choosing a body-fixed coordinate system aligned with the principal axes, the dynamic
equations can be written in the form

�� � F ���� � J��u� ���� � ��� (1)

where � � ��� �� ��	
� and ��, ��, and �� are the components of the angular velocity

vector. The matrix F ��� is given by

F ��� �

�
� � �J����J� J����J�

J����J� � �J����J�
�J����J� J����J� �

�
� (2)

where the positive scalars J�, J�, and J� are the principal moments of inertia of the rigid
body at the mass center. The matrix J is the diagonal matrix

J �

�
� J� � �

� J� �
� � J�

�
� �

If S��� is the skew-symmetric matrix defined by

S��� ��

�
� � ��� ��

�� � ���
��� �� �

�
� (3)

then F ��� can be written as



58 M� ROTEA� P� TSIOTRAS� AND M� CORLESS

F ��� � J��S�J��� (4)

To describe the orientation of the rigid body in space, kinematic equations are necessary.
One possible choice of kinematic parameters is given by the so-called Cayley-Rodrigues
parameters ��, ��, and �� [12]. These parameters lead to a minimal three-dimensional
representation of the rotation group. The corresponding kinematic equations are

�� � G����� ���� � �� (5)

where � � ��� �� ��	
� is the kinematic vector,

G��� ��
�



�I� � S��� � ����� (6)

and S��� is the skew-symmetric matrix defined in (3).
A useful property of the Cayley-Rodrigues representation is that, for any � � IR�, we

have

��G��� �
�



�� � k�k����� (7)

This property will be used when computing Lyapunov derivatives associated with the
nonlinear system given by (1) and (5).

When the Cayley-Rodrigues parameters are zero, �� � �� � �� � �, the rotation matrix
is the identity matrix and the body and inertial coordinate systems coincide. This will be
the equilibrium (rest) or desired orientation in this paper.

We associate with the system given by (1) and (5) a performance output

z � C

�
�
�

�
�Du� (8)

where C and D are given real matrices. For each initial state ���� �
�
�	
� � IR�, and control

input u���, the performance index or cost associated with this output is given by

J ���� ��� u���� ��
Z �

�

kz�t�k� dt� (9)

The objective of this paper is to solve the following problem.

Quadratic Regulation Problem (QRP). Consider the nonlinear system

�� � G���� (10a)

�� � F ���� � J��u (10b)

where F ��� is defined in (2), G��� is defined in (6), and the performance index is
given by (8) and (9). Given any bounded set C � IR� containing the origin and any
positive scalar �, obtain a memoryless state-feedback controller u � k��� �� such
that:

(i) the closed loop system is asymptotically stable about zero with C contained in
the region of attraction;

(ii) for each initial state ���� �
�
�	
� � C the performance index satisfies the bound

J ���� ��� u���� � �� (11)
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3. Globally Asymptotically Stabilizing Linear Controllers

In this section we present simple linear controllers which render the nonlinear system
(10) globally asymptotically stable. The result given here provides motivation for later
developments.

Lemma � The linear controller

u � ���� � ���� (12)

where �� and �� are any positive scalars, globally asymptotically stabilizes the system (10)
Moreover, given any initial state ��� � ��� � IR� � IR�, we have

J ���� ��� u���� ���

Proof. Define the positive definite function

V ��� �� ��
�



��J� � �� ln�� � k�k�� (13)

where ln��� denotes the natural logarithm. We show that this is a Lyapunov function for the
closed-loop system. Differentiating (13) along the trajectories of the closed-loop system
obtained by applying (12) to (10), and using (7), we obtain

�V � �����J� � �� (14)

Since V is radially unbounded, it now follows that all trajectories are bounded. Since
�V 	 � implies that � 	 �, which gives �� 	 � and � 	 �, it follows from LaSalle’s theorem

that the closed-loop system is globally asymptotically stable about zero.
In order to show that the cost (9) is bounded, notice first that the control law (12) is

locally exponential stabilizing, or equivalently, the linearization of the closed-loop system
is asymptotically stable [13]. The linearization of the closed-loop system about the origin
is given by�

��
��

�
�

�
� I��


�J���� �J����

� �
�
�

�
(15)

Consider the positive definite function

V ��� �� � ���
���

�



��J�� (16)

Differentiating (16) along the trajectories of the linearized closed loop system (15) gives

