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T
he technical challenge of creating a self-driving ve-
hicle remains an open problem despite significant 
advancements from universities, car manufactur-
ers, and technology companies. Full autonomy, 
known as level 5 (see “Society of Automotive 

Engineers Levels of Driving Automation”), is defined 
as full-time performance by an automated driving sys-
tem of all aspects of the dynamic driving task under all 
roadway and environmental conditions that can be managed 
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by a human driver. It is estimated that level 5 autonomous 
vehicles on public roads will help eliminate more than 
90% [1] of the 35,000 annual traffic fatalities caused by 
human error in the United States [2]; reduce commute 
time, road congestion, and pollution; and increase driv-
ing resource utilization [3].

A largely unexplored regime that level 5 vehicles must 
master before their introduction to public roads is abnormal 
and extreme driving conditions. These corner cases include 

precollision regimes, maneuvering at high speeds, and driv-
ing on surfaces other than asphalt and concrete (such as ice, 
gravel, and dirt), where severe understeer, oversteer, skid-
ding, and contact loss with the road surface are common. 
Additionally, dynamic, unpredictable environments (such as 
close proximity to moving vehicles, pedestrians, and other 
obstacles) require short timescales for perception, planning, 
and control that challenge traditional methodologies.

It is vital to conduct extensive experimental testing to 
develop and validate solutions to the corner cases of abnor-
mal and extreme driving. However, cost and safety consid-
erations are major barriers that prohibit routine testing and 
experimentation using full-size vehicles. Large investments 
(often up to US$1 million per vehicle) are required for vehi-
cle development and testing, the maintenance of infra-
structure and personnel, and the implementation of safety 
precautions before any data can be collected. No company 
is prepared to perform tests at the limits of performance 
where vehicle damage or operator injury are very likely to 
occur. Moreover, even for a trial run, a closed track is neces-
sary unless special precautions are taken or registration and 
insurance are obtained in one of the states that have enacted 
autonomous vehicle legislation [4]. Collecting data during 
normal driving conditions on public roads does not help 
much in terms of understanding these rare, but very impor-
tant, driving events.

photo courtesy of Brian Goldfain

Summary
utoRally is an open-source, 1:5-scale autonomous ve-

hicle testbed for students, researchers, and engineers 

who are interested in autonomous vehicle technologies. 

It is designed with robustness and ease of use in mind. 

At 1 m in length, weighing 22 kg, and with a top speed of 

90 km/h, the platform is large enough to host powerful on-

board computing and sensing and run state-of-the-art algo-

rithms. At the same time, it is simple and small enough to be 

maintained and operated by two people, all while providing 

the capability of exploring driving scenarios including drifting, 

jumping, high-speed driving, and multivehicle interactions.

Build instructions are publicly available, along with a 

parts list, computer-aided design models for fabricating 

custom components, and operating procedures. The plat-

form uses the Robot Operating System (ROS) and can be 

programmed in Python or C++. Tutorials, reference algo-

rithms, a Gazebo-based simulation environment, and a 

data set structured as ROS bag files are available from the 

AutoRally website. The fleet of six AutoRally platforms at 

Georgia Tech have been used to demonstrate control, per-

ception, and estimation research in a high-speed, off-road 

driving domain. To date, the fleet has driven hundreds of 

kilometers autonomously at the Georgia Tech Autonomous 

Racing Facility.

A
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Society of Automotive Engineers Levels of Driving Automation

T he Society of Automotive Engineers International’s J3016 

[S1], which was issued in January 2014, provides a com-

mon taxonomy and definitions for automated driving to simplify 

communication and facilitate collaboration within technical and 

policy domains. It defines more than a dozen key terms, includ-

ing those italicized in Figure S1, and provides full descriptions 

and examples for each level.

The report’s six levels of driving automation span from no 

automation to full automation and are described in detail in Fig-

ure S1. A key distinction is between level 2 (where the human 

driver performs part of the dynamic driving task) and level 3 

(where the automated driving system performs the entire dy-

namic driving task).

These levels are descriptive rather than normative and 

technical rather than legal. They imply no specific order of mar-

ket introduction. Elements indicate minimum rather than maxi-

mum system capabilities for each level. A particular vehicle 

may have multiple driving automation features, such that it 

operates at different levels depending upon the feature(s) that 

are engaged.

System refers to the driver assistance system, a com-

bination of driver assistance systems, or an automated 

FIGURE S1 The Society of Automotive Engineers (SAE) International J3016 levels of driving automation. (Image courtesy of SAE 
International.)
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automated driving system of all aspects of the
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the human driver will respond appropriately to
a request to intervene.
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automated driving system of all aspects of the
dynamic driving task, even if a human driver
does not respond appropriately to a request
to intervene.

