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�� Introduction

In this paper we examine the problem of the global asymptotic stabilization of
a spinning top with �xed vertex� to a uniform� steady rotation about its axis of
symmetry� This motion of the top is often referred to in the literature as the
sleeping top ���� This terminology arises because a smooth� axially symmetric top
with its symmetry axis vertical� might appear at �rst glance to be not moving at
all� and hence �sleeping�� Stability analysis of the sleeping motion of a spinning
top is well�developed� In �		�� the authors summarized the previous results and
gave necessary and su
cient conditions for the Lyapunov stability of the sleeping
motion which simpli�ed the earlier results given by Ge and Wu ����
The controlled top problem� i�e�� applying control inputs to drive the spinning
top to the sleeping motion� was studied in �		�� In �		�� the control inputs are
inertially��xed horizontal forces and the kinematic formulation was based on the
	��� Euler angles� Asymptotically stabilizing control laws were derived using the
feedback linearization and the Hamilton�Jacobi�Bellman theory with zero dynamics



� C�J� WAN� P� TSIOTRAS� V� T� COPPOLA AND D� S� BERNSTEIN

for the case of two control forces� In the case of only one control force� if the top
is spinning su
ciently fast� asymptotically stabilizing control laws were developed
by the Jurdjevic�Quinn technique�

In this paper� we consider another controlled top problem which uses alterna�
tive control inputs� namely� body��xed torques� It is well�known that the sleeping
motion of a spinning top is Lyapunov stable if its spin rate is su
ciently high
��� �� �� ��� �	� 		�� We give the necessary and su
cient condition for stabil�
ity about the vertical of an uncontrolled spinning top using the Energy�Casimir
method ��	� 	��� This condition coincides with the previous results ��� 		� and
implies that the spinning top can be Lyapunov stable� but a minimum amount of
spin rate is necessary in order to achieve Lyapunov stability for the sleeping mo�
tion� when no other control input is available� Here we remove this restriction and
consider stabilization without any requirement on the magnitude of the spin rate�
Moreover� the results hold also for the extreme case when the spin rate remains
zero� Two control torques about the top�s transverse principal axes are used in
order to achieve this�

The formulation of the problem departs from the traditional treatment � based
on Eulerian angles � and takes advantage of a new formulation for the kinematics
of the rotational motion developed in ����� This new kinematic formulation uses
the stereographic projection of the Riemann sphere on the complex plane in order
to derive a very elegant and compact equation for a complex quantity related to
the direction cosines of the local vertical �the inertial Z�axis� with respect to the
local body��xed system of the top� This kinematic formulation is based on an idea
by Darboux ���� where an equation of the same form was derived in connection
with some problems in classical di�erential geometry� However� its derivation using
the stereographic projection and its use in attitude kinematics was established in
���� and was �rst applied to attitude control problems of spinning rigid bodies in
���� ��� ��� ����

The paper is organized as follows� In Section 	 we give the equations of motion
of a spinning top rotating in a uniform gravitational �eld and we derive the corre�
sponding equations using complex variables from the stereographic projection of the
coordinates of Poisson�s equations� In Section  we examine the stability of the free
motion of the top in terms of the complex formulation and we provide necessary and
su
cient conditions for �nonlinear� Lyapunov stability using the Energy�Casimir
method� In Section � we derive globally asymptotically stabilizing feedback control
laws for uniform rotation of the top along the local vertical� We �rst give a list of
control laws based on the stereographic coordinates� In the last part of Section �
we use some recent results from the theory of optimal asymptotic stabilization of
nonlinear systems with stable zero dynamics based on Hamilton�Jacobi�Bellman
theory ���� 	��� We therefore generalize the previous stabilizing control laws by
constructing a family of optimal nonlinear feedback control laws which globally
asymptotically stabilize the spinning top� The parameters of this family can then
be tuned by the designer to achieve acceptable system performance �maximumcon�
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trol e�ort� time of response� etc��� Finally� a numerical example demonstrates the
results of the proposed control laws�

