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Low-Bias Control of AMB Subject
to Voltage Saturation: State-Feedback and Observer

Designs
Panagiotis Tsiotras, Senior Member, IEEE, and Murat Arcak Member, IEEE

Abstract— This paper addresses the problem of low-bias
control for an active magnetic bearing (AMB) subject
to voltage saturation. Using a generalized complemen-
tarity flux condition, a simple, three-dimensional flux-
based model is used to describe the dynamics of the low-
bias mode of operation. Several stabilizing controllers are
derived by applying recent results from nonlinear control
theory. Specifically, the asymptotic small-gain theorem
of Teel and passivity-based ideas are instrumental in
our designs. Both soft and hard saturation constraints
are accommodated. When flux measurements are not
available, a nonlinear reduced-order observer is proposed
to estimate the flux. We show global asymptotic stabil-
ity for all controller-observer interconnections. Numerical
simulations against a high fidelity AMB model show the
effectiveness of the proposed control designs.

I. INTRODUCTION

It is envisioned that future commercial and military
spacecraft will have an unprecedented degree of auton-
omy made possible by increased on-board processing
speed and memory capabilities. This increase in on-
board processing, autonomous sensing and communi-
cation capabilities translates directly to large require-
ments for on-board available power. Traditional chemical
batteries have several limitations stemming from their
inherent unreliability, low depth of discharge, heavy
weight, limited life, etc. A discussion on the future
trends of satellite architectures and their impact on power
generation and storage requirements can be found in
[21], [5], [26].

An alternative to the chemical batteries for energy
storage and power generation for future spacecraft has
been proposed in recent years, namely, that of electrome-
chanical (e.g., flywheel) batteries [3], [4], [9], [21], [23].
Taking into consideration that most orbiting spacecraft
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already incorporate spinning wheels (e.g., momentum
wheels, CMG’s) for attitude control, the prospect of
using these wheels to also store energy seems natural
and appealing. Several technical challenges need to be
overcome, however, before flywheels become a part of
a standard spacecraft power subsystem. One such major
challenge is the design of flywheels supported on low-
loss active magnetic bearings (AMB’s).

Efficient operation of flywheel electromechanical bat-
teries necessitates minimization of energy losses (me-
chanical and other). To avoid excessive friction losses,
it is imperative to use AMB’s in order to support the
spinning rotor. Although mechanical (friction) losses
are eliminated using AMB’s, electromagnetic losses still
exist in a flywheel/AMB system due to eddy current or
ohmic effects. These losses can be a significant portion of
the overall power losses in high-speed flywheels [1]. One
way to reduce eddy current and ohmic losses is to reduce
or eliminate the bias current during AMB operation [10],
[12]. Owing to the nonlinear flux/force characteristic, a
bias flux (or current) is typically used to linearize the
AMB equations followed by a subsequent use of linear
design techniques. Reduction or elimination of the bias
current leads to a nonlinear region which is dominated,
among other things, by slew-rate force limitations close
to the origin [7]. These limitations manifest themselves
as saturation constraints on the power amplifier voltage
driving the coils of the electromagnets. The problem
of designing low-bias control laws for AMB’s subject
to saturation constraints is a thus a nontrivial nonlinear
control problem.

In this paper we use recent results from the theory
of saturating control to design stabilizing control laws
for AMBs in low-bias operation, subject to voltage
saturation constraints. The main design tools in this
framework are passivity [24], and the asymptotic small-
gain theorem and the nested saturation designs due to
Teel [29], [28]. We present three low-bias designs for
an AMB. The first two designs ensure global asymptotic
stability in case of soft saturation constraints. The third
design ensures global asymptotic stability in case of hard
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voltage saturation constraints.
All controllers proposed in this work require flux

feedback. Since flux may not be easily measurable in
practice, a nonlinear observer is designed and incor-
porated in certainty-equivalence implementations of the
state-feedback control laws. The stability proof of this
certainty-equivalence scheme is given for each of the
three control laws. Numerical examples against a high-
fidelity AMB plant are used to demonstrate the theoret-
ical developments. This AMB plant includes all effects
which are neglected in the control design process: coil
resistance, flux leakage, and neglected flexible dynam-
ics. The numerical simulations show that the proposed
controllers are robust against these effects.

II. MODELING OF AN AMB IN LOW BIAS MODE

The simplified AMB model used in this paper consists
of two identical electromagnets, which are used to move
a rotor of mass m in one dimension. To regulate the
position q of the mass to zero, the control designer uses
the voltage inputs of the electromagnets, V1 and V2, in
order to exert attractive forces on the rotor; see Fig. 1.
Neglecting gravity, the total force generated by each
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Fig. 1. Simplified one-dimensional AMB geometry.

electromagnet is given by [22],

Fi =
Φ2

i

µoAg
, i = 1, 2 (1)

where Φi is the total magnetic flux of the i-th elec-
tromagnet, Ag is the cross sectional area of the airgap
at the pole, and µo is the permeability of free space
(= 1.25 × 10−6 H/m). In non-zero bias operation we
distinguish the total magnetic flux into the bias flux Φ0

and the perturbation (control) flux φi generated by the
i-th electromagnet. The total flux generated by the i-th
electromagnet is therefore,

Φi = Φ0 + φi, i = 1, 2. (2)

The equation of motion of the rotor can be written as

q̈ =
1
κ

(Φ2
1 − Φ2

2)

=
1
κ

[
φ2

1 − φ2
2 + 2Φo(φ1 − φ2)

]
(3)

where κ = mµoAg. The electrical dynamics are given
by

Φ̇i = φ̇i =
Vi

N
, i = 1, 2 (4)

where N is the number of turns of the coil of each
electromagnet and Vi is the total voltage applied to each
electromagnet. In (4) the coil resistance has been ne-
glected for simplicity. This implies that a precompensator
has been used to cancel the coil resistance term1.