The full-time performance by an automated
driving system of all aspects of the dynamic
driving task under all roadway and environmental
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task.
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and acceleration/deceleration using information
about the driving environment and with the
expectation that the human driver performs all
remaining aspects of the dynamic driving task.
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Computer simulations offer an alternative to testing with 
full-scale vehicles. Indeed, the fidelity of computer simula-
tions has improved significantly in recent years, as they can 
be used to generate an almost unlimited number of driving 
conditions. However, they cannot completely replicate the 
complex interactions of an autonomous vehicle with the real 
world. For autonomous vehicles to be safe, the failures and 
unforeseen circumstances encountered during real-world 
testing (many of which are impossible to duplicate in simu-
lation) must be overcome. The development and evaluation 
of new autonomous driving technologies may not be based 
solely on computer simulations, which may fail to capture 
critical aspects of the real world.

Scaled vehicles provide a useful complement to existing 
methods for testing autonomous vehicle technologies in 
aggressive driving regimes. Scaled vehicles ranging in size 
from 1:16 to 1:5 the size of an actual vehicle [often based on 
radio-controlled (RC) vehicles] are easier and less expen-
sive to operate than a full-sized platform. Despite recent 
progress and many publications detailing scaled autono-
mous testbeds [5]–[14], much of the available results lack 
reproducibility because of the one-off nature of these 
testbeds, restrictions imposed by the use of private data 
sets, and inconsistent testing methods. Inconsistency is an 
especially critical problem because many researchers 
should be able to test and compare potential algorithms 
under the same conditions and platforms to be able to 
obtain meaningful comparisons and advance the science 
of high-speed autonomy.

The remainder of this article describes AutoRally, shown 
in Figure 1, a 1:5 scale robotics testbed for autonomous vehi-
cle research. As discussed in “Summary,” this article out-
lines the offline and online estimation methods that were 
tested on AutoRally and presents experimental results 
collected with the fleet of six platforms at the Georgia Tech 
Autonomous Racing Facility (GT-ARF).

AutoRally is designed for robustness, ease of use, and 
reproducibility, so that a team of two people with limited 
knowledge of mechanical engineering, electrical engineering, 
and computer science can construct and operate the testbed 
to collect real-world autonomous driving data in whatever 
domain they wish to study. Complete construction and con-
figuration instructions for the AutoRally platform are pub-
licly available and include all required computer-aided design 
(CAD) files for custom part fabrication, a complete parts list, 
and wiring diagrams [15]. In addition, operating procedures, 

simulation environment, core software and reference control-
lers written in C++ and Python, and a collection of human 
and autonomous driving data are publicly available [16]. See 
“Build Your Own AutoRally Platform” for more information 
about the build process.

SCALED AUTONOMOUS DRIVING PLATFORMS
Experimental testbeds are an essential component of robot-
ics research that enable real-world experimentation and 
transition to practice. Here, we summarize some prior 
efforts in creating scaled platforms for autonomous vehicle 
research. Full-size platforms based on passenger vehicles 
are not discussed because they are outside the scope of this 
article and include many commercial development activi-
ties that are not in the public domain.

Scaled platforms constructed from modified RC cars 
are popular in the academic and hobby communities. 
These platforms are typically 0.2–1-m long and weigh 
between 1 and 25 kg. Costs range from a few hundred to 
tens of thousands of dollars, largely determined by the 
size, sensors, and computing. Construction, mainte-
nance, and programming are typically handled by a 
small team of students or researchers. Recently, several 
open-source projects released complete documentation 
and interface software, which is in contrast to the one-off 
nature of older work that often lacked enough informa-
tion to replicate.

driving system. Excluded are warning and momentary in-

tervention systems, which do not automate any part of the 

dynamic driving task on a sustained basis and, therefore, 

do not change the human driver’s role in performing the dy-

namic driving task.

REFERENCES
[S1] SAE On-Road Automated Vehicle Standards Committee. (2014). 
Taxonomy and definitions for terms related to on-road motor vehi-
cle automated driving systems. Society of Automotive Engineers. 
Warrendale, PA. [Online]. Available: https://www.sae.org/standards/ 
content/j3016_201806/ 

FIGURE 1 Autonomous driving with AutoRally at the Georgia Tech 
Autonomous Racing Facility.
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Documentation for open-source platforms normally 
includes parts lists, build instructions, and interface soft-
ware for the sensors and actuators. The availability of 
tutorials, simulation environments, and public data sets 
vary by project. Common sensors include wheel speed, 
inertial measurement units (IMUs), cameras, depth sen-
sors, ultrasonic units, and light detection and ranging 
(lidar) units. The target environment for these platforms 
is typically indoors on a smooth surface. The Donkey Car 
[5] is an easy-to-build 1:16-scale autonomous platform for 
the do-it-yourself Roborace events that target hobbyists. 
Onboard computing and sensing are accomplished via a 
Raspberry Pi 3 with a matching wide-angle camera. The 
Berkeley Autonomous Race Car [6] is a 1:10-scale vehicle 
designed as a simple and affordable research platform for 
self-driving vehicle technologies that has been success-
fully used to demonstrate various control algorithms. 
The onboard ODROID-XU4 is similar in computational 

performance to the Raspberry Pi 3, and the sensor suite 
includes a hobby-grade camera, IMU, four ultrasonic 
range finders, and Hall-effect wheel-speed sensors. The 
F1/10 project [7] and accompanying Autonomous Racing 
Competition allow teams to race using a common 1:10-
scale platform developed at the University of Pennsylva-
nia. Computing on the F1/10 platform is performed by an 
Nvidia Jetson. The sensor suite includes a hobby IMU, 
compact indoor Hokuyo 2D lidar, and optional structure 
and Zed depth and motion-sensing cameras. The 1:10-
scale Rapid Autonomous Complex-Environment Com-
peting Ackermann-Steering Robot (RACECAR) [8] from 
the Massachusetts Institute of Technology is a platform 
for researchers creating applications for self-driving cars. 
RACECAR also uses the Nvidia Jetson for computing and 
includes the same Hokuyo lidar and Zed stereo camera as 
the F1/10 platform. Table 1 provides a comparison of 
these open-source scaled platforms.