�� Equations for a Spinning Top Using Stereographic Projection

In this section we derive the dynamical equations of a spinning top using stereo�
graphic projection of Poisson�s equations ���� ���� Traditionally� the motion of an
uncontrolled spinning top is described by the Euler�Poisson system of equations
���� 		� given by

J� ��� � �J� � J������ �mg��� ��a�

J� ��� � �J� � J������ �mg��� ��b�

J� ��� � �J� � J������� ��c�

and

��� � ���� � ���� �	a�

��� � ���� � ���� �	b�

��� � ���� � ����� �	c�

Equations ��� describe the dynamics of the motion with respect to a body��xed
reference frame located at the vertex of the top and equations �	� describe the
kinematics� In ��� and �	� ��� ��� �� are the angular velocity vector components
in body coordinates� m is the mass of the top� g is the gravitational constant and
� is the distance from the vertex to the center of mass� The parameters J�� J�� J�
represent the principal moments of inertia with respect to the chosen body��xed
reference frame� The vector ���� ��� ��� represents the unit vector in the negative
gravity direction when expressed in body coordinates� In other words� ��� ��� ��
are the direction cosines of the inertial Z�axis �considered here to point along the
negative gravity direction� with respect to the local body��xed axes� Therefore�
equations �	� actually describe the tilt angles of the body axes of the top from the
inertial Z�axis� while the azimuth between the projection of the top axis on the
horizontal plane and any axis �xed in the horizontal plane is not determined�

We assume that the top is symmetric� i�e�� J� � J�
�
� J � and therefore from ��a�

we �nd that �� is constant� De�ne ��
�
� �� b

�
� J���J and c

�
� 	mg��J � Then the

equations ��� and �	� can be written in the form

��� � ��b ����� � c

	
�� �a�

��� � �b� ���� � c

	
�� �b�

and

��� � ���� ���� ��a�

��� � ���� � ��� ��b�

��� � ���� � ����� ��c�
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We now introduce a reformulation of the kinematics that will simplify the ensuing
analysis signi�cantly� This new formulation is based on an idea by Darboux ����
and was initially applied to the problem of attitude dynamics in ����� although
it appears that Leimanis ���� was also aware of this possibility� Because of the
constraint ��� � ��� � ��� � � the vector ���� ��� ��� lies on the unit sphere S

� in IR��
If we consider the stereographic projection S� � C� of the unit sphere S� onto

the extended complex plane C�
�
� C � f�g� de�ned by

� � �� � i ��
�
�

�� � i ��
� � ��

�
�� ��
�� � i ��

���

where i �
p��� we induce the following di�erential equation for the complex

variable � � C ���� ����

�� � �i�� � �

	
�
��

	
�� ���

where the bar denotes complex conjugate and where �
�
� �� � i ��� The stereo�

graphic projection establishes a one�to�one correspondence between the unit sphere
and the extended complex plane� It can be easily veri�ed that the inverse map
� �� ���� ��� ��� is given by

�� � i
� � ��
� � j�j� � �

	��
� � j�j� ��a�

�� �
� � ��

� � j�j� �
	��

� � j�j� ��b�

�� �
�� j�j�
� � j�j� ��c�

where j � j denotes the absolute value of a complex number� i�e�� z�z � jzj�� z �
C� Using the complex variables � and �� equations �� and ��� can be expressed
compactly as

�� � i �b� ��� � c�

� � j�j� ���

�� � �i�� � �

	
�
��

	
�� ���

and the tilt angle � between the top symmetry axis and the inertial Z�axis is

� � cos���
� � j�j�
� � j�j� �� ����

An easy calculation shows that� if � � b� i�e�� J� � J � then the only equilibrium
state of equations ��� and ��� is � � � � �� If � �� b� then �apart from the trivial
case � � � � �� the equilibrium states of the uncontrolled motion of equations ���
and ��� satisfy
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j�j� � c� 	��b� ��
c� 	��b� �� ����

and

� � i
c

�b ���
�

� � j�j� � ��	�

The expression ���� can be written equivalently as

�� �
	��b���

c
� ���

Since c � �� it can be shown that if b� � 	c then � � � � � is the only equilibrium
state� If� on the other hand� b� � 	c� then two cases need to be considered�
namely� � � � and � � �� If � � � and �

��b �
p
b� � 	c� � � � b

� or � �
�
� �b �

p
b� � 	c�� then � � � � � is the only equilibrium state� If � � � and

�
� �b�

p
b� � 	c� � � � �

� �b�
p
b� � 	c� and � �� b then there are nonzero equilibrium

states corresponding to the solutions of ���� or ��� and ��	�� Similarly� if � � �
and �

��b �
p
b� � 	c� 	 � � b

� or � 	 �
� �b �

p
b� � 	c�� then � � � � � is the

only equilibrium state� If � � � and �
��b �

p
b� � 	c� � � � �

� �b �
p
b� � 	c� and

� �� b then there are nonzero equilibrium states corresponding to the solutions of
���� or ��� and ��	�� It is interesting to note that these nonzero equilibrium states
correspond to a steady precession of the top� In the steady precession� j�j � const�
which implies from ���� a constant tilt angle �� Note that if � � �� then from ���
and ��� one sees that the top degenerates to an inverted spherical pendulum and
has only one equilibrium state � � � � �� Note also that the equations for the top
reduce to those for a symmetric spacecraft in the case g � � �i�e�� c � ��� which has
only one equilibrium state� namely� � � � � �� Finally� it should be noted that�
because of the well�known properties among the principal moments of inertia� for
any physically realizable rigid body� one must have that � � b

� for the case when

� � �� while if � � �� then � � b
� �

�� Stability of the Free Motion of the Spinning Top

In this section we analyze the �nonlinear� Lyapunov stability of the sleeping mo�
tion of the spinning top using Lyapunov�s direct method� Stability of the sleeping
motion of a spinning top has been studied in ��� �� ��� 		�� The present analysis is
based upon the Energy�Casimir method ��	� 	��� We give a necessary and su
cient
condition for stability for the system of equations in complex form ��� and ���� The
procedure follows closely �		��
The linearization of the nonlinear top equations ��� and ��� about the equilibrium

� � � � �� corresponding to the sleeping motion� is given by
�
��
��

�
�

�
i �b ��� c
��	 �i�

� �
�
�

�
� ����



� C�J� WAN� P� TSIOTRAS� V� T� COPPOLA AND D� S� BERNSTEIN

As can be easily calculated� the eigenvalues of the system ���� are

	��� � i
b� 	�
	


 �
	

p
�b� � 	c� ����

Obviously� if b� � 	c� then system ���� has eigenvalues in the open right half plane�
which corresponds to instability of the linearized equation ����� and thus instability
of the original nonlinear system ��� and ���� When b� � 	c� ���� has eigenvalues
on the imaginary axis� No conclusion can be drawn for the stability of the original
nonlinear system from its linearization in this case� We therefore resort to Lyapunov
function theory in order to resolve the stability question of the system ��� and ��� for
the case when b� � 	c� Speci�cally� we use the Energy�Casimir method which allows
to draw stability conclusions about conservative mechanical systems when certain
independent integrals of the motion �Casimirs� are known ��	� 	��� According to
this method� we augment the energy of the system with the Casimirs of the motion
and we check for critical points of this quantity� De�niteness of the second variation
at the critical points of this augmented quantity is then su
cient to prove nonlinear
�Lyapunov� stability� We will not elaborate more on this issue since similar results
were derived in �		�� Su
ce to say that the quantity

V ��� ��
�
� H��� �� �H��� ��

� j�j� � c
�� j�j�
� � j�j� � b�

	