Let us now define the auxiliary control flux signal

φ := φ1 − φ2 (5)

and introduce the following flux-dependent, voltage
switching scheme

V1 = V, V2 = 0 when φ ≥ 0, (6a)

V2 = −V, V1 = 0 when φ < 0, (6b)

where v is a generalized control voltage such that

φ̇ =
V

N
. (7)

It can be shown [31] that under the switching strategy
(6) equation (3) takes the form

q̈ =
1
κ

(2Φ̄0φ + φ|φ|) (8)

where Φ̄0 := Φ0 + min{φ1(0), φ2(0)}.
Define now the non-dimensionalized state and control

variables

x1 =
q

g0
, x2 =

q̇

Φsat
√

g0/κ
, x3 =

φ

Φsat
,

v =
V
√

g0κ

NΦ2
sat

,

(9)

along with the non-dimensionalized time

τ = t
Φsat√

g0κ
,

where g0 is the nominal air-gap and Φsat is the value
of the saturation (maximum) flux. Then one obtains
the following non-dimensionalized system in state-space
form

x′
1 = x2 (10a)

x′
2 = εx3 + x3|x3| (10b)

x′
3 = v (10c)

1Depending on the resistance variation with temperature, this may
not be necessary. Modern PWM power amplifiers (e.g., Copley Con-
trols 412) when operated in voltage mode, automatically compensate
for the voltage drop across the (constant) coil resistance. For the effect
of the neglected coil resistance in equation (4) see also Section VIII.
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where ε = 2Φ̄0/Φsat (0 ≤ ε � 1) and where
prime denotes differentiation with respect to the new
independent variable τ . Notice that for ε = 0 this model
reduces to the zero bias case2. Zero-bias control design
for AMBs is especially challenging because of the loss of
linear controllability when ε = 0. References [30], [31]
present a complete analysis of the zero-bias AMB control
problem. Note that although by definition |x3| ≤ 1, this
constraint will not be taken into consideration in the
sequel.

In this paper we are primarily interested in the case
when the maximum absolute value of v is limited due
to voltage saturation. If, for instance, it is known that
|V | ≤ Vmax then (10c) must be replaced with

x′
3 = satλ(v) := sgn(v) min{λ, |v|} (11)

where λ = Vmax
√

g0κ/NΦ2
sat. For notational simplicity,

henceforth we use a dot to denote differentiation with
respect to τ . Also, we will let x := (x1, x2, x3)T ∈ R

3.
Notice that the voltage switching strategy (6) is such

that min{φ1, φ2} stays constant along trajectories. As
a result, any control law that renders the closed-loop
system (10) globally asymptotically stable will also
ensure boundedness of φ1 and φ2 and, in addition, that
limt→∞ φ1(t) = limt→∞ φ2(t) = min{φ1(0), φ2(0)};
see [31] for the details.

III. LOW-BIAS VS. ZERO-BIAS AMB OPERATION

The main reason for low-bias operation is reduction
of power losses. The motivation behind the flux-based
voltage switching scheme (6) is that under the generic
assumption that φ1(0) = φ2(0) = 0 we have the follow-
ing generalized complementary flux condition (gcfc) on
the perturbation flux φi [30], [31]

φ1 = φ, φ2 = 0 when φ ≥ 0,

−φ2 = φ, φ1 = 0 when φ ≤ 0.
(12)

This constraint ensures that only one control force acts
on each electromagnet at a time, thus avoiding un-
necessary competition between the two electromagnets.
Moreover, the gcfc operation constraint tends to reduce
the overall flux, thus ensuring smaller power losses.

It should be pointed out that the gcfc is somewhat
different than the classical complementary flux condition
(cfc) used for zero-bias operation (Φ0 = 0)

Φ = Φ1, Φ2 = 0 when Φ ≥ 0,

Φ = −Φ2, Φ1 = 0 when Φ < 0,
(13)

2The initial control fluxes φ1(0) and φ2(0) are typically small and
can be taken without loss of generality (or by the definition of Φ0)
to be zero. Even if this is not the case, these are spurious fluxes
which shall dissipate very quickly due to coil resistance or by the
bias-setting control law; see [31].

in the sense that the gcfc is imposed on the perturbation
flux rather than on the total flux. When the bias flux is
taken to be zero (Φ0 = 0) however, the gcfc scheme re-
duces to the standard AMB model operating at cfc mode
(13). Moreover, the gcfc scheme ensures controllability
of the resulting system as Φ0 → 0. This is not the case
when using, say, the normal or constant sum flux biasing
scheme [31], [15].

As already mentioned, small bias is used in order to
reduce ohmic and eddy current losses. In the limiting
case Φ0 → 0, one could eliminate the bias completely
and (along with the standard cfc) achieve a great reduc-
tion in power losses [7]. However, zero-bias operation
imposes severe limitations on the AMB operation. Notice
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Fig. 2. Zero-bias and Low-bias characteristics.

from (8) that for zero-bias operation (Φ0 = 0), the total
force exerted on the rotor is given by

q̈ =
1
κ

φ |φ| =
1
κ

Φ |Φ| . (14)

The difficulties arising from the zero-bias operation
become apparent when looking at the plot of applied flux
vs. total generated force for each mode, shown in Fig. 2.
From this figure it is seen that for the zero-bias case the
slope of the force vs. flux curve near the origin is zero.
This implies that in order to produce a small control
force we need a large change in flux resulting in large
voltage commands and potential voltage saturation. In
other words, for zero-bias operation, we have a situation
resembling a “dead zone” near the origin. This problem
is well-known in the AMB literature and it is the main
reason for introducing a flux (or current) bias. As the bias
flux increases, the slope at the origin gets steeper, leading
to better dynamic response of the AMB [19]. This,
however, is achieved at the price of higher power losses.
A compromise is needed between dynamic response and
power losses due to the bias fluxes. This compromise
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has motivated the low-bias control designs presented in
this paper. We emphasize that, while low-bias control
may not be a very difficult control problem (at least for
local/linearized designs), the low-bias control problem
with voltage saturation is challenging.