�V � ������ � ��

Notice also that �V 	 � implies that � 	 �, which gives �� 	 � and � 	 �.Therefore,
the system (15) is asymptotically stable for all �� � � and �� � � and, consequently, the
system (10) with control (12) is (locally) exponentially stable.
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Since the closed-loop system is locally exponentially stable, there exist positive scalars
	, 
� and 
� such that kx�t��k � 	 implies

kx�t�k � 
�kx�t��ke����t�t��� 
t � t� (17)

where x�t� is the trajectory starting from x�t�� at t � t�. Moreover, due to global
asymptotic stability of the closed-loop system, for every initial state x� � ����� �

�
�	 � IR�

there exists a time t� such that kx�t�k � 	 for all t � t�.
In order now to show that the cost (11) is bounded, consider a trajectory starting from

any initial state x�. Then

J ���� ��� u����� lim
T��

Z T

�

kz�t�k� dt

�

Z t�

�

kz�t�k� dt� lim
T��

Z T

t�
kz�t�k� dt (18)

For the part of the trajectory starting from x�t�� at t � t� we have, using (17), that

lim
T��

Z T

t�
kx�t�k� dt� lim

T��

Z T

�

kx�� � t��k� d�

� lim
T��


�jjx�t��k
Z T

�

e���� d� ��

Using (12) and the definition of z we have finally that the second integral in (17) is bounded
and thus

J ���� ��� u���� ���

as claimed. �

This lemma provides the main motivation for the methodology used in the paper. Accord-
ing to this lemma, the system (10) has the–rather unusual for a nonlinear system–property
that it admits linear globally asymptotically stabilizing control laws. In addition, the linear
control law (12) provides a bounded value for the cost (9). It is natural then to search over
the class of linear controllers to find the one yielding the minimum value of the cost.

4. Special Cost Functions

In this section we consider the special class of QRP problems with performance output z
of the form

z �

�
r��
r��

�

where r�� r� are positive scalars. This performance output is a special case of the general
performance output (8); the corresponding cost is given by

J ���� ��� u���� �
Z �

�

�
r��k��t�k� � r��k��t�k�

�
dt� (19)
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Note that (10) is a system in cascade form; i.e., � does not enter the right-hand-side
of (10a) and u does not enter (10b). In essence, � acts as a “control” for the subsystem
(10b). Therefore, when u does not enter in the cost function, it is natural to consider first
the suboptimal control problem for the kinematics only with � treated as a control-like
variable. Such problems are simpler than suboptimal control problems for both (10b)
and (10a). Actually, for the class of performance outputs considered here, we can obtain
optimal controllers. Optimal control problems with � as the control provide lower bounds
on the optimal performance that can be achieved when u is the control variable.

Lemma � Consider the nonlinear system

�� � G����� ���� � �� (20)

with � as the control input. Let r� and r� denote two positive scalars and define r � r��r�.
The controller

�opt��� � �r� (21)

has the following properties:

(i) The corresponding closed-loop system is globally exponentially stable about zero.

(ii) For every initial state ��, the controller (21) minimizes the performance index

H���� �� ��

Z �

�

�
r��k��t�k� � r��k��t�k�

�
dt (22)

over the set of control inputs ���� which result in limt�� ��t� � �, and the minimum
of the performance index is

Hopt���� � 
r�r� ln�� � k��k�� � (23)

Proof. To demonstrate global exponential stability of the closed loop system

�� � �rG����

introduce the Lyapunov function candidate

W ��� � ����

From (7) it follows that the derivative of W along any solution of the closed loop system
satisfies

�W � �r�� � k�k��k�k�
� �rW�

This guarantees global exponential stability about zero with rate of convergence r�
.
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To demonstrate the optimality properties of controller (21), consider the positive definite
function

V ��� �� 
r�r� ln�� � k�k���

Take now any initial state �� and any control input ���� which results in limt�� ��t� �
�. The derivative of V along the corresponding solution of system (20) satisfies (this
computation makes use of (7))

�V � �r�r��� � k�k������G����

� 
r�r��
��

� �r��k�k� � r��k�k� � kr��� r��k��
Considering any time T � � and integrating this last equality over the interval ��� T 	 yieldsZ T

�

�
r��k��t�k�� r��k��t�k�

�
dt � V ����� V ���T ��

�

Z T

�

kr���t� � r���t�k� dt�

Since limT�� ��T � � �, we have limT�� V ���T �� � � and

H���� �� � V ���� �

Z �

�

�kr���t� � r���t�k�
�
dt� (24)

The optimality properties of controller (21) now follow from (24). �

The next result shows that, for the complete system (10), one can asymptotically recover,
on compact sets of initial states ���� �

�
�	, the optimal costHopt���� � 
r�r� ln��� jj��jj��

(of the kinematics) through the original control inputs u, if the control inputs are not
penalized and the feedback controller is permitted to be nonlinear.