 Build Your Own AutoRally Platform
utoRally is an open-source platform, so complete docu-

mentation to build, configure, and run the platform is pub-

licly available through the AutoRally platform build instructions 

on the GitHub repository [15]. Documentation includes build 

instructions for the chassis and compute box, a parts list with 

suggested vendors, wiring diagrams, files required for custom 

part fabrication, and operating procedures. Tutorials and ex-

ample controllers written in C++ and Python that use the Robot 

Operating System, a Gazebo-based simulation environment 

that resembles the Georgia Tech Autonomous Racing Facility 

(GT-ARF) oval track, and a data set of human and autonomous 

driving captured at the GT-ARF tracks are available through 

the AutoRally software GitHub repository [16]. AutoRally is de-

signed for robustness, ease of use, and reproducibility, so that 

a team of two people with limited knowledge of mechanical 

engineering, electrical engineering, and computer science can 

construct and operate the testbed to collect real-world autono-

mous driving data. Links to tutorials for the background skills 

required to construct AutoRally are included in the instructions.

Construction time is 40 h for an AutoRally chassis and  

60 h for a compute box. The full platform construction time 

of 100 h does not include custom part fabrication time that  

depends on the tools available. AutoRally can take significantly 

fewer than 100 h to construct with prior experience with radio-

controlled electronics, soldering, computer construction and 

wiring, or Ubuntu configuration. Conversely, the platform can 

take much more time to construct if individual assemblies are 

not thoroughly tested before integration, which can result in 

time-consuming rebuilds during verification.

For fabrication of custom components, access to a three-

dimensional (3D) printer, laser cutter, water jet cutter, and 

aluminum welding are suggested. If you do not have access 

to a 3D printer, all custom parts provided as stereolithogra-

phy files with the build documentation can be fabricated by 

a 3D printing service, many of which are available online. If 

you do not have access to a laser cutter, the custom foam 

and acrylic parts can be cut by hand with a blade using the 

provided portable document format files printed on U.S. letter 

paper as stencils. If you do not have access to a water jet for 

cutting aluminum parts or welding equipment for aluminum, 

most local metal fabrication shops should be able to fabricate 

the compute box enclosure and front brake bracket using the 

drawing interchange files and bend patterns included in the 

instruction materials.

It is vital to conduct extensive experimental testing to develop  

and validate solutions to the corner cases  

of abnormal and extreme driving.

A
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While all of these platforms are easy to build, moderately 
priced, and offer some onboard sensing and compute capa-
bilities, their design limits their use to smooth surfaces, 
typically indoors. All of the platforms lack a Global Posi-
tioning System (GPS) device, which is a common sensor for 
outdoor vehicles. Instead of a GPS, global position informa-
tion can be provided by instrumenting the environment 
such as with a VICON external motion-capture system or 
beacons rigidly mounted around the environment. These 
systems restrict the possible operating space to a couple 
hundred square meters because of the sensor field-of-view 
(FOV) and resolution restrictions, and they are priced in the 
tens of thousands of dollars for out-of-the-box solutions. 
The chassis, mounts, and enclosures of the platforms are 
typically not designed for repeated crashes and collisions 
that are inevitable when testing novel autonomous vehicle 
technologies, so the delicate sensors and electronics are 
easily damaged when something goes wrong. Onboard 
computing is inadequate for much of the state-of-the-art 
research because of size and power limitations. This necessi-
tates significant code optimization or offloading of computa-
tion to a remote computer. Offboard 
computation introduces its own set 
of problems, including increased 
latency and dependence on a reli-
able, high-bandwidth wireless con-
nection (which dictates the size and 
configuration of testing environ-
ments). The limited payload capacity 
and power availability also severely 
limit the ability to test new sensors 
such as a lidar and high-frame-rate 
machine-vision cameras because the 
size, weight, and data rates quickly 
overwhelm the platforms.

Many one-off experimental plat-
forms have been created for specific 
projects. In [9], a model predictive 
control (MPC) algorithm running 
on a stationary desktop computer 
with a motion capture system was 
used to drive a custom 1:10-scale 
RC platform around an indoor track 
with banked turns, jumps, and a 
loop-the-loop. Platforms were devel-
oped to test autonomous drifting 

controllers in [10] and [6] and to push scaled autonomous 
driving to the friction limits of the system in [11]. A frame-
work with multifidelity simulation and accompanying hard-
ware platform for use in reinforcement-learning problems 
relating to autonomous driving was presented in [12]. A 1:5-
scale autonomous platform was developed to investigate sta-
bility control in [13] and [14]. While these platforms were 
successfully used for their respective experiments, there is 
not enough public information available to build, operate, 
and program one without starting from scratch.