IV. PASSIVATION DESIGN

In this section we develop a passivation design to
stabilize the low-bias AMB system

ẋ1 = x2 (15a)

ẋ2 = εx3 + x3|x3| := εx3 + η(x3) (15b)

ẋ3 = v . (15c)

Our design starts with the preliminary feedback

v = −k2x2 − k3x3 + u , k2, k3 > 0. (16)

As shown below this feedback law (with u = 0) renders
the equilibrium x = 0 stable with a Lyapunov function V
satisfying V̇ ≤ 0. Asymptotic stability is then achieved
by applying a saturated LgV -type control law as in
Sepulchre et al. [24]. To compute such a V we introduce
the new variable

ζ := k2x1 + (k3/ε)x2 + x3 , (17)

and rewrite the system (15)-(16) as

ζ̇ =
k3

ε
x3|x3| + u (18a)

ẋ2 = εx3 + x3|x3| (18b)

ẋ3 = −k2x2 − k3x3 + u . (18c)

Then the choice

V (ζ, x2, x3) =
ε2

k1

∫ k1ζ

0
sat(s) ds+

k2

2
x2

2+
ε

2
x2

3+
1
3
|x3|x2

3

(19)
satisfies

V̇ = ε2sat(k1z)
k3

ε
|x3|x3 + k2x2(εx3 + |x3|x3)

−ε x3(k2x2 + k3x3) − x3|x3|(k2x2 + k3x3)

+(ε2sat(k1ζ) + εx3 + x3|x3|)u
= ε sat(k1ζ)k3x3|x3| − εk3x

2
3 − k3x

2
3|x3|

+(ε2sat(k1ζ) + εx3 + x3|x3|)u
≤ −k3x

2
3|x3| + (ε2sat(k1ζ) + εx3 + x3|x3|)u (20)

which means that the system (18) with input u and output
y = ε2sat(k1ζ) + εx3 + x3|x3| is passive. With u = 0,
the origin x = 0 is stable but not asymptotically stable,
because the system (18) has a continuum of equilibria at
(ζ0, 0, 0), ζ0 ∈ R. To increase the negativity in (20) we
apply the feedback

u = −satλ(y) = −satλ(ε2sat(k1ζ) + εx3 + x3|x3|)
(21)

which ensures global asymptotic stability for any satu-
ration level λ > 0. This is shown in the next theorem.

Theorem 1: Consider the system (15), and let the
variable ζ be as in (17). Then, the control law

v = −k2x2−k3x3−satλ(ε2sat(k1ζ)+εx3+x3|x3|)
(22)

where k1, k2, k3, λ > 0, globally asymptotically stabi-
lizes the origin x = 0.

Proof: From (20) and (21), it follows that the set
in which V̇ = 0 is E = {(ζ, x2, x3) : ζ = x3 = 0}.
When x3 ≡ 0 and ζ ≡ 0 then u ≡ 0 and thus ẋ3 ≡ 0
which along with x3 = u = 0 implies via (18c) that
x2 = 0. Therefore the largest invariant set in E is the
equilibrium x = 0. Asymptotic stability follows from
LaSalle’s invariance principle.

V. SMALL GAIN DESIGN

Our next design makes use of an asymptotic small gain
theorem by Teel [29]. Before presenting the main result
from [29] used herein, we let |y| := maxi |yi| denote
the norm for a vector y ∈ R

n, and for a signal y(t), we
denote

‖y‖a = lim
t→∞ sup |y(t)| . (23)

The following result, adapted from [29, Theorem 3], is
instrumental in our design:

Proposition 1: Consider the system

ẋ = Ax + Bu + w (24a)

ż = f(z, u, d) (24b)

w = g(z, u, d) (24c)

where x ∈ R
n1 , z ∈ R

n2 , A is marginally stable; that is,
there exists a matrix P = P T > 0 satisfying

AT P + PA ≤ 0 , (25)

the function f(z, u, d) is locally Lipschitz, and the
function g(z, u, d) is continuous satisfying

lim
|(z,u)|→0

|g(z, u, 0)|
|(z, u)| = 0 . (26)

Suppose, for the z-subsystem (24), there exists a locally
Lipschitz class-K function γ1(·) such that, for each
bounded u(t) and d(t), the solution z(t) exists for all
t ∈ [0,∞), and

‖z‖a ≤ γ1(‖u‖a + ‖d‖a) . (27)

Then, there exist positive constants ∆ and λ∗ such that,
for each bounded d(t) satisfying ‖d‖a ≤ ∆, and for each
λ ∈ (0, λ∗], the control law

u = −satλ

(
BT Px + d

)
, (28)
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perturbed by d, ensures that the closed-loop solutions
(x(t), z(t)) are bounded, and

‖(x, z)‖a ≤ γ2(‖d‖a) (29)

for some class-K function γ2(·). �

An advantage of the saturation design (28) is that it
guarantees robustness against small measurement distur-
bances d. When the disturbance converges to zero, that is
when ‖d‖a = 0, then (29) implies ‖(x, z)‖a = 0, which
means that the trajectories (x(t), z(t)) converge to the
origin.