Theorem � Consider the nonlinear system (10) with performance index J ���� ��� u����
given by (19), where r� and r� are positive scalars. Then, given any positive number �,
the controller

u � �JF ���� � rJG���� � �J�� � r�� (25)

with r � r��r� has the following properties:

(i) The corresponding closed-loop system is globally asymptotically stable about zero.

(ii) For every initial state ��� � ��� � IR� � IR�, we have

J ���� ��� u���� � 
r�r� ln�� � k��k��� �


�
kr��� � r���k��
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Proof. The closed-loop system, with the control law (25), is

�� � G���� (26a)

�� � �rG���� � ��� � r�� (26b)

Consider the Lyapunov function candidate

V ��� �� �
�


�
kr��� r��k� � 
r�r� ln�� � k�k�� (27)

Taking the derivative of (27) along a trajectory of (26), and using (7), one obtains

�V � �kr�� � r��k� � 
r�r��
��

� �r��k�k� � r��k�k� (28)

and the closed-loop system is globally asymptotically stable about zero. This proves
property (i).

To show (ii), use (27), and integrate (27) from � to T and take the limit as T �� to get

J ���� ��� u���� � lim
T��

Z T

�

fr��k��t�k� r��k��t�kg dt
� V ���� ���� lim

T��
V ���T �� ��T ��

� V ���� ����

�

5. Main Results

We now consider a control problem for the nonlinear system (10) with a more general
performance index than the one in Theorem 1. In particular, we now include a term with
the control input u. Unfortunately, when the performance index is arbitrary, we cannot
solve the optimal control problem. Instead, we give sufficient conditions for the solvability
of the QRP problem introduced in section 2.

In section 4 we have shown that for some special cases of performance outputs, Lyapunov
functions which include a logarithmic term in the kinematic parameters give rise to linear
controllers and, in addition, give rise to a finite quadratic cost. We therefore anticipate
that, for more general quadratic cost functionals of the form (8)-(9), the use of Lyapunov
functions including a logarithmic term in the kinematic parameters, will be beneficial for
the computation of the cost. Specifically, in this section we consider positive definite
functions of the form

V �x� � � ln�� � k�k�� � x�Px

for some positive definite symmetric matrix P � IR��� and some nonnegative scalar �, as
Lyapunov function candidates for the computation of general quadratic costs of the form
(8)-(9).
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In order to state our main result, we need to compute a few preliminary quantities. First,
note that we can write the nonlinear system (10) in the form

�x � A�x�x �Bu� x��� � x� (29a)

z � Cx�Du� (29b)

where x �� ��� ��	� and

A�x� ��

�
� G���
� F ���

�
� B ��

�
�

J��

�
� (30)

Using (30) it can be shown that A�x� can also be written as

A�x� � A� �

�X
i��

xiAi �B�xx
�C�� (31)

where A�� A�� � � � � A�� B�� C� are real matrices in IR���, which are uniquely determined
by G��� and F ���. These matrices are fairly easy to compute and they are given in the
appendix. Equation (31) shows that the matrix A�x� is the sum of two parts; the first part
is affine in the state x and the second is quadratic in the state x.

Let B��d� denote the hypercube of radius d in IR�; i.e,

B��d� �
�
x � IR�

�� jxij � d� i � �� 
� � � � � �
�
�

Compute real matrices A�
� � � � � � A

�
p such that

	
A� �

�X
i��

xiAi

����� x � B��d�



� CofA�

� � � � � � A
�
p g� (32)

The matrices A�
� � � � � � A

�
p exist because the set in the left hand side of (32) is a polytope;

these matrices are given in the appendix.
The next result yields a solution to the suboptimal quadratic regulation problem for the

nonlinear system (29).

Theorem � Consider the nonlinear system (29) together with the cost function

J �x�� u���� �
Z �

�

kCx�t� �Du�t�k� dt� (33)

Suppose that D��C D	 � �� I�	. Let d denote a positive constant and let the matrices
A�
� � � � � A

�
p ,B�, andC� be defined by (32) and (31). Suppose there exists a positive definite

symmetric matrix P � IR���, positive scalars 
�� � � � � 
p, and � � � such that, for each
i � �� � � � � p, we have

A�
i
�P � PA�

i � 
d��
iPB� � 
��i C ����
iPB� � 
��i C ���
�

�PBB�P � C �C � �� � �� (34)
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where

