
VOL. 13, NO. 5, PP. 766-777, 2005 1

A combined application of H∞ loop-shaping and
µ-synthesis to control high speed flywheels

Alexander Lanzon Panagiotis Tsiotras

Abstract— The development of robust controllers for high-
speed flywheel rotors supported on Active Magnetic Bearings
(AMBs) has been extensively studied over the past decade. Such
flywheels can be used as Energy Momentum Wheels (EMW)
onboard spacecraft, and pose a challenging control problem due
to their high flexibility, non-trivial parametric uncertainty and
rotor-speed dependence. A combined H∞ loop-shaping and µ-
synthesis approach is used in this paper to design controllers for
EMWs supported on AMBs. This combination between these two
well-established control methodologies is novel to the design of
robust controllers for such systems. H∞ loop-shaping guarantees
(through the specification of loop-shaping weights) closed-loop
performance and robustness to generic unstructured coprime
factor uncertainty, whereas robustness to highly directional para-
metric uncertainty is incorporated through a µ-synthesis design.
Furthermore, in order to reduce the computational complexity of
the control design and the order of the synthesized controllers, a
method is proposed in this paper to reduce the number of states
that depend on the rotor speed. The proposed methodology is
demonstrated through numerical simulations and experimental
results.

Index Terms— Energy Momentum Wheels, Active Magnetic
Bearings, Highly Flexible Systems, Robust Control, H∞ Loop-
Shaping, µ-Synthesis.

I. INTRODUCTION

An Energy-Momentum Wheel (EMW) is a flywheel that
combines the functions of energy storage and momentum man-
agement into a single component. The successful application
of EMWs to satellite systems, in particular, holds the promise
of significantly reducing a satellite’s mass and cost when
contrasted with traditional satellite subsystem architectures
that separate the energy storage and momentum management
functions [2]–[5]. Active magnetic bearing (AMB) technology
is crucial for efficient EMW operation due to the several
advantages offered by AMBs, which include operation at
very high speeds, no lubrication requirement, no wear, and
low power losses. In addition, spacecraft specifications often
require stringent pointing requirements, as well as a vibration-
free environment for on-board experiments. Imbalances and
resonant modes in EMWs can create inertia forces which,
when interacting with the stator, transmit unwanted vibration
onto the spacecraft structure. This can be avoided with the
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use of AMBs coupled with an online controller that rejects
undesirable vibrations [6], [7]. The successful development
of an effective magnetic bearing controller is thus a critical
technology for the use of EMWs in satellites.

Since most modern control design algorithms are model-
based [8]–[12], developing an accurate mathematical model
for the physical plant is a necessary and important first step
prior to controller synthesis. The achievable performance of a
controller depends not only on the control design algorithm
but also on the accuracy of the mathematical model used for
the plant [13]. A flexible rotor/magnetic bearing system, such
as an EMW at high rotational speed, has time-varying and
nonlinear characteristics that cannot be captured solely by a
single linear time-invariant model [14]–[16]. The splitting of
the rotor mode shapes due to the gyroscopics, for example,
have to be modelled via a parameter-dependent model, and
the uncertainty in the rotor natural frequencies has to be ade-
quately captured by highly directional parametric uncertainty.
Hence, EMWs pose a challenging problem for most controller
design techniques.

Conventional control methodologies for flywheels supported
on AMBs typically assume a single Linear Time-Invariant
(LTI) plant [17]–[19]. This is a reasonable assumption if the
speed of the rotor remains constant. If, on the other hand, the
speed of the rotor ranges over a wide spectrum of operating
speeds (even if it varies very slowly) — as is the case for
EMWs — the single LTI model assumption is no longer valid.
This is because the system matrix of these plants is a function
of the rotor speed and the plant dynamics change considerably
with the rotor speed due to gyroscopic effects [15], [17],
[20]. Consequently, conventional control algorithms, which
do not give due consideration to the parameter-dependent
nature of the plant, and instead treat speed-dependent changes
in the dynamics as uncertainty, cannot achieve the desired
performance when the system operates over a wide range of
rotor speeds.

The greatest difficulty in designing controllers with good
robust performance margins for EMWs operating at high rotor
speeds is the highly resonant nature of the flexible modes.
The proximity of the poles and zeros of such plants to the
imaginary axis imposes fundamental limitations on the achiev-
able performance [12], [21]. Together with the parameter-
varying nature of the plant and the strict disturbance rejection
specifications, these characteristics make ad-hoc or trial-and-
error designs for EMW/AMB systems inadequate.

In this article, we model an EMW via a parameter-
dependent nominal linear model, where the parameter is
the rotor speed. In contrast to other robust techniques for
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EMWs proposed in the literature [17]–[19], this parameter-
dependent model allows one to capture explicitly the changes
of the dynamics due to the change or the rotor speed in the
nominal plant, instead of treating them solely as unmodelled
dynamics [22]. In addition, the highly directional uncertainty
in the rotor natural frequencies is captured via parametric
uncertainty; generic unmodelled dynamics is captured via un-
structured coprime factor uncertainty. Assuming that the rotor
speed varies slowly (i.e. the parameter in the model is quasi-
static), we can neglect the effects of the rotor acceleration, and
thus restrict our designs on controllers that depend statically
on the rotor speed. This assumption is certainly true for
most EMW applications, where the rotor speed variation is
much slower than the time-constant of the remaining system
dynamics, and it simplifies the ensuing formulas.