We now apply this design methodology to the AMB
system (15). Here we assume that there are no mea-
surement disturbances, i.e., d(t) ≡ 0, and we design
a globally asymptotically stabilizing control law as in
(28). In Section VII we will implement this control law
with state estimates obtained from an observer, and prove
stability using the robustness property (29), where d is
the observer error.

With the preliminary feedback (16), the (x2, x3)-
subsystem plays the role of the z-subsystem in Propo-
sition 1 because, as we prove in Theorem 2 below, it
satisfies the gain property (27). Next, we note that the
system (15)-(16) is of the form

ẋ = Ax + Bu + w (30)

with

A =

⎡
⎣ 0 1 0

0 0 ε
0 −k2 −k3

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ ,

w =

⎡
⎣ 0

x3 |x3|
0

⎤
⎦ .

The overall system decomposition is shown in Fig. 3.
The design in Proposition 1 is now applicable because
A is marginally stable, and g(z, u, d), given by w above,
satisfies (26).

Theorem 2: For the system (15), let A and B be as
in (31) with design parameters k2, k3 > 0, and let P =
P T > 0 be such that AT P +PA ≤ 0. Then, there exists
a constant λ∗ such that, for every λ ∈ (0, λ∗], the control
law

v = −k2x2 − k3x3 − satλ

(
BT Px

)
(31)

globally asymptotically stabilizes the equilibrium x = 0.
Proof: We first note that the Jacobian linearization

of the closed-loop system is ẋ = (A−BBT P )x, where
A − BBT P is Hurwitz because (A, B) is controllable.

w
u

u
ẋ1 = x2

ẋ2 = εx3 + w

ẋ2 = εx3 + x3|x3|
ẋ3 = −k2x2 − k3x3 + u

ẋ3 = −k2x2 − k3x3 + u

w = x3|x3|

Fig. 3. System decomposition for the AMB problem.

Thus, the equilibrium x = 0 is locally asymptotically
stable. To prove global attractivity of x = 0, we employ
Proposition 1 and show that the z-subsystem, rewritten
here as

ẋ2 = εx3 + x3 |x3|
ẋ3 = −k2x2 − k3x3 + u ,

(32)

satisfies the gain condition (27). To this end we let

V =
k2

2
x2

2 +
ε

2
x2

3 + µx2x3 +
1
3
|x3|x2

3 (33)

where

0 < µ < min{k3,
√

k2ε,
4εk2k3

4εk2 + k2
3

} (34)

It can be readily shown that V is positive definite. The
derivative of V along the trajectories of (32) is

V̇ = −εµ̄x2
3 − k2µx2

2 − µk3x2x3

−µ̄|x3|x2
3 + εx3u + u|x3|x3 + µx2u

≤ −a1|x|2 + (ε + µ)|x||u| + |u||x3|2 − µ̄|x3|3

where

a1 =
1
2

(
εµ̄ + µk2 −

√
(εµ̄ − µk2)2 + µ2k2

3

)
> 0

and µ̄ = k3 − µ. Using Young’s inequality [14, p. 75]
we have

|u||x3|2 ≤ 4
27

1
µ̄2

|u|3 + µ̄|x3|3

Thus,
V̇ ≤ −a1|x|2 + a2|x||u| + a3|u|3 (35)

where a2 = ε + µ and a3 = 4/27µ̄2. Upon completion
of squares, the last inequality yields

V̇ ≤ −(a1 − a2

2
b)|x|2 +

a2

2b
|u|2 + a3|u|3 (36)

where b a positive number such that b < 2a1/a2.
From (36) it follows that V̇ < 0 whenever |x| >
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√
c1|u|2 + c2|u|3 = ρ(|u|) with c1 = a2/b(2a1 − a2b)

and c2 = 2a3/(2a1 − a2b). Now let c3 = 1
4(k2 +

ε − √
(k2 − ε)2 + 4µ2) and c4 = 1

4(k2 + ε +√
(k2 − ε)2 + 4µ2) and note that

α(|x|) = c3|x|2 ≤ V (x) ≤ c4|x|2 +
1
3
|x|3 = ᾱ(|x|).

Using [8, Fact 37] we conclude that

‖(x2, x3)‖a ≤ γ1(‖u‖a) (37)

where γ1(s) = α−1(ᾱ(ρ(s))) =√
b1s2 + b2s3 + (b3s2 + b4s3)3/2, b1 = c4c1/c3, b2 =

c4c2/c3, b3 = c1/(3c3)2/3, b4 = c2/(3c3)2/3. Thus,
from Proposition 1, the solution x(t) exists for all
t ∈ [0,∞), and ‖x‖a = 0, that is, the equilibrium x = 0
is globally attractive.

Remark 1: The feedback control BT Px in (31) can
be substituted by another feedback Fx with the matrix
A − BF Hurwitz. Such a matrix F can be found using
the results of [27], [18].

Remark 2: The control law (31) as well as the control
law (22) are saturated only partially. We call such con-
trollers “soft saturation” controllers to distinguish them
from controllers that saturate the total control signal. We
shall call the latter “hard saturation” controllers; one such
hard saturation controller is given next.

VI. NESTED SATURATION DESIGN

The control laws (22) and (31) are only partially
saturated. We now design a completely saturated control
law following the nested saturation scheme of Teel
[28], [29]. Unlike the general procedure in [28], [29],
in the following proposition we explicitly compute the
admissible saturation levels.

Proposition 2: Consider the system (15). The control
law (38)-(39) globally asymptotically stabilizes the equi-
librium x = 0.