� ��
�




�
� I�
I� �

�
�

Define the positive definite function

V �x� �� � ln�� � jj�jj�� � x�Px� (35)

where � denotes the first 3 components of x � IR�, and define the set

���� ��
�
x � IR� j V �x� � �

�
� (36)

where � is a given positive number. If ���� � B��d�, then the linear state-feedback
control law

u � �B�Px
is such that, given any initial statex� � ����, the resulting closed loop trajectory converges
to zero, and the closed loop cost satisfies the bound

J �x���B�Px� �

Z �

�

k�C �DB�P �x�t�k� dt

� � ln�� � jj��jj�� � x��Px� � �� (37)

The intuition behind this theorem is as follows. If the matrix inequalities in (33) hold, one
can show, using the Lyapunov function (35), that the control u � �B �Px asymptotically
stabilizes the nonlinear system (29) whenever the initial state belongs to an invariant set of
closed loop trajectories contained inB��d�. The set ���� is one such invariant set because
x�t� � ���� implies x�t� � B��d�; hence, �V �x�t�� � �. Moreover, the same Lyapunov
function can be used to show the performance bound in (36) by a simple “completion of
squares” argument. To formalize this intuitive argument we shall make use of the following
analysis result, which holds for arbitrary nonlinear systems. For the sake of continuity, this
result is proven in the appendix.

Lemma � Consider the autonomous nonlinear system

�x � f�x�� x��� � x� (38a)

z � h�x� (38b)

where x � IRn is the state vector and z � IRp is output vector. Suppose that f��� and
h��� are continuous vector fields. Suppose also that there exists a positive scalar � and
a positive definite, continuously differentiable, function V ��� defined on IRn, such that
� � ���� � f� � IRnjV ��� � �g and � �� � imply

Vx���f��� � h����h��� � �� (39)

Then, f��� � � and x� � ���� implies that (38) has a solution with x��� � x� and every
solution with this initial state converges to zero asymptotically and satisfies
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Z �

�

kz�t�k� dt � V �x�� � ��

Proof of Theorem 2. Define the state-feedback gain K � �B �P . Then, inequality (33) is
equivalent to

�A�
i �BK��P � P �A�

i �BK� � 
d��
iPB� � 
��i C ����
iPB� � 
��i C ���
�

��C �DK���C �DK� � �� � �� (40)

We will show that the satisfaction of (40), for i � �� � � � � p, implies that for any vector
� � B��d� the following matrix inequality holds

�A��� �BK��P � P �A��� �BK� � �C �DK���C �DK� � �� � �� (41)

whereA��� is the matrix function defined in (30). To see this note that the set of symmetric
matrices

Co

n
�A�

i �BK��P � P �A�
i �BK�

��C �DK���C �DK� � �� j i � �� � � � � p
�

(42)

is equal to the setn�
A� �

P
�

i��
�iAi �BK

��
P � P

�
A� �

P
�

i��
�iAi �BK

�
��C �DK���C �DK� � �� j � � B��d�

o
�

Hence, from Lemma 5 in the appendix, we get that (40) holds, for some 
�� � � � � 
p � �,
if and only if


A� �
P�

i�� �iAi �B�qq
�C� �BK

��
P � P



A� �

P�
i�� �iAi �B�qq

�C� �BK
�

��C �DK���C �DK� � �� � �

for each � � B��d� and q � B��
p
�d�. Since B��d� � B��

p
�d�, we conclude that (41)

holds for all � � B��d�.
To complete the proof, take � � B��d� and consider the function V ��� defined in (35).

Using property (7), a simple calculation yields

Vx����A��� �BK�� � 
� �P �A��� �BK�� � �� ����

From this equation and (41) we get that, given any nonzero � � B��d�,

Vx����A��� �BK�� � k�C �DK��k� � ��

Since the level set ���� is contained in B��d�, we conclude from Lemma 3 that the
assertion of the theorem holds. �
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6. Numerical Solution of the QRP

Let C denote the bounded set of initial states where the QRP should be solved. Then, the
best suboptimal controller that results from Theorem 2 is obtained by solving

�opt � inf�������������p�P � �

subject to � � �� 
� � �� � � � � 
p � ��

P � P � � �� and (33)

C � ���� � B��d�

(43)

where ���� is defined in (36). Indeed, the state-feedback matrix K � �B �Popt, where
Popt denotes a solution to (43), stabilizes the origin, with C in the region of attraction, and
guarantees that the quadratic performance index (33) is bounded by �opt for all initial states
in C.