We propose a combined application of H∞ loop-shaping
and µ-synthesis to design robust controllers for EMW systems
supported on AMBs. Although H∞ loop-shaping and µ-
synthesis have been applied separately in the literature to con-
trol AMBs [17]–[20], the proposed combination of these two
well-established control methodologies is novel to the design
of robust controllers for AMB/EMW systems. Specifically,
prior related designs for AMBs in the literature [17]–[19]
do not explicitly account for large variations in the speed
of the rotor, and hence they may not be suitable for EMW
applications, where the speed of the wheel is expected to
vary from 0 to 60,000 rpm or more [23]. Treating gyro-
scopics as purely unmodelled dynamics [17] will lead to
conservative results. Gyroscopics are best captured via within a
gain-scheduling or linear parameter-varying (LPV) framework
for the nominal plant. Reference [20] uses gain-scheduling
to capture rotational variations, but the approach does not
guard against parametric uncertainty and therefore it cannot
capture discrepancies in the natural frequencies of the resonant
modes. The importance of parametric uncertainty (other than
gyroscopics) is recognized in [22] and [19] and treated using
µ-synthesis. The latter reference does not deal with speed rota-
tion variations therefore the approach is not directly applicable
to EMW systems. In [22] both structured and unstructured
uncertainty is included, but the effect of gyroscopics is again
treated as an uncertainty. In [14] the authors also use µ-
synthesis for the EMW/AMB problem, but they treat the rotor
speed as an arbitrarily fast time-varying parametric uncertainty.
Hence, the associated D-scales in the µ-synthesis procedure
are constant as opposed to dynamic. Moreover, as in [17]
and [22] the rotor speed is treated as an uncertainty, hence
the final design is an unnecessarily conservative robust LTI
controller. None of the previous references (with the exception
of [20]) recognizes the benefits of treating the rotor speed
as a known/measurable time-varying parameter as opposed
to an uncertainty. Parameter-variations due to the rotor speed
have also been addressed in [15], [16] in a nonconservative
manner using gain-scheduling, but again these designs do not
go far enough to be practical, since they do not capture directly
parametric uncertainty in the flexible modes.

In this paper we integrate H∞ loop-shaping and µ-synthesis
(with the added benefit of the potential for a gain-scheduling
implementation), and propose a control design that is tai-

lored to EMW/AMB applications. By combining H∞ loop-
shaping and µ-synthesis we achieve the following objectives:
(i) H∞ loop-shaping allows one to specify performance re-
quirements through loop-shaping weights; furthermore, it adds
robustness to generic unstructured coprime factor uncertainty
(which captures generic unmodelled dynamics such as sub-
structure dynamics or higher order dynamics); (ii) µ-synthesis
guards against highly directional uncertainty in the rotor natu-
ral frequencies. Note that since even small mismatches in the
natural frequencies of the vibrational modes can induce large
unstructured uncertainty representations (whether it is additive,
multiplicative or coprime factor errors is irrelevant [24]), it
is of crucial importance to capture this type of uncertainty
directly as highly directional parametric uncertainty [25].

It is noted that since the rotor speed parameter dependence
of the nominal model is treated as a quasi-static uncertainty
in the overall µ-synthesis design, the resulting controller will
be robust to a wide range of rotor speeds. In the standard
D-K iterative procedure, which will be used to solve the
posed µ-synthesis problem, one typically associates a full-
block dynamic D-scale with each repeated uncertainty block
(in this case, the rotor speed dependence which was extracted
as a quasi-static uncertainty). In order to reduce the compu-
tational complexity of the control design and the order of the
synthesized controllers we therefore also propose a method to
reduce the number of states that depend on the rotor speed.
Finally, we show how a gain-scheduled, robust controller
emerges naturally from the proposed framework without extra
effort.

II. PLANT MODEL FOR A TYPICAL EMW SYSTEM
SUPPORTED ON AMBS

A. Nominal Plant Model

Typically, a nominal plant model for an EMW system
supported on AMBs can be described by [15]:

ẋ = (Ao + ρAg)x + Bou,

y = Cox,
(1)

where ρ is the rotor spin speed, u is the vector of control
inputs and y is the vector of measured displacements. The
plant dynamics of such a system posses several features that
make the control problem challenging from both a theoretical
and an implementation stand-point. This is because typically
such plants:

(i) are unstable and non-minimum phase,
(ii) have non-negligible time-delay,

(iii) are highly flexible with several flexible modes inside the
desired closed-loop bandwidth,

(iv) have a Linear Parametrically Varying (LPV) dependence
on the rotor spin speed ρ,

(v) have significant uncertainty on the natural frequencies of
the flexible modes.

(vi) have significant unmodelled substructure dynamics.

These features, together with the required stringent perfor-
mance specifications in terms of stability, robustness to un-
modelled dynamics and uncertain parameters, and disturbance
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rejection over a wide frequency range, demand advanced con-
trol algorithms which are capable of handling these difficulties
in a non-conservative and systematic way.