Traditionally, scaled autonomous driving platforms were 
purposely built for one experiment. However, a new wave 
of open-source platforms is emerging. Still, none are robust 
enough to survive repeatedly pushing the vehicle to its 
mechanical and software limits, let alone operate in outdoor 
environments with the payload capacity to carry a variety 
of popular sensors and powerful onboard computing. 
Therefore, scaled platforms show great promise in the wide 
variety of experiments they enable. However, previous 
attempts fall short in terms of design, fidelity, and repeat-
able performance.

Platform 
Cost 
(US$)

Build 
Time (h)

Weight 
(kg) Computing Simulation

Data 
Sets

Donkey Car 200 2 2 Raspberry 
Pi

Y Y 

Berkeley 
Autonomous Race 
Car

500 3 3.2 Odroid 
XU4 

Y Y 

Massachusetts 
Institute of Technology 
Rapid Autonomous 
Complex-Environment 
Competing 
Ackermann-Steering 
Robot 

3,383 10 4.5 Nvidia 
Jetson

Y N 

F1/10 3,628 3 4.5 Nvidia 
Jetson

N Y 

Table 1  A comparison of open-source, scaled autonomous platforms. All platforms 
are based on 1:10-scale radio-controlled cars and include C++ and Python software 
interfaces that use the Robot Operating System software libraries (except for the 
Donkey Car). The Donkey Car is 1:16 scale and includes a Python interface. The 
build time and cost of each platform do not include three-dimensional-printed parts, 
which will vary based on the printer used. In addition to the platforms themselves, 
the availability of a simulation world and public data sets is indicated.

The development and evaluation of new autonomous driving technologies  

may not be based solely on computer simulations, which may fail  

to capture critical aspects of the real world.
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THE AUTORALLY ROBOT
The AutoRally autonomous vehicle platform is based on a 
1:5-scale RC trophy truck and is approximately 1-m long, 
0.6-m wide, and 0.4-m high; weighs almost 22 kg; and has a 
top speed of 90 km/h. The platform is capable of autono-
mous driving using only onboard sensing, computing, 
and power. While larger than many other scaled, autono-
mous ground vehicles, the platform offers a cost-effective, 
robust, high-performance, and safe alternative to operat-
ing full-sized autonomous vehicles and retains a large 
payload capacity compared to other scaled platforms built 
from smaller RC cars. AutoRally’s capabilities offer a large 
performance improvement over traditional scaled autono-
mous vehicles without the need for the large infrastruc-
ture investments and safety considerations required for 
full-sized autonomous vehicles. The complete system dia-
gram for the AutoRally robot with a remote operator con-
trol station (OCS) is shown in Figure 2. The remainder of 
this section describes the configuration of the AutoRally 
chassis and compute box, including mechanical compo-
nents, sensors, and computing configuration.

Chassis
The chassis is designed as a self-contained system that can 
easily interface to a wide variety of computing and sensor 
packages. Similar to a standard RC car, the chassis can be 
driven manually using the included transmitter. Computer 
control and chassis state feedback are provided by a single 
universal serial bus (USB) cable connected to an onboard 
computer. Feedback from the chassis to an attached com-
puter includes wheel-speed data, electronic speed controller 
(ESC) diagnostic information, and the manually provided 
actuator commands read from the RC receiver.

The 1:5-Scale Radio-Controlled Truck
The chassis is based on a HPI Baja 5SC RC trophy truck. 
Figure 3 shows the assembled chassis with all modifica-
tions installed and the plastic protective body removed. 
The total weight of the assembled chassis is 13 kg. The 
major upgrades from the stock chassis are an electric pow-
ertrain conversion, front brake installation, and electron-
ics box replacement. The electric conversion replaces 
the stock 3-hp, 26-cc, two-stroke gasoline engine with a 
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FIGURE 2 The AutoRally system diagram. All major electronic system components and their connections to the rest of the system are 
shown. The setup includes the AutoRally robot composed of a chassis and compute box, along with a remote operator control station 
(OCS). Communication between the OCS computer and robot are via hobby radio-controlled (RC) signals, Wi-Fi, and 900-MHz XBee 
radios. Sensors, including the inertial measurement unit (IMU) and Global Positioning System (GPS) receiver, are connected to the 
computer with universal serial bus (USB) cables. The actuators in the chassis include the electronic speed controller (ESC), steering, 
and front brake and are controlled by standard 50-Hz hobby pulsewidth modulation (PWM) signals. TTL: transistor–transistor logic.
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10-hp peak output electric motor and ESC from Castle Cre-
ations. Compared to the stock engine, the electric motor is 
more powerful, responsive, and reliable. It also provides 
an integrated electronic rear brake, generates less heat and 
no exhaust residue, and requires minimal maintenance. 
The motor and chassis electronics are powered by two 
four-cell, 14.8-V, 6,500-mAh lithium-polymer batteries 
connected in series. A full charge lasts 20–90 min, depend-
ing on usage. Front hydraulic brakes are actuated by a 
separate brake servo.