It turns out that (43) does not exhibit any convexity properties that can be exploited to
compute a global solution. To see this, suppose that all optimization variables except P are
fixed. Then the matrix inequalities (33) cannot be made convex in P due to the presence of
an indefinite quadratic term in P ; similarly, if we write (33) in terms of P ��, the presence
of an indefinite quadratic term in P�� shows that (33) is not convex in P�� either. Below
we will give an iterative method for finding suboptimal solutions to (43). This method can
be implemented by solving a sequence of Linear Matrix Inequalities (LMIs); each LMI
problem can be solved efficiently [3, 9].

Notice first that, with K � �B�P , we can write each matrix inequality in (33) as

�A�
i �BK��P � P �A�

i �BK� � 
d��
iPB� � 
��i C ����
iPB� � 
��i C ���
�

��C �DK���C �DK� � �� � �� (44)

Fix � � � and K. It follows that there exist � � �, positive numbers 
�� � � � � 
p, and
P � P � � �, such that (44) holds and

C � ���� � B��d� (45)

if and only if there exist �� � �, positive numbers ��� � � � � �p, and X � X � � � such that

�A�
i �BK��X �X�A�

i �BK� � 
d����i �XB� � �iC
�
���XB� � �iC

�
��
�

�����C �DK���C �DK� � ��� � � (46)

and

C � � � B��d� (47)

where

� ��
�
x � IR�

�� �� ln�� � k�k�� � x�Xx � �
�
� (48)

To show this equivalence, introduce the change of variable P � �X , �� � ���, and
�i � ���
�i ��.



68 M� ROTEA� P� TSIOTRAS� AND M� CORLESS

Introducing the change of variables � � ���, and using the Schur complement formula,
(46) is equivalent to�

�� �A�
i �BK��X �X�A�

i �BK��
��C �DK���C �DK� � ���

XB� � �iC
�
�

B��X � �iC� � �
�d��iI

�
�� � �� (49)

Finally, from the equivalence between the pair of conditions (44)-(45) and the pair of
conditions (46)-(47), we get that the optimization problem (43) is equivalent to

���opt � sup
���	��	������	p�X�K�

�

subject to �� � �� X � X � � �� �i � �

(49) holds for i � �� � � � � p�

the set inclusion (47) holds, (50)

and K � � �

�
B�X�

We will now show how to compute a suboptimal solution to (49) by solving a sequence
of LMI problems when the set C in (47) is the polytope given by

C � Cofv�� � � � � vrg (51)

for some vectors v�� � � � � vr in IR�.
First we show that, if certain LMIs in the variables �� and X hold, the set inclusion in

(47) holds. Consider first the inclusion C � �. Suppose that, given �� � �, X � � and
h � �� � � � � r, we have

�� k�I� �	vhk� � v�hXvh � �� (52)

Then, since C is a polytope and

�� ��
n
x
��� �� k�I� �	xk� � x�Xx � �

o
is convex, we get C � ��. Since ln�� � ��� � �� for all � � IR, we obtain �� � �.
Hence, if (52) holds, C � �. The important point is that (52) is affine in �� and X .

Now, to enforce � � B��d� we use

d�X � ese
�
s � �� (53)

for s � �� � � � � �, where es denotes the vector in IR� with zeros everywhere except for the
component s, which is equal to one. To show that this condition implies � � B��d�, take
x � �. Since �� � � we get x�Xx � �. If �	 denotes the ellipsoid

�	 �� fx j x�Xx � �g
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then clearly, � � �	; hence, it suffices to show �	 � B��d�. If (53) holds and x � �	,
then

d� � je�sxj� � ��

This gives je�sxj � d; since s is arbitrary, it follows that x � B��d�, thus �	 � B��d�.
From these (conservative) characterizations of the set inclusion (47), we get

���opt � sup���	��	������	p�X�K� �

subject to �� � �� X � X � � �� �i � �

(49) holds for i � �� � � � � p�

(52) holds for h � �� � � � � r�

(53) holds for s � �� � � � � ��

and K � � �
�
B�X�

(54)

For fixedK, (54) is a convex LMI problem in the variables ��� ��� ��� � � � � �p� X�. Further,
for fixed ��� ��� ��� � � � � �p� X�, satisfying all the constraints in (54) but the last one, a new
gain can be generated according to the formula

Knew � � �

�
B�X (55)

such that ��� ��� ��� � � � � �p� X�Knew� is a feasible solution for (54). To see this, substitute
(55) (for K) in (49) and note that (52) and (53) are independent of K. Hence, suboptimal
controller gains for (54) can be obtained by iteratively computing ���X�, together with
��� ��� � � � � �p, and then computing K from (55). This is summarized in the following
algorithm.