� � j�j� Im����� � b
�� j�j�
� � j�j� �� c� b�� ����

is a Lyapunov function for the system ��� and ���� where

H��� ��
�
� hc���� �� � b hc���� ��� ����

is constant under the �ow of the system� This is true� because the following two
expressions remain constant under the �ow of the nonlinear system ��� and ���

hc���� ��
�
� j�j� � c

�� j�j�
� � j�j� ����

hc���� ��
�
�

	

� � j�j� Im����� � b
�� j�j�
� � j�j� ����

where Im��� denotes the imaginary part of a complex number� Actually� the �rst
equation represents the total energy of the system� while the second equation rep�
resents the angular momentum along the inertial Z�axis� It can be seen that if
b� � 	c� then V ��� �� � � for all �� � � C although its Hessian is only positive semi�
de�nite� Next� recall that if b� � 	c� then the sleeping motion is unstable� Therefore
we conclude that the sleeping motion of the �uncontrolled� top is Lyapunov stable
if and only if b� � 	c ��� 		��
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�� Feedback Stabilization with Two Torque Inputs

���� Complex Formulation

We consider the controlled top problem in which two torque actuators u�� u� along
two transverse principal axes perpendicular to the symmetry axis are applied to
the top� that is� the equations �� are now given by

��� � ��b ����� � c

	
�� � u� �	�a�

��� � �b� ���� � c

	
�� � u� �	�b�

De�ning the complex control variable uc
�
� u� � i u�� equations �	�a� and ��� yield

�� � i�b ���� � c�

� � j�j� � uc �	��

�� � �i�� � �

	
�
��

	
��� �		�

The control strategy employed in this subsection is based on the results of ���� and
����� In ���� ���� globally asymptotically stabilizing control laws were derived for
the motion of a symmetric spinning rigid body in space� using two control actu�
ators� Speci�cally� stabilizing control laws were constructed which achieve global
asymptotic stabilization of a symmetric rigid body about its symmetry axis� The
control laws of ���� and ���� were based on the the new complex formulation of
the kinematics ��� and some well�known results for the stabilization of systems in
cascade form ��� ��� These control laws were extended in ���� and ���� in order to
achieve complete reorientation from arbitrary initial conditions� utilizing the con�
struction of the zero output dynamics manifold� with respect to an appropriately
chosen system output� In ���� is was also shown that the same output for the system
kinematics� when considered as a new coordinate� complements the stereographic
coordinates in a natural way� providing a new parameterization of the rotation
group of orthogonal matrices �the con�guration space of the rotational motion��
Note that since the linearization of �	�� and �		� is controllable� linear control
laws based upon the linearization of these equations will� in general� only locally
asymptotically stabilize the top to its sleeping motion� corresponding to the zero
equilibrium � � � � � of equations ��� and ���� However� since we are interested
in global asymptotic stabilization we thus resort to Lyapunov function theory to
construct globally asymptotically stabilizing control laws for the system �	�� and
�		��
Rede�ning the new control

v
�
�

c �

� � j�j� � uc �	�

equations �	��� �		� yield a system in cascade form

�� � i�b ���� � v �	�a�
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�� � �i�� � �

	
�
��

	
��� �	�b�

Control laws for the system of equations �	�� have been obtained in ���� ��� and
can be summarized as follows�

Theorem � ������ The choice of the feedback control law

v � �i�b� ��� � 
�i�� � �

	
� ��
	
��� � ��� � 
�� �	��

with 
 � � and � � �� globally asymptotically stabilizes system �����

Theorem � ������ The choice of the feedback control law

v � �i�b� ��� � 
�i�� � �

	
� ��
	
��� � ��� � 
��� ��� � j�j�� �	��

with 
 � � and � � �� globally exponentially stabilizes system ���a� with rate of
decay ��	� where � � minf	�� 
g�

Theorem � ������ The choice of the linear feedback control law

v � �
�� � 
�� �	��

with 
� � � and 
� � �� globally asymptotically stabilizes the system ���a��

The proofs of these theorems are shown by construction of appropriate Lyapunov
functions for the corresponding closed loop systems and can be found in ���� ����
Using the previous results and equation �	� we have the following globally asymp�
totically stabilizing control laws for the motion of a spinning top about its symmetry
axis�

Corollary � The choice of the feedback control law

uc � �i�b� ��� � c�

� � j�j� � 
�i����

	
� ��
	
���� ��� � 
�� �	��

with 
 � � and � � �� globally asymptotically stabilizes system ����������

Corollary � The choice of the feedback control law

uc � �i�b� ��� � c�

� � j�j� � 
�i�� � �

	
� ��
	
��� � ��� � 
��� ��� � j�j��

�	��

with 
 � � and � � �� globally exponentially stabilizes system the ��������� with
rate of decay ��	� where � � minf	�� 
g�
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Corollary � The choice of the feedback control law

uc � �
�� � 
�� � c�

� � j�j� ���

with 
� � � and 
� � �� globally asymptotically stabilizes the system ����������

These control laws are obtained by adding an extra term in the control laws
of Theorems �� in order to cancel the gravitational force� as in �	�� Since this
obvious modi�cation of the control laws �	��� �	�� and �	�� depends on the exact
cancellation of the gravity term� the problem of robustness of the stabilizing controls
of Corollaries �� need to be addressed before implementation of these results�
However� since the proof of the global asymptotic stability of the corresponding
closed�loop systems was demonstrated using Lyapunov functions� it is in general
not very di
cult to robustify the control laws �	��� �	�� and ���� since any such
uncertainty enters the system in the same way as the control input �i�e�� it is
�matched�� �����
Next we present a general theory of stabilization of the equations �	�� and �		� of
the controlled spinning top based on Hamilton�Jacobi�Bellman �HJB� theory with
zero dynamics �	� ��� 	���

���� Hamilton�Jacobi�Bellman Theory with Zero Dynamics

We use again the new kinematic equation ��� from the stereographic projection of
Poisson�s equations� but for convenience �and to be consistent with the standard
notation in the literature of nonlinear control theory�� we expand equations �	��
and �		� into their real and imaginary parts� Letting x� � ��� x� � ��� x� � �� and
x� � ��� and decomposing �	�� and �		� into their real and imaginary components�
the equations can be written in the familiar form

�x � f�x� � g�x�u � f�x� � g��x�u� � g��x�u� ���

where

f�x�
�
�

�
���

��b� ��x� � cx���� � x�� � x���
�b� ��x� � cx���� � x�� � x���

�x� � x�x�x� � x��� � x�� � x����	
��x� � x�x�x� � x���� x�� � x����	

�
��� � g�x�

�
�

�
���
� �
� �
� �
� �

�
��� �	�

where x � col�x�� x�� x�� x�� � IR�� g��x�� g��x� are the column vectors of g�x� and
u � col�u�� u�� � IR�� Clearly� f � g� and g� are C� vector �elds and f��� � ��
Below adfg denotes� as usual� the adjoint operation between the two vector �elds
f and g de�ned by ���

adfg �
g

x
f�x� � f

x
g�x� ��
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First we note that the system �	� is not globally feedback linearizable �� ��� The

determinant of the distribution  ��x�
�
� spanfg��x�� g��x�� adf g��x�� adfg��x�g is

j ��x�j � �
���� x�� � x����� � x�� � x��� and thus the distribution  ��x� looses rank

at j�j � �� i�e�� when the tiltangle � is 
��	� Therefore� the condition �ii� of
Theorem � in �� is not satis�ed� since dim  ��x� �� � for all x � IR�� The above
observation shows that it is not possible to synthesize a globally stabilizing control
law for �	� using the feedback linearization approach�
The basic ingredients of the HJB theory with zero dynamics �	� ��� 	�� are given
next� Consider a nonlinear controlled system which is a
ne in the control of the
form