Properties (i), (ii) and (iii) listed above will be handled via
optimal controller design strategies (H∞ control in this paper).
Property (iv) relates to the parameter dependence of the plant.
As stated in the introduction, this parameter dependence on
the rotor spin speed can be assumed quasi-static for EMW
applications, although ρ must be allowed to vary over a wide
range of spin speeds. Robustness to this kind of variation in
the plant model will be ensured by “pulling out” this parameter
dependence as quasi-static uncertainty and design a controller
that is robust to this variation in ρ. Alternatively, variations
in the parameter ρ can be addressed via gain-scheduled LPV
design [15], [20], [26]; see also discussion below. Property (v)
relates to uncertainty on the natural frequency of the resonant
modes. Again, as indicated in the introduction, if we use un-
structured uncertainty (additive, multiplicative, coprime factor
or otherwise) to capture mismatches in the natural frequencies
of the flexible modes, we may end up with unstructured
uncertainties of very large size [24]. Consequently, to reduce
conservativeness in the design, it is better to capture this
type of uncertainty directly as a highly directional parametric
uncertainty. Finally, property (vi) relates to generic unmodelled
dynamics. We choose to capture this via coprime factor
uncertainty in an H∞ loop-shaping framework. The reader
is referred to [12] for extensive discussions why coprime
factor uncertainty is the most generic form of unstructured
uncertainty.

Notice that the nominal plant in (1) is not an LTI but
rather an LPV system due to the dependence of the system
matrix on the rotor speed ρ. These gyroscopic variations arise
only in the modeling of the flexible rotor dynamics and not
in other parts of the system; thus the matrix Ag is typically
rank deficient. Consequently, it is possible to decompose Ag

into Ag = BgCg where the number of columns of Bg and
the number of rows of Cg are equal to the rank of Ag [27].
Using this decomposition, the parameter ρ may be pulled-
out in an LFT setup as shown in Figure 1, where r denotes
the rank of Ag . This LFT formulation has several advantages:

ρIr

wgzg

y u

0

00

0Cg

Co

Ao Bg Bo

Fig. 1. Nominal plant with parameter ρ pulled-up in an LFT setup.

first, it allows one to make connections with standard robust
control ideas; second, it makes the parameter ρ available to
the controller for a parameter-varying design—see discussion
in Section III; finally, it allows the reduction in the number of
states that depend on ρ, thus speeding up both the process of
control design as well as the controller implementation. This

is explained in Section II-C.

B. Plant Model with Uncertainty on Modal Frequencies

In order for a controller to perform well on a physical plant,
the uncertainty characterization for the nominal plant model
must be such that it captures the dynamics of the true plant.
The predominant source of uncertainty in EMW systems is
due to the lack of knowledge in the natural frequencies of
the vibrational modes. Since even small mismatches in the
natural frequencies of vibrational modes can induce large un-
structured uncertainty representations (additive, multiplicative
or coprime factor errors [24]), it is crucial to capture this
type of uncertainty directly as highly directional parametric
uncertainty [25].

Towards this end, let Ao be the system matrix in the
nominal plant model. Then, Ao can be transformed to a
real modal representation Ã = TAoT

−1 through a similarity
transformation matrix T . Then the 2× 2 block corresponding
to the i-th vibrational mode on the main diagonal of Ã is of
the form

Ãi =
[

0 1
− [ωi(1 + δi)]

2 −2ξi [ωi(1 + δi)]

]
,

where ξi is the modal damping of the i-th mode, which is
assumed to be known, and ωi is the natural frequency of the i-
th mode with relative multiplicative uncertainty δi. Linearizing
the term [ωi(1 + δi)]

2 for small uncertainties δi gives ω2
i +

2ω2
i δi and hence Ãi can be rewritten as

Ãi =
[

0 1
−ω2

i −2ξiωi

]
+

[
0
1

]
δi

[−2ω2
i −2ξiωi

]
.

Thus, Ãi can be represented in an LFT setup with the input
and output vectors

B̃i =
[
0
1

]
and C̃i =

[−2ω2
i −2ξiωi

]

and a single real uncertainty δi ∈ R. In order to keep
the numerical condition of the original plant model and the
same state representation, the plant model is not kept to the
modal coordinates. Instead, the input and output uncertainty
matrices B̃ and C̃, assembled from the vectors B̃i and C̃i, are
transformed back to the original coordinates: Cd = C̃T and
Bd = T−1B̃. The numeric conditioning of these input and
output matrices Bd and Cd is further improved by scaling the
rows and columns of Cd and Bd respectively, to have equal
2-norms. The perturbed plant model so achieved is depicted
in Figure 2.

C. Reduction of number of plant states that depend on ρ

Consider the task of synthesizing a controller in the µ-
synthesis framework for a plant of the form of Figure 2 with
ρIr treated as a (quasi-static) uncertainty using the standard
D-K iteration [28]. Corresponding to the uncertainty block
ρIr, there will be a full-block dynamic D-scale of dimension
r × r. In a typical D-K iterative procedure, the D-scales are
first computed pointwise in frequency and then the resulting
frequency data for each element is fitted by a transfer function
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Fig. 2. Perturbed plant with parametric uncertainty δ1, . . . , δm ∈ R.

in order to construct a rational D-scale that can be used for a
subsequent controller synthesis. If r is not a small number,
this procedure can easily result in a rational D-scale that
has very high order. Such a high order D-scale will then, in
turn, result in a high order synthesized controller, which is
perhaps unsuitable for direct implementation. Clearly, there is
great benefit both computationally and numerically if r can
be reduced with minor compromise in the modelling accuracy
and achieved performance, as this will result in lower order
controller synthesis. The basis of such a reduction in the
number of states r that depend on the spin speed ρ will be in
this paper the ν-gap metric [29].