The ���X��K iteration

1. Choose d with C � B��d� and compute the data necessary to write down the LMIs
(49), (52), and (53).

2. Compute K� the solution of the LQR problem corresponding to the linearized (about
x � �) system. (A unique K� exists.) Set the iteration index � � � and goto 3.

3. FixK � K
 in (54) and solve it (without the last equality constraint) to obtain ��
� X
�.

4. ComputeK
	� � ����
 B�X
. Stop if kK
	��K
km is less than a specified tolerance;
otherwise, set � � �� � and goto 3. (Here k � km denotes a matrix norm.)

6.1. A Quadratic Lyapunov Function Approach

When � � � in (33), and when the set C is a polytope, the optimization problem (43) is
equivalent to a single convex programming problem. In this special case, there is no need
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for iterations and, an optimal controller gain K � �B �Popt, where Popt is a solution to
(43) can be derived “in one shot.” Notice that the case � � � corresponds to bounding the
cost (33) using Lyapunov functions of the form

V �x� � x�Px�

This motivates us to designate this approach as a “quadratic Lyapunov function approach.”
Obviously, when � � � in (43) the resulting upper bound �opt for the quadratic cost will

be, in general, larger than the optimal upper bound obtained without this constraint. This
is because � � � need not be optimal for (43). This may suggest that solving the problem
with � � � makes no sense. Nevertheless, the fact that

� in general we cannot solve (43) exactly, and

� if � � �, (43) is equivalent to a convex program, which can be solved exactly,

justify the quadratic Lyapunov function approach. In fact, there could be problems for
which the results with � � � could be better than without such constraint in the sense that,
with � � �, one may obtain controller gains yielding a smaller quadratic cost over the same
set of initial states. This is, of course, problem dependent.

Enforcing � � � in (43) yields the following optimization problem

�opt � inf�����������p�P � �

subject to � � �� 
� � �� � � � � 
p � �

P � P � � �� and (33)

C � �
x � IR� j x�Px � �

� � B��d��

(56)

As before, the state-feedback gain K � �B �Popt, where Popt denotes a solution to (56),
stabilizes the nonlinear system, with the set C in the region of attraction, and guarantees
that the quadratic performance index is bounded by �opt for all initial states in C.

To get a convex program, equivalent to (56), we proceed as follows. Given any � �
�, simple algebra and the Schur complement formula yield that, the positive numbers

�� � � � � 
p, and P � P � � �, satisfy (33) if and only if the positive numbers �� �
�
�� � � � � � �p � �
�p, and the positive definite matrix X � �P��, satisfy

�
����
A�
i X �XA��

i � �BB� �iB� �XC �� XC �

�iB
�
� � C�X � �

�d��iI �

CX � ��I

�
���� � � (57)

for i � �� � � � � p. Therefore, we may write

�opt � inf
�����������p�X�

�

subject to X � X � � �� and (57)

C � �
x � IR� j x�X��x � �

� � B��d��



SUBOPTIMAL CONTROL OF RIGID BODY MOTION WITH A QUADRATIC COST 71

If the set C is given by the polytope (51) the constraint C � �
x � IR� j x�X��x � �

�
holds if and only if, for h � �� � � � � r we have vh � �

x � IR� j x�X��x � �
�

. Since
X � X � � �, this last condition is equivalent to

vhv
�
h �X � �� (58)

Similarly, the constraint
�
x � IR� j x�X��x � �

� � B��d� holds if and only if, for
s � �� � � � � �, we have

e�sXes � d� � �� (59)

These results lead to the following exact formula for the optimization problem (56):

�opt � inf���	������	p�X� �

subject to X � X � � �� �i � �

(57) holds for i � �� � � � � p�

(58) holds for h � �� � � � � r�

(59) holds for s � �� � � � � ��

(60)

Notice that (60) is a convex LMI problem in the variables ��� ��� � � � � �p� X� and therefore
it can be solved very efficiently. Once �opt andXopt are known, an optimal controller gain
can be computed from

K � ��optB�X��
opt� (61)

7. Numerical Example

In this section we provide a numerical example which illustrates the previous theoretical
results. The results of this paper are most beneficial for systems exhibiting large angular
motions and large angular velocities; i.e., rigid bodies subject to nonlinear behavior. A new
class of spacecraft, recently promoted by NASA, exhibits this behavior. This new “smaller,
cheaper” series of satellites is a radical departure from the traditional philosophy; they are
mission-specific, designed to perform only a handful of scientific experiments at a time
[10]. These new spacecraft are indeed small; while conventional satellites have moments
of inertia in the order of ��
 � ��� kg �m�, this new family of satellites has moments of
inertia in the order of �� kg �m�. Because of their size, these small satellites can exhibit
large angular motions and large angular velocities in response to external disturbances. The
attitude control system has to address the possibility of the satellite entering the nonlinear
region.