Parts of the chassis structure were upgraded to handle 
the increased weight of the sensor and computing pack-
age. The stock plastic steering linkage was replaced with 
billet aluminum parts to withstand the increased steering 
torque of the upgraded steering servo and weight on the 
linkage. The plastic side rail guards used as mount points 
for the compute box were replaced with billet aluminum 
parts to carry the weight of the compute box without de
flecting. Axle extenders were installed to increase the 
track of the vehicle by 3.8 cm to improve lateral stability 
and make room to mount the front brakes and wheel-rota-
tion sensors.

The stock suspension springs were replaced with stiffer 
ones of similar overall dimensions to reduce body roll 
and improve driving dynamics. A full AutoRally platform 
weighs 58% more than the stock chassis, so the spring con-
stants were increased by roughly the same percentage. 
Custom springs are prohibitively expensive, so off-the-
shelf springs were sourced as close to the desired dimen-
sions and stiffnesses as possible. The front spring constant 
increased from 8.48 to 15 lb/in and the rear spring constant 
from 11.17 to 19.09 lb/in. The shock oil viscosity was also 
increased approximately 58% from 500 to 850 cSt to prop-
erly damp the upgraded springs.

The stock two-channel transmitter was replaced with a 
programmable four-channel transmitter as part of the elec-
tronics box upgrade. The first two channels control the 
steering and throttle, respectively, and the remaining chan-
nels are used in the vehicle safety system discussed in the 
section “Safety System.”

SENSORS
To sense wheel speeds, a Hall-effect sensor and magnets 
arranged in a circular pattern to trigger the sensor were 
installed on each wheel hub. The chosen sensor is a Hal-
logic OH090U unipolar switch, and the magnets are N52 
grade, 0.3175-cm diameter, 0.1588-cm thick. The magnet 
can trigger the sensor from up to 0.58 cm away. Larger 
magnets could be used to increase the maximum tripping 
distance. However, the chosen setup works reliably and fits 
easily in the wheel-hub assemblies. Hardware timers in the 
Arduino Due in the electronics box are used to accurately 
measure the time between magnets. Intermagnet timing 
information is translated to rotation rates and sent to the 
compute box at 70 Hz.

Inside the electronics box, the RC signals from the 
receiver are read by the Arduino Due at 50 Hz and sent to 
the compute box so that, even under manual control, the 
control signals sent to the actuators can be recorded. This is 
especially useful for collecting training data where human 
control signals are required. The Due also receives diag-
nostic information from the ESC that is forwarded to the 
compute box.

A Hemisphere P307 GPS receiver provides absolute 
position at 20 Hz, accurate to approximately 2 cm under 
ideal conditions with real-time kinematic (RTK) correc-
tions from a GPS base station. The GPS antenna is mounted 
on top of a ground plane at the back of the chassis along 
with the receiver. The antenna is located at the maximum 
distance from the compute box to reduce interference and 
maximize the view of the sky while still being protected 
during rollovers. The ground plane is an acrylic sheet 
coated with a copper conductive sheet and designed to 
break before the GPS antenna or sensitive GPS board in the 
event of a severe crash.

Actuators
The chassis requires one servo to operate the steering link-
age and one to actuate the master cylinder for the front 
brakes. Both servos use the 7.4-V digital hobby servo stan-
dard, which offers more precise, higher-torque output, 
faster response time, and a reduced dead band compared to 
traditional 6.0-V analog servos. All control signals, for both 
servos and the ESC, are standard 50-Hz hobby pulsewidth 
modulation (PWM) signals with a duty cycle from 1 to 
2 ms, with a neutral value of 1.5 ms. The servos do not have 
position feedback.

FIGURE 3 The assembled AutoRally chassis.
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Custom Components
The custom three-dimensional (3D)-printed acrylonitrile 
butadiene styrene (ABS) plastic parts installed in the 
AutoRally chassis are a new electronics box, a GPS box, 
mounts for the back wheel-rotation sensors and magnets, 
and alignment guides for the front brake disks. ABS plastic 
is an easy and lightweight medium for quickly manufac-
turing complex geometries for components that do not 
experience significant loading. The electronics box replaces 
the stock one mounted in the front of the chassis super-
structure, just behind the steering servo and linkage. Con-
tained within the box are the radio receiver, Arduino Due, 
servo multiplexer, runstop relay, communication board for 
the ESC, and servo glitch capacitor. The GPS box contains 
the GPS board; a Cui 3.3-V, 10-W isolated power supply; a 
small fan; and the GPS antenna mounted to the ground 
plane (which is the lid). Front-brake disk aligners and 
mounts for the rear-wheel rotation sensors and magnets 
are installed on the chassis. The front-brake disk aligners 
are needed to keep the disks rotating smoothly because the 

front-wheel rotation sensor magnets unbalance the disks if 
left to freely rotate.