Towards this end, let the choices of Bg and Cg in the
decomposition of Ag = BgCg be as follows:

Bg := U

[
Θ
0

]
and Cg :=

[
Ir 0

]
UT ,

where Ag = U

[
Θ 0
0 0

]
UT is a Real Schur Decomposition of

Ag with U satisfying UUT = UT U = I and

Θ = diag
([

0 σ1

−σ1 0

]
,

[
0 σ2

−σ2 0

]
, . . . ,

[
0 σr/2

−σr/2 0

])

with σ1 ≥ σ2 ≥ · · · ≥ σr/2 > 0. Note that Θ takes this
special form because Ag is skew-symmetric (i.e. Ag = −AT

g )
for EMW systems [30]. Then, we can define a new perturbed

plant model P̄q, with B̂g = Bg

[
Iq

0

]
replacing Bg and Ĉg =[

Iq 0
]
Cg replacing Cg . The only difference between this

new perturbed plant model P̄q and the original perturbed plant
model P̄ of Figure 2 is the number of states that depend on
the spin speed ρ. Note that this process of constructing P̄q

effectively truncates the smallest singular values of Ag .
A fundamental property of the ν-gap metric is captured by

the following result [29]: “Given any two plants P1, P2 of
same input/output dimensions and a controller C of compatible
dimensions,

b(P2, C) ≥ b(P1, C) − δν(P1, P2).” (2)

The reader is referred to [29] for appropriate definitions of the
ν-gap metric δν(P1, P2) and the generalized robust stability
margins b(Pi, C) and bopt(Pi). The previous result implies that

if a controller C performs sufficiently well with P1 (in terms of
b(P1, C) being sufficiently large), and if the ν-gap between P1

and P2 is sufficiently small, then C is guaranteed to achieve a
certain level of performance with P2. Hence, the ν-gap metric
gives us a bound on the maximum allowable degradation in
performance and robustness when plant P1 is replaced by plant
P2 in a control systems design.

This result thus turns out to be very useful in proposing
a method for reducing the number of states that depend on
the spin speed ρ, as it provides us with a guaranteed bound
on the maximum allowable degradation in performance and
robustness when using the reduced plant instead of the original
plant. The following procedure can hence be used to determine
the smallest value of q such that the systems P̄q and P̄ are
close in a feedback sense:

(i) Let q = r and evaluate infδi
bopt

(
W2P̄W1

)
at every ρ in

the operating envelope.
(ii) Evaluate supδi

δν(W2P̄W1,W2P̄q−1W1) at every ρ in
the operating envelope.

(iii) If supδi
δν(W2P̄W1,W2P̄q−1W1) �

infδi
bopt

(
W2P̄W1

)
at every ρ in the operating

envelope, then let q = q − 1 and go back to Step (ii).
Otherwise EXIT.

The weights W1 and W2 are loop-shaping weights. They
will be discussed in detail in Section III-A. At this stage,
it should suffice to think of these weights as objects that
somehow capture the robust performance requirements.

Clearly, other model reduction techniques could also be
used (for example [31]). However, unlike most other model
reduction techniques, the procedure outlined above gives
guarantees on the maximum performance degradation in the
generalized robust stability margin and hence the maxi-
mum performance degradation in an H∞ loop-shaping de-
sign in the following sense: The generalized robust stabil-
ity margin b

(
W2P̄qW1,Fl (C∞, ρIc)

)
is the reciprocal of

the size (in an H∞ sense) of the transfer function from[
wT

1 wT
2

]T
to

[
zT
1 zT

2

]T
in Figure 3. Consequently, via

a small gain argument, the system of Figure 3 will remain
well-posed and internally stable for all full block uncertain-
ties connected from

[
zT
1 zT

2

]T
to

[
wT

1 wT
2

]T
of size (in

an H∞ sense) strictly less than b
(
W2P̄qW1,Fl (C∞, ρIc)

)
(see also Figure 4 for a normalized version of this
full block uncertainty—∆). Now, the maximum perfor-
mance degradation supδi

δν(W2P̄W1,W2P̄q−1W1) given
by the above procedure is exactly the degradation in
b
(
W2P̄qW1,Fl (C∞, ρIc)

)
(via inequality (2) above) and

hence exactly the degradation in the maximum allowable size
of the full block uncertainty (which when normalized gives ∆
in Figure 4). Note that this entire reasoning is closely related to
a skewed-µ degradation in performance [32], wherein only the
performance uncertainty block degrades but not the physical
uncertainty blocks.

III. CONTROL PROBLEM FORMULATION

In this section, the control problem of interest is formulated.
Given a plant model for an EMW system with an uncertainty
characterization as illustrated in Figure 2, the control problem
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is cast into an H∞ loop-shaping design problem as depicted
in Figure 3. On comparing Figure 3 with a standard LTI H∞

W1W2

Ps

P̄q

C∞y u

w1 z1 w2z2
Ao

Cd

Ĉg

Co

Bd B̂g Bo

0

0

0

0

0

0

0

0

0

ρIq

ρIc

ẑg zd ŵgwd

zcwc

δ1
δ2 ...