To demonstrate the efficacy of the design method in section 6 we consider a rigid-body
with principal moments of inertia given by

J� � �� kg �m�� J� � 

 kg �m�� J� � �� kg �m� (62)
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These values approximately correspond to the SAMPEX satellite. The SAMPEX (Solar,
Anomalous and Magnetospheric Particle Explorer) satellite is the first of the Small Explorer
(SMEX) series of spacecraft. The actual SAMPEX control system uses three magnetic
torquer bars and a pitch axis momentum wheel as control actuators. For the purposes of
illustrating the theory, however, we will assume that control thrusters are used instead.

The output matrices C and D where chosen as

C �

�

�
I� �
� �I�

�
� D �

�
�
I�

�
�

In this example, the set in which the QRP is to be solved is taken to be C � B��v�; i.e.,
a hypercube of length v in IR�, where the positive number v should be as large as possible
in order to increase the domain of validity of the controller. For the hypercubeB��d� (see
step 1 in the ���X�–K iteration) we choose d � �. The largest value of v, such that the
problem was found to be feasible, is v � ����. As shown in the simulations below, the
actual domain of validity may be larger than the one predicted by the analysis.

Two controllers were constructed and compared. The first controller is the LQR controller
derived using the linearized equations. The second controller was derived using the ���X�-
K iteration algorithm of section 6. We denote this controller QRP, which stands for the
problem (Quadratic Regulator Problem) it solves.

The solution to the minimization problem (54), required in step 3 of the ���X�–K
iteration, was obtained using the LMI solver Lmitool [8]. This software provides an
interface between the semi-definite optimization package Sp developed by Vandenberghe
and Boyd [17] with Matlab.

The resulting controllers for the two cases are

Klqr �

�
� �
�
��� � � ������� � �

� �
�
��� � � ������� �
� � �
�
��� � � �����
�

�
� (63)

Kqrp �

�
� �
����� � � �
���
�� � �

� ���
�
� � � �
��
��� �
� � ������� � � �
������

�
� (64)

The smallest value for � for the QRP controller we achieved is

�qrp � �������� (65)

This is an upper bound on the largest quadratic cost, over all initial states in C � B�������
that the controller (64) delivers.

Simulations were carried out for several initial states in the box C � B�������, as well
as initial states outside C but inside B����. For initial states in the box C � B�������,
the upper bound (65) for the cost was satisfied. Below only simulations with initial states
outside C � B������� are shown. We consider two cases: small initial states and large
initial state.
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7.1. Small initial states.

Figures 1 through 4 depict simulation results for the initial states

�i � ��� �i � ��� rad�sec �i � �� 
� 
�

In Figure 1 we show the running cost (the quadratic cost from time zero to t) for the two
controllers. This figure shows that the LQR cost is the smallest; hence, for this initial state
one may conjecture that the system is almost in the linear domain. Figures 2 and 3 show the
trajectories for the LQR and the QRP controllers. In those figures we have plotted the time
history of the kinematic parameter vector � and the angular velocity vector �. Only the
first component is shown here since the other components exhibit similar behavior. Notice
that with the QRP controller the dynamics and kinematics show less overshoot than the
with LQR controller. Figure 4 shows the corresponding control histories. bsequent ones,
correspond to the following initial states:

�i � � �i � ���� rad�sec �i � �� 
� 
�

The trajectories are shown in Figures 6 and 7. The control history is shown in Figure 8. The
superior behavior of the kinematic and dynamic variables, and the larger control torques,
of the QRP controller are evident from these plots.

These numerical results indicate that the controller Kqrp is rather conservative, in the
sense that the actual value of the cost is, in general, much lower than the one predicted
by the algorithm. Moreover, although the algorithm guarantees that the actual cost will be
smaller than �qrp for all initial states inside the hypercube C � B������� the simulations
showed that the controller performed well for initial states outside this set.
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Figure 1. Running cost for the two controllers (small initial states).
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Figure 2. Kinematic parameters (small initial states).
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Figure 3. Angular velocities (small initial states).
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Figure 4. Control histories (small initial states).
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Figure 5. Running cost for the two controllers (large initial states).
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Figure 6. Kinematic parameters (large initial states).
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Figure 7. Angular velocities (large initial states).
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Figure 8. Control histories (large initial states).
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Appendix