Compute Box
Most modern control and perception algorithms are cen-
tral processing unit and graphics processing unit (GPU) 
intensive. To maximize performance and reduce hardware 
development and software optimization time, the com-
pute box employs standard components instead of special-
ized embedded hardware typical of scaled, autonomous 
platforms. The compute box design provides a robust enclo-
sure that mounts to the chassis and fits inside the stock 
protective body. The weight of the empty compute box is 
3.3 kg (and 8.8 kg with all components installed).

Enclosure Design
The enclosure (see Figure 4) is designed to withstand a 10-g 
direct impact from any angle without damaging internal 
electronic components and is fabricated out of a 2.286-mm-
thick 3003 aluminum sheet. The 10-g impact is larger than 

(a) (b)

(c) (d)

FIGURE 4 The AutoRally mini-ITX compute box. (a) The assembled computer-aided design model. (b) The fully assembled compute box 
ready to be mounted on a chassis. (c) The front of the compute box viewed from above with motherboard and compute components 
visible. (d) The rear of the compute box viewed from above with the power system components visible.
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those experienced when testing at GT-ARF according to IMU 
data that included collisions with fixed objects and rollovers. 
The box’s impact tolerance was verified using finite element 
analysis of the CAD model before fabrication. The 3003 alu-
minum alloy was chosen for its strength, ductility, and rela-
tively light weight. The sides of the box are tungsten inert gas 
welded to the bottom to accurately join the large panels of 
relatively thick aluminum sheets without leaving gaps. Alu-
minum dust filters coupled with a foam membrane allow 
continuous airflow through the box while keeping environ-
mental contaminants such as dust and rocks out. Combined 
with the all-aluminum exterior, the assembled compute box 
provides excellent electromagnetic interference containment.

The cameras and lenses are mounted facing forward on 
top of the box on an aluminum plate for rigidity, and they 
are protected by covers made from structural fiberglass that 
does not affect the signal quality for the antennas mounted 
on the top of the box. Each camera cover is secured to the 
compute box with four clevis and cotter pins for quick 
access to the lens and cameras as needed.

Four 3D-printed components are inside the compute box: 
a battery holder, solid-state drive (SSD) holder, GPU holder, 
and random access memory holder. The battery holder 
tightly secures the compute box battery and power supply. 
The battery slot is slightly undersized and lined with foam 
so that the battery press fits into the mount and can be 
removed for charging and maintenance without removing 
any internal screws. The SSD holder is used to securely 
mount a 2.5-in SSD to the sidewall of the compute box. The 
GPU holder fits over the GPU and secures it to the main 
internal strut while still allowing adequate airflow.

The compute box attaches to the chassis with four 
3D-printed mounts attached to the bottom of the compute 
box. The mounts fit over vertical posts on the chassis rail 
guards and are secured to the chassis with a cotter pin 
though the mount and post. Special consideration was 
given to design the mounts as break-away points for the 
compute box in the event of a catastrophic crash. The 
mounts are easy and inexpensive to replace and break 
away before any of the aluminum compute box parts fail to 
protect the electronics within the compute box. By apply-
ing lateral forces with finite element analysis and the CAD 
models, the failure point of the mounts is designed to be at 
8 g of force on the compute box, compared to the 10-g 
design load for the rest of the compute box. In practice, the 
compute box mounts break away during hard rollover 
crashes, leaving the internal components undamaged. 
All panel mount components such as the power button, 

light-emitting diodes, and ports are dust resistant or pro-
tected with a plug to keep out debris.

Sensors
A Lord Microstrain 3DM-GX4-25 IMU provides raw accelera-
tion and angular rate data at 200 Hz (maximum 1 kHz) and 
fused orientation estimates at 200 Hz (maximum 500 Hz). 
The two machine-vision cameras that are mounted on top of 
the compute box are Point Grey Flea3 FL3-U3-13E4C-C color 
cameras with a global shutter that operates up to 60 Hz. 
Lenses are 70° FOV, with a 4.5-mm fixed focal length. Each 
camera connects to the motherboard with a USB 3.0 cable and 
is externally triggered by an Arduino Micro microcontroller 
with a general-purpose input–output connector. Both cam-
eras are connected to the same trigger signal that operates at 
a configurable rate. Internal battery voltage and computer 
temperature sensors are used to monitor system health.

Computing
A modular, reconfigurable, onboard computing solution 
was designed that uses standard consumer computer com-
ponents based on the Mini-ITX form factor. Computing 
hardware development outpaces advancements in almost all 
other components, so the standard form factor, mounting 
method, and data connections enable the reconfiguration of 
sensing and computing payloads without mechanical modi-
fications as requirements evolve. Table 2 lists the details of 

Component Detail 

Motherboard Asus Z170I Pro Gaming, Mini-ITX 

Central processing 
unit 

Intel i7-6700, 3.4 GHz quad-core 65 W 

Random access 
memory 

32 GB DDR4, 2133 MHz 

Graphics 
processing unit 

Nvidia GTX-750ti SC, 640 cores, 2 GB, 
1176 MHz

Solid-state drive 
storage

512 GB M.2 and 1 TB SATA3 

Wireless 802.11ac Wi-Fi, 900 MHz XBee, and 
2.4 GHz RC 

Power supply Mini-Box M4-ATX, 250 W 

Battery 22.2 V, 11-Ah lithium-polymer, 244 Wh 

Table 2  AutoRally compute box components. Major computing 
and power parts are listed with their specifications.