Proof: With y3 := kx3, y2 :=
k2x2

ε
+ kx3, and

y1 :=
k3x1

ε
+

2k2

ε
x2+kx3, and with the new independent

variable σ = kτ , the closed-loop system (15),(38), is
rewritten (with an obvious abuse of notation) as

ẏ1 = y2 + y3 + v +
2
ε
y3|y3| (40)

ẏ2 = y3 + v +
1
ε
y3|y3| (41)

ẏ3 = v = −satλ1(y3 + v2) , (42)

where ε := kε and where v2 = satλ2(y2 + satλ3(y1)).
First, we note from the feedforward structure that the

closed-loop system does not exhibit finite escape time.
Next, because |v2| ≤ λ2 in (42), the Lyapunov function
V3 = 1

2y2
3 satisfies V̇3 < 0 whenever |y3| > λ2 and,

hence ‖y3‖a ≤ λ2. Using λ2 < λ1/2, it follows that the
saturation function satλ1(y3 + v2) operates in its linear
region after a finite time t1. Thus, for t ≥ t1,

v = −y3 − v2 = −y3 − satλ2(y2 + satλ3(y1)) , (43)

and the y2-subsystem is

ẏ2 = −satλ2(y2 + v3) + w2 (44)

where v3 = satλ3(y1) and w2 = 1
ε y3|y3|. Using the

Lyapunov function V2 = 1
2y2

2 one can show that V̇2 < 0
whenever |w2| < λ2 and |y2| > |v3| + |w2|. Because
‖w2‖a ≤ 1

ε‖y3‖2
a ≤ 1

ε λ
2
2 < λ2 from (39), it follows that

‖y2‖a ≤ ‖v3‖a + ‖w2‖a. From this inequality and using
‖v3‖a ≤ λ3, ‖w2‖a ≤ 1

ε λ
2
2 and the last inequality in

(39), it is not difficult to show that ‖y2‖a + ‖v3‖a < λ2;
that is, after a finite time t2 ≥ t1,

v2 = satλ2(y2 + v3) = y2 + v3, (45)

which implies that

v = −y2 − y3 − satλ3(y1). (46)

This means that, for t ≥ t2, the y1-subsystem is

ẏ1 = −satλ3(y1) + w3 (47)

where w3 := 2
ε y3|y3|. We first note that a λ3 satisfying

the last inequality in (39) exists because λ2 < ε/5 in the
second inequality. Next, because λ3 > 2λ2

2/ε, it follows
from (47) that ‖y1‖a ≤ ‖w3‖a ≤ 2

ε λ
2
2 < λ3, which

means that, after a finite time t3, satλ3(y1) = y1. Thus,
for t ≥ t3 ≥ t2, the closed-loop system is

ẏ1 = −y1 +
2
ε
y3|y3| (48a)

ẏ2 = −y1 − y2 +
1
ε
y3|y3| (48b)

ẏ3 = −y2 − y2 − y3 . (48c)

We conclude the proof by showing that this system is
globally asymptotically stable. Indeed, the derivative of
the Lyapunov function

V = 3y2
1 − 4y1y2 + 8y2

2 +
8
3ε

y2
3|y3| (49)

along the trajectories of (48) is

V̇ = −2y2
1 − 8y1y2 − 16y2

2 − 8
ε
y2
3|y3| , (50)

which is negative definite. Thus, the system (15), (38) is
globally asymptotically stable.
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v = −satλ1

(
kx3 + satλ2

(
k2

ε
x2 + kx3 + satλ3

(
k3

ε
x1 +

2k2

ε
x2 + kx3

)))
(38)

with

0 < k, 0 < λ1, 0 < λ2 < min
{

λ1

2
,
kε

5

}
,

2
εk

λ2
2 < λ3 <

1
2

(
λ2 − 1

εk
λ2

2

)
(39)

VII. FLUX OBSERVER DESIGN AND OUTPUT

FEEDBACK CONTROL

Thus far, our designs relied on the availability of flux
measurements, which may be difficult in practice [11],
[20]. Another approach, employed in [16], is to estimate
the flux from current and position measurements using
the formula

Φ =
µ0AgNI

2(g0 ± q)
. (51)

See also [20], [6]. This equation, which is essentially
Ampere’s law, is accurate for low frequencies but it
does not account for hysteresis and eddy current effects.
During transients a high frequency estimator of the flux
can obtained via Faraday’s law. A combination of the
high-frequency and the low-frequency flux models have
been used in [11] to provide an estimate of the flux
without a flux sensor. This flux estimator compensates
for eddy current effects, but cannot compensate for
hysteresis effects and uncertainty in gaps due to thermal
growth. The scheme in [11], however, still uses current
measurement to estimate flux.

Another complication arises in our case due to the
voltage switching scheme (6) which requires knowledge
of the auxiliary signal φ = φ1 − φ2. For correct imple-
mentation of the flux-based voltage switching scheme
(6) it is imperative to know the sign of φ even if its
exact value is not measurable or not known. During
hardware implementation, the sign of φ can be easily
inferred by a simple comparator of the coil currents of
the two electromagnets. We henceforth assume that such
a setup is available.

If flux or current measurements are not available, the
following approach can be used to estimate the flux.
Because the system nonlinearity η(x3) = x3|x3| in (15)
is non-decreasing, we pursue the observer design of
Arcak and Kokotović [2] for this class of nonlinearities.
When ε is small as in low bias applications, a full-
order design gives rise to large observer transients. We
circumvent this problem with a reduced-order variant of
the observer in [2]:

Proposition 3: Consider the system (15) with the out-
put y = x2, and define the new variable χ := x3−(κ/ε)y
where κ > 0 is a design parameter. With the reduced-
order observer

˙̂χ = v − κ (χ̂ +
κ

ε
y) − κ

ε
η(χ̂ +

κ

ε
y) (52a)

x̂3 = χ̂ +
κ

ε
y , (52b)

the observer error d(t) := x̂3(t)−x3(t) satisfies, for all t
in the maximal interval of existence [0, tf ) of (15), (52),

|d(t)| ≤ |d(0)|e−κt. (53)
Proof: Because the derivative of χ is

χ̇ = v−κx3−κ

ε
η(x3) = v−κ(χ+

κ

ε
x2)−κ

ε
η(χ+

κ

ε
x2) ,

(54)
the observation error d = χ̂ − χ satisfies

ḋ = ˙̂χ − χ̇ = −κd − κ

ε

[
η(χ̂ +

κ

ε
y) − η(χ +

κ

ε
y)
]

.