δm

Fig. 3. Block diagram for H∞ loop-shaping framework. Since the
rotor speed ρ is known, it can be used by the controller in a gain-
scheduling framework. By setting c = 0 one obtains an LTI controller.

loop-shaping block diagram, two differences emerge: (a) the
plant model P in Figure 3 is a function of the parameter ρ
and has parametric uncertainty on the natural frequencies of
the vibrational modes, and (b) the controller is a function of
the parameter ρ. It should be clear from Figure 3 that setting
c = 0 gives an LTI controller (independent of the parameter
ρ), whereas setting c > 0 gives a gain-scheduled controller
that is a function of ρ.

Specifically, since the synthesized C∞ will be strictly proper
(for a sub-optimal H∞ loop-shaping design), the proposed
scheme can be used to yield a gain-scheduled controller C(ρ)
of the form:

ẋk = (Ako
+ ρAkg

)xk + Bko
y

u = Cko
xk

where rank(Akg
) = c. This gain-scheduled controller would

have the same form as that of the parameter-varying plant.
Furthermore, since the dimension of the uncertainty block that
depends on the parameter ρ is q in the plant and c in the
controller, there is no reason to choose c greater than q.

A. Selection of loop-shaping weights

The loop-shaping weights W1 and W2 in Figure 3 are
designed in two stages.

In the first stage, the desired loop-shape is determined.
This usually involves translating time-response requirements
and closed-loop performance specifications into the frequency
domain. To do this, engineers largely rely on their intuition
and their past experience with loop-shaping concepts. Roughly
speaking the loop-gain should be large at low frequencies to
achieve good performance, small at high-frequencies to guard
against unmodelled dynamics and noise, and have a gentle

slope around cross-over to maintain stability [24], [33], [34].
In the second stage, the designer selects loop-shaping weights
W1 and W2 so that Ps has the desired loop-shape. Diago-
nal weights are often adequate to achieve the desired loop-
shape [35]. However, some design examples have shown that
diagonal weights do not work well for plants with strong cross-
coupling between the channels. In such cases, non-diagonal
weights are necessary which are of course more difficult to
design. Selecting loop-shaping weights that are independent of
ρ means that the resulting controller will be LTI when c = 0
since the controller which will be implemented on the true
plant will be C = W1C∞W2. On the other hand, ρ-dependent
weights will result in a parameter-dependent controller (even
when c = 0) since the controller implemented on the plant
will be C(ρ) = W1(ρ)Fl (C∞, ρIc) W2(ρ).

In order to synthesize C∞, the block diagram of Figure 3 is
redrawn into the LFT configuration of Figure 4. Here, G is the

G

C∞

⎡
⎢⎢⎢⎢⎣

zd

ẑg

zc

z1

z2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

wd

ŵg

wc

w1

w2

⎤
⎥⎥⎥⎥⎦

Normalized

∆

ρIq+c

δ1

δm

...

[
y
wc

] [
u
zc

]

Fig. 4. LFT interconnection for C∞ synthesis

generalized plant and consists of all known or specified trans-
fer functions in the feedback interconnection, C∞ is the LTI
system to be synthesized, and diag [δ1, . . . , δm, ρIq+c,∆] is
the structured and normalized uncertainty block in the system.
Note that if c = 0, the signals wc, zc and the corresponding
sub-blocks in C∞, G and the uncertainty block disappear
from the formulation. Since the structured uncertainty block
is normalized to have size less than or equal to unity, a
necessary and sufficient condition for robust performance of
this interconnection is that

sup
ω∈R

µ∆TOT

[Fl (G(jω), C∞(jω))
]

< 1,

where ∆TOT specifies the structure of the uncertainty block.
The problem of synthesizing C∞ thus reduces to a standard µ-
synthesis problem which can be solved through a D-K iterative
procedure.

In the remaining sections of the paper, we will provide the
details of the experimental validation of a robust LTI controller
using the proposed approach. Therefore, henceforth we will
assume that c = 0. This restriction to an LTI design was
merely chosen for consistency with the available experimental
data, since the test rig used to conduct the experiments did not
allow the implementation of gain-scheduled controllers at the
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time. It is reminded however that the proposed design is more
general and a gain-scheduled version of this controller may be
obtained simply by defining c > 0 in the above formulae; see
also footnote on page 9.

IV. EXPERIMENTAL RIG DESCRIPTION AND
MODELLING

The previous design algorithm was experimentally tested on
a test rig constructed to include most (if not all) important
features of an EMW device [22], namely, high-flexibility,
large gyroscopics, etc. The test rig consists of a shaft in an
overhanging configuration and it has a maximum speed of
approximately 15,000 rpm. A thrust magnetic bearing located
at the top of the shaft, supports the rotor vertically. Two sets
of radial magnetic bearings are located in the middle of the
rotor shaft, with one set labeled as higher bearing and the other
set labeled as lower bearing. An additional set of mechanical
bearings, located next to the radial magnetic bearings, are
used as backup bearings. Eddy-current displacement probes
are used to pick up the displacement signals of the rotor.
The design also completely integrates the motor with the rotor
shaft. A gyroscopic disk, simulating the gyroscopic effects of
a flywheel, is located at the bottom of the shaft.