Scaled vehicles provide a useful complement to existing methods for testing 

autonomous vehicle technologies in aggressive driving regimes.
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the compute box components. Wi-Fi is used to remotely 
monitor high-bandwidth, non-time-critical data from the 
platform, such as images and diagnostic information. A 
900-MHz XBee Pro provides a low-latency, low-bandwidth 
wireless communication channel. The GPS on the robot 
receives RTK corrections from the GPS base station (trans-
mitted over the XBee radio) at approximately 2 Hz to improve 
GPS performance. The XBee radio on board the robot also 
receives a global software runstop signal at 5 Hz and the 
position and velocity of other AutoRally robots within com-
munication range at up to 10 Hz.

The base station XBee, connected to the same computer as 
the base station GPS, transmits the software runstop and 
RTK correction messages to all AutoRally robots within com-
munication range. The runstop message allows all robots 
within radio range (each running its own self-contained soft-
ware system) to be stopped simultaneously with one button.

SOFTWARE INTERFACE
The AutoRally software was designed to leverage existing 
tools wherever possible. All computers in the system run the 
latest long-term support version of Ubuntu Desktop to take 
advantage of the wide availability of compiled packages and 
minimal configuration requirements. All AutoRally soft-
ware is developed using the Robot Operating System (ROS) 
[17], a flexible framework for writing robot software. It is a 
collection of tools, libraries, and conventions that simplifies 

the task of creating complex and robust robot behavior across 
a wide variety of robotic platforms. Custom ROS interface 
programs were developed for each AutoRally component 
that lacked a publicly available interface. The time synchro-
nization and safety systems presented in this section are 
critical components often overlooked in other scaled plat-
forms. They are a combination of electronics and software 
that enables a safe and robust autonomous system. The soft-
ware interface, OCS graphical user interface (GUI), and sim-
ulation environment for the robot are also presented.

Time Synchronization
Distributed system design requires robust time synchroni-
zation across all components in the system. Accurate timing 
is especially important as asynchronous data and control 
rates increase. Time synchronization is performed within 
the AutoRally system on all computing and sensing compo-
nents with a combination of Ubuntu tools. Figure 5 shows 
how timing information is propagated for time synchroni-
zation. The time source for the entire system is the GPS 
board on the chassis that emits National Marine Electronics 
Association (NMEA) 0183 messages and a pulse-per-second 
(PPS) signal. The PPS signal provides a marker accurate to 
within a few nanoseconds of the start of every second 
according to GPS time. NMEA 0183 time messages corre-
sponding to each PPS pulse provide timing information 
about that pulse. NMEA 0183 and PPS signals are widely 
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FIGURE 5 The AutoRally time synchronization diagram. The clocks on the computers and sensors that support clock control are synchro-
nized to Global Positioning System (GPS) time with a combination of the pulse-per-second (PPS) signal that marks the beginning of a 
second and timing messages that identify which second the PPS signal represents. On the AutoRally robot and operator control station 
(OCS) computers, the system utilities GPS service daemon (GPSD) and Chrony are used for clock synchronization. The two cameras rely 
on an external trigger signal to capture frames simultaneously. The Arduino Micro microcontroller generates the camera trigger signal. 
IMU: inertial measurement unit. 
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supported by devices that require time synchronization. 
The PPS signal is routed into a GPS service daemon (GPSD) 
running on the motherboard, IMU, and Arduino Micro.

GPSD is a daemon used to bridge GPS time sources with 
traditional time servers. GPSD runs on the compute box and 
receives the GPS PPS signal and NMEA messages. Processed 
timing information is communicated through a low-
latency shared memory channel to Chrony, the time server 
running on the computer. Compared to traditional Network 
Time Protocol servers, Chrony is designed to perform well in 
a wide range of conditions including intermittent network 
connections, heavily congested networks, changing tem-
peratures, and systems that do not run continuously. Chrony’s 
control of system time makes time synchronization transpar-
ent to programs running on the computer. The system time 
of the OCS computer is synchronized to the AutoRally robot 
by a second Chrony instance on the OCS computer that com-
municates over Wi-Fi with Chrony on the robot.

The IMU provides a dedicated pin for a PPS input. In 
addition to the PPS signal, it requires the current GPS second 

(GPS time is given in seconds since January 6, 1980) to resolve 
the time of the PPS pulse. This value can be derived from the 
computer’s system clock. The IMU uses these two pieces of 
information to synchronize its own clock and time-stamp 
each measurement with an accuracy of significantly lower 
than 1 ms to system time.

The cameras provide an external trigger interface to con-
trol when each image is captured. The Arduino Micro pro-
vides the cameras with the triggering pulse at a specified 
frame rate. Each time a PPS pulse arrives from the GPS, a 
train of evenly spaced pulses at the rate specified in the ROS 
system is sent to the cameras. The cameras’ images are time 
stamped with the system time when they are received by 
the computer.