(55)
Next, because the function η(x3) = x3|x3| is non-
decreasing, we get

(χ̂ − χ)
[
η(χ̂ +

κ

ε
x2) − η(χ +

κ

ε
x2)
]
≥ 0 , (56)

from which the derivative of V = 1
2d2 satisfies

V̇ ≤ −κd2 = −2κV , (57)

thus proving (53).

The separation principle does not hold for general
nonlinear systems; that is, a state feedback control law
may be destabilizing when implemented with observer
estimates. We now prove that the control laws derived
in this paper preserve stability with the observer (52).

Theorem 3: Consider the system (15) and the ob-
server (52). Either one of the control laws (22), (31),
or (38), implemented with x̂3 instead of x3, globally
asymptotically stabilizes the origin (x, χ̂) = 0.

Proof: We first prove stability for the passivation
design (22). When x3 is replaced with x̂3 = x3 + d, the
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resulting output feedback control law ṽ differs from the
state feedback control law v in (22), by

d̃ := v − ṽ = k3d + satλ(ε2sat(k1(z + d)) + ε(x3 + d)

+ (x3 + d)|x3 + d|) − satλ(ε2sat(k1z)

+ εx3 + x3|x3|) .
(58)

Then, the derivative of the Lyapunov function (19), along
the trajectories of (15) with ṽ, satisfies

V̇ ≤ −k3|x3|3 − (ε2sat(k1z) + εx3 + x3|x3|)d̃ . (59)

Using the inequalities

x3|x3|d̃ ≤ k3

4
|x3|3 +

(
4
k3

)2

|d̃|3 (60)

(to see this, consider the two cases |d̃| ≤ k3
4 |x3| and

|x3| ≤ 4
k3
|d̃|), and

εx3d̃ ≤ k3

4
|x3|3 + ε|d̃|

√
4ε

k3
|d̃| (61)

(consider the two cases |d̃| ≤ k3
4ε |x3|2 and |x3| ≤√

4ε
k3
|d̃|), we obtain

V̇ ≤ −k3

2
|x3|3 +

[
ε2|d̃| +

(
4
k3

)2

|d̃|3 + ε|d̃|
√

4ε

k3
|d̃|
]

.

(62)
Next, letting T be in the maximal interval of existence
[0, tf ) of the closed-loop system and integrating both
sides of (62) from 0 to T , we obtain

V (x(T )) − V (x(0)) ≤
∫ T

0

[
ε2|d̃| +

(
4
k3

)2

|d̃|3

+ε|d̃|
√

4ε

k3
|d̃|
]

dt .

(63)

Because d̃ is exponentially decaying from (53) and (58),
the integral on the right-hand side has an upper-bound
which is independent of T . This proves that tf = ∞, and
the trajectories are bounded. Finally, because d converges
to zero, it follows from LaSalle’s invariance principle
that the solutions converge to the largest invariant set
where d = 0. When d = 0, the output feedback
control law coincides with the state feedback control
law and, hence, the largest invariant set is the origin.
This concludes the proof of global asymptotic stability
for the passivation design (22).

When the small gain design (31) is implemented with
x̂3, the closed-loop system is

ẋ1 = x2

ẋ2 = εx3 + x3|x3| (64)

ẋ3 = −k2x2 − k3(x3 + d) − satλ(BT Px̂)

where x̂ := (x1 x2 x̂3)T . To show that there is no finite
escape time, we assume tf < ∞ and let T ∈ [0, tf ).
The arguments used in the proof of Theorem 2 show
that the (x2, x3) subsystem is input-to-state stable [25,
Lemma 2.14] with respect to the disturbance ũ = −k3d−
satλ(BT Px̂); that is, for all t ∈ [0, T ],

|(x2(t),x3(t))| ≤ β(|(x2(0), x3(0))|, t)

+ γ

(
sup

t∈[0,T ]
[−k3d(t) − satλ(BT Px̂(t))]

)

(65)

where β(·, ·) is a class-KL function and γ(·) is a K-
class function. Since β(·, t) is a decreasing function in t
and because |d(t)| ≤ |d(0)| and |satλ(BT Px̂(t))| ≤ λ,
it follows from (65) that, in the interval t ∈ [0, T ],
|(x2(t), x3(t))| is bounded by a function of initial condi-
tions that is independent of T . Likewise, using ẋ1 = x2

and (65), we conclude that |x1(t)| has an upper bound
which is a continuous function of T , which contradicts
the assumption tf < ∞ because T can be arbitrarily
close to tf .

To prove stability of the equilibrium (x, d) = 0, we
represent the closed-loop system (64) as in Proposition
1, where the x-subsystem is given by (30), and the z-
subsystem is as in (32), with u replaced with ũ = u−k3d,
and

w = g(z, u, d) =

⎡
⎣ 0

x3|x3|
−k3d

⎤
⎦ (66)

in (31). Then, the same argument as in Theorem 2
implies that (37) holds for ũ = u − k3d and, from
‖ũ‖a ≤ max{1, k3}(‖u‖a + ‖d‖a), the gain condition
(27) of Proposition 1 holds. Because ‖d‖a = 0, it follows
from (29) that the equilibrium (x, d) = 0 is globally
attractive. Finally, it is not difficult to show from the
Jacobian linearization that the equilibrium is also stable.
Having established stability and attractivity, we conclude
that the equilibrium is globally asymptotically stable.