Besides all the mechanical parts just described, the system
also consists of amplifiers for the actuators, sensors and anti-
alias filters for digital control. Furthermore, interaction of
this system with the surrounding structure is modelled by
a substructure transfer function. The block diagram for the
closed-loop system is shown in Figure 5. In order to have

controller

rotor

Kz

Kie−sTd

amplifiers

sensors

anti-alias
filters

noise
disturbances

substructure

u

i z

fr zr

y

Fig. 5. Block diagram for closed-loop system of the test rig used for
the experiments.

effective model-based control designs, accurate mathematical
models were developed for each component in the physical
system and validated through extensive experimental testing.

Figure 6 shows the transfer function of the model from
the top y-axis bearing actuator to the top y-axis sensor. The
figure shows the high fidelity of the model used for controller
validation. The other transfer functions were similar. The
reader is referred to [22] for a detailed description of the
test rig used for the experiments including each subsystem’s
modelling procedure and assumptions.

A. Nominal Plant Model

A reduced order model was obtained for control design.
This reduced order nominal model includes all the plant
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components in Figure 5, has 44 states and can be described as
in (1), where the control input u is the voltage command to
the amplifiers, and the output vector y is the filtered voltage
measurement of displacements (see Figure 5). The matrix
Ag that captures the gyroscopic dynamics is rank deficient,
with rankAg = 10.

The singular values of the nominal plant plotted against
frequency at four different values of the parameter ρ are de-
picted in Figure 7. These singular value plots clearly illustrate
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Fig. 7. Singular values of plant dynamics.

the level of flexibility and the non-trivial variation of the plant
with the parameter ρ. Since the highest unstable pole is at
250 rad/s and the lowest unstable zero is at 5550 rad/s,
it is desirable to set the closed-loop bandwidth between
250 rad/s and 5550 rad/s [24], [33], [34]. The closed-
loop performance specifications in fact require a closed-loop
bandwidth around 2000 rad/s, as there will be disturbances
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which need to be attenuated up to this frequency. Such a
closed-loop bandwidth necessitates fast sampling rates for
digital implementation of the controller. Consequently, the
computation time allowed for calculating the control law
is quite short. It thus becomes clear that the order of the
synthesized controller should be kept as small as possible, and
that any gain-scheduled controller must minimize the number
of elements that are updated and/or depend on the rotor
speed. The rank deficiency of Ag , along with the fact that the
parameter ρ typically changes slowly for EMW applications
should be exploited in order to reduce the online computations.

B. Reduction of number of plant states that depend on ρ

As shown in Figure 1, we can exploit the rank deficiency
in matrix Ag to extract the spin speed ρ as “uncertainty.”
As explained earlier, since in a typical EMW application ρ
varies very slowly when compared to the remaining system
dynamics, ρIr can be treated as a quasi-static uncertainty and
hence in a D-K iterative procedure, a full-block rational D-
scale of dimension r × r would need to be associated with it.
Since rankAg = 10 it follows that that a full-block rational
D-scale with 100 elements need to be constructed from the
frequency-by-frequency data. Such a high-order D-scale would
result in a high order controller design. This is clearly not
desirable.

As explained in Section II-C, we can do significantly better
by reducing the number of states in the plant that depend on
the spin speed ρ. Following the procedure outlined in that
section, and since experience suggests that bopt

(
W2P̄W1

) ∈
(0.2, 0.4) is a good value in practice (see [34] for justification),
we get q = 8 as the smallest value of q such that P̄q and
P̄ are close in a feedback sense. This implies a reduction
of 2 states (since r = 10) from the dependence on ρ. This
yields considerable computational improvement as there are
now 64 elements for the D-scale associated with ρIq when
compared to 100 elements for the D-scale associated with ρIr

(i.e. a savings of 36% in fitting rational functions to pointwise-
in-frequency data).

C. Plant Model with Uncertainty on Modal Frequencies

Since the modal frequencies for the test rig used in the
experiments are not well known, an uncertain model had to be
developed. This was done by extracting the modal information
from the nominal plant model (1) and using the method out-
lined in Section II-B. We performed a number of sine sweeps
on the experimental rig, each of which resulted in a slightly
different reading for the natural frequencies of the resonant
modes. On the basis of these experiments, we concluded that
a ±6% multiplicative uncertainty on the natural frequencies of
the vibrational modes could be considered adequate coverage.
Uncertainty in the mode shapes was accounted for by the
coprime factor uncertainty description. Recall that the mode
shapes are related to the zeros of the system which are
characterized by one of the coprime factors of the plant [36]
(the other one characterizing the poles).