�x � f�x� � g�x�u � f�x� � g��x�u� � � � �� gm�x�um ���

where x � IRn� u � col�u�� � � � � um� � IRm and g��x�� � � � � gm�x� are the column vec�
tors of g�x�� We assume f and g�� � � � � gm are su
ciently smooth and� without loss
of generality� we assume that the origin is an equilibrium state of the uncontrolled
system� namely� f��� � �� In order to apply the HJB theory with zero dynamics�
we de�ne an arti�cial output function

y � h�x� ���

where y � IRm and h�x� � col�h��x�� h��x�� � � � � hm�x��� For the system ���� ����
consider the performance functional

J�x�� u���� ��
Z �

�
L�x�t�� u�t�� dt ���

where

L�x� u�
�
� L��x� � L��x�u� uTRu ���

and L� ! IR
n � IR� L� ! IR

n � IR��m with L���� � �� and R � IRm�m is a
positive�de�nite matrix� The superscript T denotes� as usual� the transpose�
The following de�nitions can be found in ����

De�nition� The zero dynamics of the nonlinear system ���� ��� are the dynamics
of this system subject to the constraint that the output y�t� be identically zero for
all t � ��

De�nition� The system ���� ��� is said to be minimum phase if its zero dynamics
are asymptotically stable�

Let Lfh�x�
�
� rh�x� � f�x� denote the Lie derivative of a function h along the

vector �eld f � We recall the following lemma from �	� for minimum phase systems
with relative degree f�� �� � � � � �g ���� which implies the m�m matrix
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Lgh�x�
�
�

�
��
Lg�h��x� � � � Lgmh��x�

���
� � �

���
Lg�hm�x� � � � Lgmhm�x�

�
�� ���

is nonsingular for all x � IRn� see also �	��� Recall that a vector �eld f is said to
be complete if the �ow of f is de�ned for all times t � IR ����

Lemma � Assume that the nonlinear system �	��� �	
� is minimum phase with
relative degree f�� ��� � � � �g� If the vector �eld g �Lgh��� is complete� then there
exists a global di�eomorphism � ! IRn � IRn� a C� function f� ! IR

n�m � IRn�m�
and a C� function r ! IRn�m � IRm � IR�n�m��m such that� in the coordinates

�
z
y

�
�
� ��x� ���

the di�erential equation �	�� is equivalent to the normal form

�
�z
�y

�
�

�
f��z� � r�z� y�y

Lf h�x�

�
�

�
�

Lg h�x�

�
u� ����

The next theorem gives the main result for optimal nonlinear feedback of mini�
mum phase systems with relative degree f�� �� � � �� �g� The optimality of the feed�
back control law is guaranteed through the Hamilton�Jacobi�Bellman equation� The
performance functional is assumed to include a nonquadratic state weighting and
a quadratic control weighting�

Theorem 	 ���
�� Consider the nonlinear system de�ned by equations �	��� �	
��
Assume that the system is minimum phase with relative degree f�� ��� � �� �g and the
vector �eld g �Lgh��� is complete� Furthermore� let P� � IRm�m and R � IRm�m
be positive de�nite and let V� ! IR

n�m � IR be a C� positive de�nite function such
that DV��z� f��z� � �� for z � IRn�m� z �� �� Then de�ne

LT
� �x� � R �Lgh�

���P��� rT�z� y�DV��z�
T � 	Lf h� ����

V �x� � V��z� � yTP�y ��	�

where z� y and r�z� y� are de�ned in Lemma �� Then V �x� is a Lyapunov function
for the closed�loop system with the control law

��x� � ��
	
�Lgh�x��

���P��� rT�z� y�DV��z�
T � 	Lfh�x���R���Lgh�x��

TP�h�x�

���

which globally asymptotically stabilizes �	�� and minimizes J�x�� u���� in the sense
that
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J�x�� ��x����� � min
u����S�x��

J�x�� u���� � V �x��� for all x� � IRn� ����

where J�x�� u���� is de�ned in �	����	�� S�x�� is the set of asymptotically stabiliz�
ing control laws� and