The matrices in equation (31) are given by

A� ��
�




�
� I
� �

�

A� ��
�




�
� ��

� �

�
� A� ��

�




�
� ��

� �

�

A� ��
�




�
� ��

� �

�
� A
 ��

�
� �
� J����J�

�
�

A� ��

�
� �
� J����J�

�
� A� ��

�
� �
� J����J�

�
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where

�� ��

�
� � � �
� � ��
� � �

�
� � �� ��

�
� � � �

� � �
�� � �

�
� �

�� ��

�
� � �� �
� � �
� � �

�
�

and

B� ��
�p



�
I �
� �

�
� C� ��

�p



�
� I
� �

�

The matrices A�
� � � � � � A

�
p required in equation (32) are given by

A�
k �� A� �

�X
i��

�dk�iAi

where �dk�i denotes the i-th component of the k-th �� � k � p � 
�� vertex of the
6-dimensional cube B��d�.

Proof of Lemma 3 The continuity of f��� implies that, given any initial state x�, there
exists t� � � such that a solution exists in the interval ��� t�	. Using condition (39) and a
standard Lyapunov argument we may now conclude that any solution x���, starting from
x� � ����, remains in the set ����. Since this set is bounded, we get that solutions starting
in this set are bounded; hence, any solution starting in ���� exists for all t � � and remains
in ����.

Next, we show that any solution starting from x� � ���� converges to zero. First note
that, under the assumptions, a standard Lyapunov stability argument (e.g., Theorem 3.1, p.
101 in [13]) proves asymptotic stability of the zero state x � �. Moreover, since condition
(39) holds for all nonzero � � ���� we may conclude that ���� is an invariant set of
trajectories contained in the region of attraction. This shows that any solution starting from
x� � ���� converges to zero asymptotically.

Note that, given any t � � and any initial state x� � ����, inequality (39) and the
invariance of ���� yield

�V �x�t�� � Vx�x�t��f�x�t�� � �h��x�t��h�x�t���
where x��� denotes a trajectory starting at x�. Integrating this last inequality, one obtains

V �x�T ��� V �x�� � �
Z T

�

kz�t�k� dt

Taking the limit as T �� yieldsZ �

�

kz�t�k� dt � V �x��
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which completes the proof. �

Lemma � Given any v� z � IRn and 	 � �, we have the following identity:

max
jjqjj�

p
�

v�qq�z �
	



�z�v � jjzjj jjvjj� (A.1)

Proof. Notice first that

max
jjqjj�

p
�

v�qq�z � max
jjqjj�

p
�

q�vz�q � max

�
��
	



�max�vz

� � zv��
�

(A.2)

where �max��� denotes the maximum eigenvalue. An easy calculation shows that, if n � �,
�max�vz

� � zv�� � z�v � jjzjj jjvjj � �. Thus, using (A.2)

max
jjqjj�

p
�

v�qq�z �
	



�z�v � jjzjj jjvjj�� (A.3)

The maximum is attained for q �
p
	v�jjvjj, where v is an eigenvector corresponding to

the maximum eigenvalue of the matrix vz � � zv�. If n � �, (A.3) also holds because with
v and z scalars we have zv � jzjjvj � maxf�� 
zvg. �

Lemma � Let S�� � � � � Sh denote real symmetric matrices in IRn�n. Let M� and M�

denote real matrices in IRm�n. The following statements are equivalent:

1. For all S � Co fS�� � � � � Shg and q � B��
p
	�, we have

S �M �
�qq

�M� �M �
�qq

�M� � ��

2. There exist positive numbers 
�� � � � � 
h such that for i � �� � � � � h we have

Si �
	



�
iM� � 
��i M��

��
iM� � 
��i M�� � ��

Proof. The first condition in the lemma holds if and only if, given any i � �� � � � � h,
q � B��

p
	�, and a real vector x �� �, we have

x�Six� 
x�M �
�qq

�M�x � �� (A.4)

Condition (A.4) is equivalent to the satisfaction of

x�Six� 
 max
kqk�

p
�

�x�M �
�qq

�M�x� � �� (A.5)

for i � �� � � � � h and any real vector x �� �. Hence, from Lemma 4, we conclude that the
first condition in the lemma holds if and only if
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x�Six� 	�x�M �
�M�x� kM�xk kM�xk� � �� (A.6)

for i � �� � � � � h and any real vector x �� �. It now follows from [15] that condition (A.6)
is equivalent to the existence of positive numbers 
�� � � � � 
h such that for any x �� � and
i � �� � � � � h, we have

x�Six� 	�x�M �
�M�x�


�i


kM�xk� � �



�i
kM�xk�� � ��

A simple completion of squares shows that this last condition is equivalent to the second
condition in the lemma. �
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