V. CONTROLLER SYNTHESIS AND
SIMULATION/EXPERIMENTAL RESULTS

Performance specifications for this EMW test rig call for
a sensitivity reduction of 100 times at low frequency (so
that regulation errors are less than 1% at low frequency)
and a complementary sensitivity, control effort and sensor
noise reduction of at least 40 dB/decade at high frequency
(this reduction in the complementary sensitivity function is
required to reduce the effects of high-frequency unmodelled
dynamics due to interaction with the substructure). Also, as
discussed earlier, a closed-loop bandwidth of approximately
2000 rad/s is desired since this will guarantee a regulation
time constant of approximately 3 ms. These three specifica-
tions can be captured in the H∞ loop-shaping framework by
choosing the following loop-shaping weights:

W1 =
17(s2 + 112s + 6400)(s + 80)

(s2 + 6s + 36)(s + 1000)
I4

and

W2 =
20002

(s + 2000)2
I4

which are also depicted in Figure 8.
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Fig. 8. Loop-shaping weights W1 and W2

In order to explain how these weights were designed, first
note that W2 is a low-pass filter with a gain of unity at
low frequency and a roll-off rate of 40 dB/decade at high
frequency after 2000 rad/s. This ensures that the desired
roll-off rate is achieved after 2000 rad/s. Consequently,
weight W2 has no other purpose in this design besides ensuring
this high frequency roll-off rate. On the other hand, W1 is
chosen to have a gain greater than 100 at low frequency
thereby ensuring that the required sensitivity reduction level is
achieved at low frequency. Also, this gain reduces in the mid-
frequency region in order to secure a closed-loop bandwidth
of approximately 2000 rad/s. Furthermore, we choose W1

to also introduce some phase lead slightly before the desired
closed-loop bandwidth so as to obtain decent stability margins.
This qualitatively explains the shape of W1. At high frequency,
W1 remains constant as the required roll-off rate is achieved
via W2. The weight W1 was chosen to be 3rd-order because
we wanted to maintain the gain of W1 above 100 up to at
least 10 rad/s and then it was required for W1 to go from
100 to almost a gain of 1 in one decade of frequency (from
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10 rad/s to 100 rad/s). In a practical H∞ loop-shaping
design, diagonal weights are frequently sufficient to alter the
singular values of the plant in such a way that specifications
are met and a decent robust stability margin is achieved [35].
For this experiment, as is usually the case in practice, diagonal
weights did the job very well and hence there was no need of
exploring the use of non-diagonal loop-shaping weights.

A plot of the resulting loop-shape (after defining the above
parameter independent loop-shaping weights) at various rotor
spin speeds is given in Figure 9. It is clear from this figure that
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Fig. 9. Loop-shape plots for Ps at various rotor spin speeds.

the designed loop-shaping weights achieve the desired roll-off
rate, low frequency gain and closed-loop bandwidth.

Now that the loop-shaping weights have been designed, we
cast the closed-loop interconnection into the LFT framework
of Figure 4, where G is the generalized plant, C∞ is the system
we wish to synthesize and δi, ρIq+c and ∆ are uncertainties in
the system. The bound on the size of these uncertainties has to
be normalized (say to unity) before we can cast the problem
of synthesizing the LTI system C∞ as a standard µ-synthesis
problem. That is:

“Find a stabilizing C∞ such that
supω µ∆TOT [Fl (G,C∞) (jω)] < 1”.

In order to perform this normalization, we have to first
determine the bound on the size of each of these uncertainties
δi, ρIq+c and ∆. It was argued in Section IV-C that we need
to consider 6% parametric uncertainty (i.e. ‖δi‖∞ ≤ 0.06)
on the natural frequency of each of the vibrational modes
in order to adequately capture imprecisions in the modelled
natural frequencies. Also, standard H∞ loop-shaping litera-
ture [37]–[39] argues that 20% unstructured uncertainty on the
normalized coprime factors of the shaped plant (i.e. ‖∆‖∞ ≤
0.20) is adequate robustness to unmodelled dynamics since
it corresponds to 3.5 dB of gain margin and 23◦ of phase
margin [39] in a classical design. We also need to determine
a bound on the size of the allowable parameter variations ρ
in the quasi-static uncertainty ρIq+r. A permissible parameter

variation in ρ from 0 to 25,000 rpm was determined (for the
case c = 0) using a bisection search algorithm that checked
the condition:

“Does there exist a stabilizing C∞ such that
supω µ∆TOT [Fl (G,C∞) (jω)] < 1?”

at each value of the proposed bound on ρ given by this
bisection search. Note that this idea is very similar to skewed-
µ ideas [32] and related synthesis procedures [40]–[42].

An LTI controller was synthesized for the test rig by setting
c = 0 in Figures 3 and 4 using the approach outlined
in the previous sections. The resulting overall µ-synthesis
problem was solved via the standard D-K iterative procedure.
The synthesized controller has 56 states and achieves robust
performance in the face of the specified uncertainties discussed
above.

We note that even though one could use the D/G-K iterative
procedure [43], [44] to solve a mixed real/complex µ-
problem [45] (since δi and ρ are real), we deliberately chose
to embed these real uncertainties into complex uncertainties,
hence needing only D-scales and no G-scales. This was
done for reasons of computational ease, order of synthesized
controllers, and for numerical reliability of the associated
MATLAB functions.

Figure 10 shows the singular value plots for the synthesized
LTI system C∞ and the controller C = W1C∞W2 imple-
mented on the plant P . It can be seen that the controller C has
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Fig. 10. Controller singular value plots.

high gain at low frequency to achieve the desired sensitivity
reduction and rolls-off rapidly after 5000 rad/s to reduce the
effects of spill-over dynamics. The complex dynamics of the
controller around cross-over are due to the vibrational modes
in the plant, since lightly damped poles and zeros around
cross-over can be detrimental to stability if the controller does
not adequately compensate for them.