The proof of stability for the nested saturation design
(38) is straightforward because the arguments in the
proof of Proposition 2 continue to hold when x3 is
replaced with x̂3 = x3 + d where ‖da‖ = 0.

The proposed reduced-order observer takes as input
the velocity in order to give an estimate of the flux signal
φ. Since typical AMB sensors give position (as opposed
to velocity) measurements, the required velocity signal
has to be computed by differentiating the position. To
avoid excessive noise in the observer input this may
impose restrictions on the selection of the type and
fidelity of position sensors used (i.e., optical instead of
hall sensors, etc).
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VIII. NUMERICAL EXAMPLES

In this section we illustrate the previous theoretical
results via a series of numerical simulations against
a high-fidelity model of an one-dof AMB. The AMB
model we consider has characteristics similar to those
of Refs. [13], [17]. The AMB model in [13], [17]
includes flux leakage, magnetic material saturation3,
flexible modes, voltage saturation and coil resistance. It
has been shown that this mathematical model represents
the actual AMB test rig very accurately, and hence it can
be used to validate our control designs under realistic
conditions [17]. Henceforth we call such a model the
“actual” AMB model in order to distinguish it from
the “ideal” model (with coil resistance, flux leakage,
magnetic material saturation, flexible modes neglected)
used for the control law design. The basic bearing
properties are given in Table I. For more details of
this AMB model one can consult Ref. [13] or [17].
Reference [17], in particular, has used this model to
derive a high-performance voltage-driven controller for
an one-dof AMB. The controllers were implemented
to the actual AMB. The results of the simulations in
[17] were essentially identical to the ones obtained via
experiments, supporting the high-fidelity characterization
of this AMB model.

TABLE I

AMB SPECIFICATIONS

Symbol Meaning
N = 321 � of turns in coil

m = 4.5 kg effective mass of rotor
Φsat = 200 µWb saturation flux
Ag = 137 mm2 electromagnet pole area

g0 = 0.33 mm (13 mils) nominal width of airgap (when x = 0)
Vmax = 10 V maximum voltage

The bias flux in all our simulations was chosen as
Φ0 = 10 µWb. This corresponds to ε = 0.1 and it is
an order of magnitude less than what is typically used
in practice4. Also, the saturation level was chosen as
Vmax = 10 V to make this specification a bit more
challenging (the voltage saturation level in [13] and [17]
is set to Vmax = 30 V). This voltage saturation level
corresponds to λ = 0.4. Moreover, all control laws
(specifically (31) and (22)) were implemented using their
“hard” saturation counterparts.

3For simplicity, magnetic material saturation effects were neglected
in the simulations. This was deemed acceptable because in all
simulations the flux never exceeded 100 µWb, the value when
magnetic saturation effects start becoming noticeable.

4A value of 40-50% of the saturation flux is used for most typical
biasing schemes.

Two representative sets of numerical simulations are
presented here. The initial conditions for all simulations
were chosen as q(0) = 0.15 mm, q̇(0) = 0 mm/sec,
φ1(0) = 10 µWb and φ2(0) = 50 µWb. The initial
condition for the auxiliary state φ is therefore φ(0) =
−40 µWb. This is significantly higher than one expects
to encounter in practice (see second footnote on page
3) and it has been chosen to challenge the simplifying
assumptions made during the control design. The initial
state of the observer was always taken to be zero.

The first set of simulations demonstrates the effect of
the observer gain κ. To this end, the ideal AMB model
(no coil resistance, no flux leakage, etc) was used and
the results are shown in Fig. 4. These plots show the
results of the simulations with the control law (31) (state-
feedback design) and three output feedback designs for
three values of the observer gain κ. As shown in Fig. 4
the trajectories of the observer-controller interconnection
tend to the trajectories of the state-feedback controller
with increasing κ. Similar results hold for the control
laws (22) and (38). At the bottom row of Fig. 4 the
time histories of the auxiliary flux state φ and the
control voltage V are shown. The actual flux and voltage
command to each electromagnet are shown in Fig. 5.
Notice, in particular, that the voltages V1 and V2 are
applied to each electromagnet according to the sign of
the auxiliary signal φ. The total fluxes Φ1 and Φ2 are
given by Φ1 = Φ0+φ and Φ2 = Φ0+min{φ1(0), φ2(0)}
when φ is positive and Φ2 = Φ0 − φ and Φ1 =
Φ0 + min{φ1(0), φ2(0)} when φ is negative. This is
implied by (6) and (8) and it is verified from the upper
right plot of Fig. 5.
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Fig. 4. State-feedback and output-feedback system trajectories with
control law (31) and different observer gains. Controller gains k2 =
k3 = 5.
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Fig. 5. State-feedback and output-feedback fluxes and command
voltages with control law (31). Controller gains k2 = k3 = 5.