L��x� � �T�x�R��x�� LfV �x�� x � IRn� ����

The performance integrand corresponding to the optimal control law ��� is �	��

L�x� u� � fu� �
	
�Lgh�

���P��� rT�z� y�DV��z�
T � 	Lf h�gTR

� fu� �
	
�Lgh�

���P��� rT�z� y�DV��z�
T � 	Lf h�g

� DV��z�f��z� � hT�x�P��Lgh�R
���Lgh�

TP�h�x� ����

which is nonnegative for all x � IRn and u � IRm� In the above expressions DV��z�
denotes the Jacobian of V� with respect to z�

���� The Spinning Top

In the statement of Theorem � is implicit the fact that there exists an output
for the nonlinear system with respect to with the overall system has relative degree
f�� �� � � � � �g� Therefore� the existence of such an output is crucial for the Theorem �
to be applicable� Note that as in the case of feedback linearizable systems the
desired output may not be necessarily the given output of the system� Instead it is
often up to the control designer to choose such an output in order to achieve relative
degree one with respect to all output channels� This is not necessarily a trivial task�
and a judicious choice may facilitate the analysis and the control design�
For the controlled spinning top problem� let the output function be

y � h�x� �

�
h��x�
h��x�

�
�
�

�
x� � k�x�
x� � k�x�

�
����

where k� � � and k� � �� De�ning z � col�z�� z��
�
� col�x�� x��� we have

�z � f��z� � r�z� y�y ����

where

f��z�
�
�

� ��
�k�z� ��z� � �

�k�z
�
� � �k� � k�

� �z�z
�
�

��
�k�z� � �z� � �

�k�z
�
� � �k� � k�

� �z
�
�z�

�
����

r�z� y� �

�
�
��� � z�� � z��� z�z�

z�z�
�
� ��� z�� � z���

�
� ����
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It can be shown that the zero dynamics corresponding to �z � f��z� is globally
asymptotically stable and the corresponding Lyapunov function is

V��z� � p��z
�
� � z���� p� � �� ����

Furthermore� Lgh�x� � I�� where I� is the 	 � 	 identity matrix� Hence �	� and
���� form a minimum phase system with relative degree f�� �g� Next� by taking

P� �

�
p� �
� p�

�
� R �

�
r� �
� r�

�
��	�

with p�� p� � � and r�� r� � �� and applying Theorem � to the system �	� and ����
the optimal control law ��x� � col����x�� ���x�� is computed from ��� to be

���x� � �b� ��x� � cx���� � x�� � x���

� k���x� � x�x�x� �
x�
	
�� � x�� � x����

� �p�x��	p���� � x�� � x��� � �p��r���x� � k�x�� ��a�

���x� � ��b ���x� � cx���� � x�� � x���

� k����x� � x�x�x� �
x�
	
��� x�� � x����

� �p�x��	p���� � x�� � x��� � �p��r���x� � k�x��� ��b�

The Lyapunov function that guarantees asymptotic stability of the closed�loop sys�
tem with the control law ��	� is given from ��	�

V �x� � p��x
�
� � x��� � p��x� � k�x��

� � p��x� � k�x��
� ����

while the performance integrand ���� is

L�x� u� � �u�
�

	
R��LT

� �x��
TR �u�

�

	
R��LT

� �x��

� p��k�x
�
��� � x��� � k�x

�
��� � x��� � �k� � k��x

�
�x

�
��

�
p��
r�
�x� � k�x��

� �
p��
r�
�x� � k�x��

� ����

where

LT
� �x� �

�
���
r�fp�x��� � x�� � x����p� � 	�b� ��x� � 	cx���� � x�� � x���

�	k���x� � x�x�x� � x��� � x�� � x����	�g
r�fp�x��� � x�� � x����p� � 	�b� ��x� � 	cx���� � x�� � x���

�	k����x� � x�x�x� � x���� x�� � x����	�g

�
��� �

����

Equation ��	� provides a family of feedback stabilizing control laws for the system
�	�� which are optimal with respect to the performance functional ����� This ��
parameter family �k�� k�� r�� r�� p�� p�� p�� allows for great �exibility in the design of
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optimal feedback control laws for the spinning top� It can be easily checked that
by taking k� � k� � 
� p��r� � p��r� � � and p��p� � p��p� � 	� the control law
��	� reduces to �	��� Notice� however� that the control laws �	�� and ��� cannot
be derived form ��	� by any admissible choice of the parameters�

Remark� It should be pointed out that the control laws obtained above are glob�
ally asymptotically stabilizing for all x � IR�� Physically� this implies global asymp�
totic stability for the closed loop system from all initial con�gurations� except in the
case when � ��� This case corresponds to direction cosines ���� ��� ��� � ��� �����
in equation ���� that is� the top symmetry axis is along the downward direction�
Therefore� global stability here implies stability from all initial conditions except the
initial condition corresponding to this singular �upside�down� con�guration� �Note
that by the global stabilizing nature of the control laws of the system in ��� ��
coordinates� one has that ��t� � � for all t � � as long as ���� �� ��� If the top
is initially upside down� then one can apply an arbitrary input to drive the top to
any nonsingular orientation� The stabilizing control laws obtained above can then
be applied from this new orientation� Thus� the top can be globally asymptotically
stabilized to the sleeping motion� including the singular one�

�� Numerical Examples

In this section we apply the control laws obtained in Section � to stabilize the
spinning top to the sleeping motion� We assume that the top parameters are J� �
� � �� mg �  and J� � ��	� If � � � then b � ��	� c � �� which corresponds
to a unstable top� If the initial conditions are x��� � ��� �� ����������T which
implies initially the slowly spinning top has zero transverse angular velocity with
tilt angle � � ���	 deg� Obviously without external control inputs the top will fall
toward the downward position� To demonstrate the e�ect of the control laws� we
apply the control laws ��	� at t � �� sec when the tilt angle is about ��� deg�
Figures �� show the time history of the tilt angle �� the states x�� x� and the
control e�ort u�� u�� respectively� It is seen from Figures � and 	 that before the
controls are applied �t � �� second�� the tilt angle � grows rapidly and the states
x�� x� decrease rapidly to large negative values� which correspond to the upside
down con�guration� and after the controls are applied the tilt angle � and the
states x�� x� are driven to zero asymptotically which correspond to the sleeping
motion of the top�
As another example� we consider a stable top which is initially under steady pre�
cession� The speci�cations of the top are J� � � � ��mg �  and J� � ����� If � �
�� then b � �� c � �� The initial conditions are x��� � ������� ���������������T�
which implies that the top is initially precessing with tilt angle � � ������ deg�
The control laws ��	� are applied at t � �� sec�
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Figures ��� show the tilt angle �� the states x�� x� and the control e�ort u�� u��
respectively� It is seen from Figures � and � that before the controls are applied
�t � �� sec� the tilt angle � is constant and the states x�� x� are periodic functions�
After application of the feedback control law the tilt angle � and the states x�� x�
are driven to zero asymptotically�
We note in passing that� without loss of generality� the gain and control parame�
ters in these simulations were all taken equal to unity�

�� Conclusions

In this paper� the stability and stabilization of a spinning top were examined� A
new formulation of the kinematics� which facilitates the design o�eedback control
laws is introduced� In particular� the use of stereographic coordinates is shown
to be extremely helpful� facilitating the analysis and control design for problems
in rotational dynamics� Stabilizing control laws using only two torque actuators
were synthesized by employing techniques from the theory of cascade systems and
from Hamilton�Jacobi�Bellman theory with zero dynamics� The �nal result is a
methodology which leads to a construction of a family of optimal� nonlinear feed�
back control laws� which provide great �exibility in the control synthesis� Although
the methodology is demonstrated using the spinning top example� it is believed that
this theory will be helpful for a broad class of problems encountered in rotational
dynamics and kinematics�
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