A. Simulation and Experimental Results

This controller was tested both in simulations on the full-
order plant model (i.e. the plant model of the experimental
rig which was not model-reduced for controller synthesis), as
well on the actual test rig described in the previous section.
The simulations and experimental results from the test rig
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were very comparable. This was due to the high-fidelity of the
mathematical model used for the numerical simulations [22]
and the realistic, nonconservative uncertainty description used
for controller synthesis. Both in numerical simulations and the
experiments the system retained stability and an adequate level
of performance up to 15,000 rpm (just beyond the first two
resonant modes1). Experimental data from the 0 rpm case are
presented below.

The singular value plots (at 0 rpm) of the achieved sen-
sitivity, complementary sensitivity, plant input disturbance
rejection and control effort for this design are given in
Figure 11. These four transfer functions are important, as
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Fig. 11. Singular value plots for sensitivity, plant input disturbance
rejection, control effort, and complementary sensitivity.

they fully describe the closed-loop behavior of a feedback
interconnection (see [12], [24], [37] for extensive discussion).
From these figures, it can be seen that sensitivity reduction
is obtained up to 100 rad/s and complementary sensitivity
reduction is obtained beyond 2000 rad/s. The latter specifies
the robustness to spill-over dynamics. Control effort is approx-
imately equal to unity until 100 rad/s and decreases to zero
beyond 10,000 rad/s. In the cross-over frequency range, the
control effort increases to 20 dB because the controller has to
do sufficient work to compensate for the uncertain vibrational
modes of the plant. The 20 dB gain of the control signal was
sufficiently low to never saturate the actuators. Finally, the
plant input disturbance rejection transfer function is small in
the low and high frequency ranges and is approximately unity
in the mid-frequency range. This transfer function corresponds
to the desirable closed-loop disturbance rejection properties.

The plant input disturbance rejection magnitude responses
obtained during the experiments are given in Figure 12. These
transfer functions are important in this application because
the expected disturbances in this application are mostly plant
input disturbances. In fact, these disturbances are the most

1Numerical simulations against the high-fidelity model actually showed that
a gain-scheduled version of this controller, i.e., c = q, achieves operation till
80,000 rpm.
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Fig. 12. Magnitude plots of (I − PC)−1P from experiments.

problematic in EMW systems due to the lightly damped
nature of the plant. The plant input disturbance rejection time
responses for a step disturbance of unit magnitude are shown
in Figure 13. Figure 12 shows that plant input disturbance
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Fig. 13. Disturbance rejection time response from experiments.

rejection transfer function reduction was achieved for all four
channels until 10 Hz and beyond 200 Hz. Furthermore, the
controller dealt with the resonant modes adequately around
cross-over since these transfer functions are not larger than
5 dB in the mid-frequency range. This implies that the closed-
loop system is able to attenuate disturbances at the plant
input up to a frequency of 10 Hz and beyond a frequency
of 200 Hz and that the closed-loop system does not resonate
with disturbances in the mid-frequency range. All this is also
evidenced through the time responses of Figure 13, where step
disturbances are quickly rejected.

The synthesized LTI controller thus performed very well in
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both high fidelity simulation testing and experiments. Further-
more, the controller achieved a closed-loop bandwidth well
above the first three resonant modes of the plant and hence
experiments confirmed that high frequency disturbances did
not excite these resonant modes of the plant, which could have
otherwise been detrimental to stability.

VI. CONCLUSIONS

Experience with highly flexible systems shows that unstruc-
tured uncertainty does not capture well perturbations on the
natural frequencies of the vibrational modes around cross-
over [24]. This is because the proximity of these lightly
damped poles and zeros to the imaginary axis induces large
unstructured uncertainties in a gap sense. This is why a simple
robust control design with only unstructured uncertainties usu-
ally fails to perform well on such lightly damped systems when
there is significant uncertainty on the natural frequency of
the resonant modes. However, unstructured uncertainty is also
important when there are significant unmodelled dynamics, as
with EMW systems, because of the interaction of the EMW
with the substructure or neglected higher order dynamics, for
instance. Consequently, a combination of parametric (struc-
tured) and unstructured uncertainty has been used in this
paper to model the true physical plant. This has led to a new
combined application of the well-known H∞ loop-shaping
and µ-synthesis design paradigms for EMW/AMB systems.
In addition to capturing the most general form of unstructured
uncertainty in the plant (that is, coprime uncertainty) the
H∞ loop-shaping framework also allows one to directly
incorporate performance requirements in terms of the plant
loop-shape.

The D-K iterative procedure associated with the µ-synthesis
leads to high-order controllers that need to be reduced prior to
implementation, especically when repeated uncertainty blocks
of high dimension are present. In previous works in the
literature, lower order controllers that are suitable for imple-
mentation are obtained through “a posteriori” model reduction.
However, performance of the closed-loop system with the
reduced order controller is not easy to ensure using this
approach. In this paper, we present a method which alleviates
this problem by determining “a priori” the smallest value of
the parameter block (which has repeated uncertainty structure),
such that guaranteed bounds on the performance degradation
of the closed-loop can be obtained, in a precise H∞ loop-
shaping sense.

Finally, the proposed approach when implemented on
EMW/AMB gyroscopic systems allows for the incorporation
of the parameter-variation due to the rotor speed into the
nominal plant (as opposed to treating it totally as unknown
uncertainty), thus leading naturally to a gain-scheduled or
parameter-dependent implementation of the synthesized robust
controllers.
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