The second set of simulations compares the state tra-
jectories and control signals of the ideal AMB plant with
a state feedback control law, with the state trajectories
and control signals of the actual (high-fidelity) AMB
plant with the output feedback implementation of the
same controller. The results for all three controllers are
shown in Figs. 6-7. The initial conditions are the same
as before. The observer gain for all the simulations
was chosen as κ = 40. The results with controller
(31) and controller gains k2 = k3 = 5 are shown in
Fig. 6. The results with controller (22) and controller
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Fig. 6. Comparison of state trajectories and control inputs for ideal
model (IM) with state feedback (SF) control law (31) and actual
model (AM) with output-feedback (OF) implementation. Controller
gains k2 = k3 = 5. Observer gain κ = 40.

gains k1 = 20, k2 = 2, k3 = 1 are shown in Fig. 7.
Finally, the simulation results with the saturated control
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Fig. 7. Comparison of state trajectories and control inputs for ideal
model (IM) with state feedback (SF) control law (22) and actual
model (AM) with output-feedback (OF) implementation. Controller
gains k1 = 20, k2 = 2, k3 = 1. Observer gain κ = 40.

law (38) are shown in Fig. 8. Since the saturation
levels (39) are conservative, the values λ2 = λ1/2 and
λ3 = λ2/2 (of course λ1 = λ = 0.4) were used in
these simulations to achieve faster system response. In
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Fig. 8. Comparison of state trajectories and control inputs for ideal
model (IM) with state feedback (SF) control law (38) and actual
model (AM) with output-feedback (OF) implementation. Controller
gains k = 1, λ2 = λmax/2, λ3 = λmax/4. Observer gain κ = 40.

all cases stability is achieved and the responses of the
output feedback implementation on the actual bearing
corroborate the state feedback responses predicted from
the implementation on the ideal bearing model used for
controller design. The highly oscillatory response of the
output feedback implementation evident in these plots is
due to the flexible modes. A closer examination of the
results also showed that the neglected coil resistance was



11

the main factor contributing to the discrepancy between
the ideal and actual model responses. If the resistance
does not change significantly during the operation of the
AMB, this term may be automatically compensated by
most modern power amplifiers (see first footnote on page
3). In that respect, one expects the discrepancy between
the ideal and actual responses to be smaller in practice.

IX. CONCLUSIONS

Low-bias operation of active magnetic bearings is
essential for minimizing ohmic and eddy current losses.
Due to the nonlinear nature of force vs. flux character-
istic, operation at low-bias levels leads to reduced linear
controllability and the use of high voltage commands.
Low-bias control of an active magnetic bearing subject to
voltage saturation can thus be a challenging control prob-
lem. In this paper we have presented three different de-
signs for low-bias operation of active magnetic bearings
using ideas from passivity, the asymptotic small-gain
theorem of Teel, and nonlinear saturated control theory.
A flux-based model for an active magnetic bearing that
incorporates a generalized complementary flux condition
is proposed and is used for control design. Since flux
is not typically available for feedback we also pro-
pose a nonlinear reduced-order observer to estimate the
flux from velocity measurements. We have shown that
this flux observer, when interconnected in a certainty-
equivalence implementation with the proposed state-
feedback controllers, results in a globally asymptotically
stable system.

Acknowledgments: The authors would like to thank
Prof. A. Teel and Prof. E. Maslen as well the anonymous
reviewers for their helpful comments. Support for the
first author was provided by AFOSR (award no. F49620-
00-1-0374) and NSF (award no. CMS-9996120).

REFERENCES

[1] P. Allaire, M. Kasarda, and L. K. Fujita, “Rotor Power Losses in
Planar Radial Magnetic Bearings - Effects of Number of Stator
Poles, Air Gap Thickness, and Magnetic Flux Density,” in Pro-
ceedings of the 1998 International Gas Turbine and Aeroengine
Congress and Exhibition, 1998. Stockholm, Sweden.

[2] M. Arcak, and P. Kokotović, “Nonlinear observers: a circle
criterion design and robustness analysis ,” Automatica, Vol.37,
No.12, 2001.

[3] M. D. Anderson and S. C. Dodd, “Battery Energy Storage
Technologies,” International Journal of Control, Vol. 81, No. 3,
pp. 475–479, 1993.

[4] Anonymous, “Economic and Technical Feasibility Study for
Energy Storage Flywheels,” December 1983. Technical Report
ERDA-76-65.

[5] J. C. Anselmo, “Technology Leaps Shape Satellites of Tomor-
row,” Aviation Week and Space Technology, pp. 56–58, January
25 1999.

[6] M. Baloh, G. Tao, and P. Allaire, “Modeling and Control of
a Magnetic Bearing Actuated Beam,” in Proceedings of the
American Control Conference, pp. 1602–1606, 2000. Chicago,
IL.

[7] A. Charara, J. De Miras, and B. Caron, “Nonlinear Control of
a Magnetic Levitation System Without Premagetization,” IEEE
Transactions on Control Systems Technology, Vol. 4, No. 5,
pp. 513–523, 1996.

[8] J. M. Coron, L. Praly, and A. Teel, “Feedback Stabilization
of Nonlinear Systems: Sufficient Conditions and Lyapunov and
Input-Output Techniques,” in Trends in Control: A European
Perspective (A. Isidori, ed.), pp. 293–348, London: Springer-
Verlag, 1995.

[9] C. D. Hall, “High-Speed Flywheels for Integrated Energy
Storage and Attitude Control,” in Proceedings of the American
Control Conference, pp. 1894–1898, 1997. Albuquerque, NM.

[10] D. Johnson, G. V. Brown, and D. J. Inman, “Adaptive Variable
Bias Magnetic Bearing Control,” in American Control Confer-
ence, (Philadelphia, PA), pp. 2217–2223, 1998.

[11] F. Keith, Implicit Flux Feedback Control for Magnetic Bear-
ings, Ph.D. dissertation, University of Virginia, Charlottesville,
Virginia, 1993.

[12] C. Knospe and C. Yang, “Gain-Scheduled Control of a Magnetic
Bearing with Low Bias Flux,” in 36th Conference on Decision
and Control, (San Diego, CA), pp. 418–423, 1997.

[13] C. Knospe, “The Nonlinear Control Benchmark Experiment,”
in Proceedings of the American Control Conference, pp. 2134–
2138, 2000. Chicago, IL.
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