Safety System
The three-layer AutoRally safety system is designed to 
remotely disable robot motion in the event of any software 
or electronics failure. The three layers, shown in Figure 6, 
are a wireless dead-man relay located in the electronics box 
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FIGURE 6 The AutoRally safety system. The human-operated radio-controlled (RC) transmitter sends signals to the RC receiver in the 
AutoRally chassis. The RC receiver provides actuator signals from the human driver, controls a safety relay to enable and disable the 
throttle signal into the electronic speed controller (ESC), and switches between human and computer control. Information relating to the 
state of the safety system is presented to the human operator in the operator control station (OCS) graphical user interface (GUI). Layer 1 of 
the safety system, shown in purple, is the throttle relay that acts as a wireless throttle live-man switch. Layer 2, shown in green, allows 
seamless, remote switching between autonomous and manual control modes. Layer 3, shown in blue and yellow, is the software runstop 
used to disable autonomous motion.
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to disconnect the throttle signal, remote switching between 
autonomous and manual control with a PWM signal multi-
plexer, and a software-based runstop message. The relay 
and autonomous/manual modes are controlled by the state 
of buttons on the transmitter that circumvent the Wi-Fi, 
XBee, and software control on the compute box using the 
additional radio frequency link between the RC transmitter and 
receiver located in the electronics box of the chassis. The 
dead-man relay monitors the quality of the incoming PWM 
control signal so that the throttle signal is automatically 
disabled in the event of a signal failure between the trans-
mitter and receiver. Additionally, the throttle signal is con-
nected through the normally open contact of the dead-man 
relay, so that the throttle signal disengages in the case of a 
power failure on the robot.

Runstop is implemented in software by the AutoRally 
chassis interface program, shown in Figure 7, using incoming  

runstop ROS messages to enable and disable software con-
trol of the robot. Any program in the AutoRally system can 
publish a runstop ROS message. The chassis interface deter-
mines whether autonomous control is enabled with a bit-
wise OR operation of the most recently received runstop 
message from each message source. By default, the OCS 
GUI and runstop box send runstop messages. The OCS run-
stop message is controlled by a button in the GUI and trans-
mitted over Wi-Fi from the OCS computer to the robot. The 
runstop box sends a runstop message, controlled by the 
button state of the runstop box, over XBee to the robot. Data 
transmitted over the base station XBee are delivered to 
every robot within communication range. This means that, 
even though there could be multiple AutoRally robots run-
ning at the same time (each with its own self-contained ROS 
system), the runstop box signal simultaneously controls 
autonomous motion for all of the robots. The AutoRally 
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FIGURE 7 The AutoRally chassis interface program information flow. The program, which runs on the compute box on board the robot, 
uses a combination of configuration files loaded at runtime and messages arriving from the Robot Operating System (ROS) interface to 
send the highest-priority actuator commands over a universal serial bus connection to the microcontroller in the AutoRally chassis. Simul-
taneously, the AutoRally chassis sends state information back to the chassis interface program that includes electronic speed controller 
(ESC) data, wheel speeds, and human-provided actuator commands from the radio-controlled (RC) receiver. The information received 
from the chassis is published into the ROS system and can be viewed in the operator control station (OCS) graphical user interface. PWM: 
pulsewidth modulation.
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robot does not have a true emergency stop that disconnects 
actuator power because the size, cost, and power require-
ments for such a system do not fit within the current pack-
age. In practice, the three-layer AutoRally safety system 
allows an operator to disable motion and assume manual 
control of the platform without delay.

AutoRally Chassis Interface
The AutoRally chassis interface software is implemented as 
an ROS nodelet and communicates with the microcon-
troller in the chassis electronics box through a USB cable. 
The interface sends actuator commands to the chassis and 
receives chassis state information including wheel speeds, 
the human-provided control commands read from the RC 
receiver, ESC diagnostic information, and safety system-
state information.

The throttle, steering, and front brake of the robot are 
controlled by 50-Hz PWM signals standard in the hobby 
RC community. The AutoRally chassis software interface 
provides a calibration layer above the PWM signal for 
standardization across platforms and to prevent physical 
damage so commands do not exceed the mechanical 
limits in the steering and brake linkages. The chassis 
calibration is stored in a file loaded at runtime by the 
chassis interface software. Specified in the file is the 
minimum, center, and maximum pulse width for each 
actuator in microseconds. When properly calibrated, a 
/chassisCommand ROS message on any AutoRally plat-
form will elicit the same behavior. For example, com-
manding a steering value of zero will make any calibrated 
AutoRally platform drive in a straight line. Valid actua-
tor command values in the /chassisCommand message are 
between [–1, 1]. A steering value of –1 will turn the steer-
ing all the way left, and a value of one will steer all the 
way right. A throttle value of –1 is full (rear) brake and 1 
is full throttle. The front brake value ranges from zero 
for no brake to one for full front brake, while negative 
values are undefined.

On startup, the chassis interface loads a priority list of 
controllers from a configuration file. The priority list is used 
while operating to determine which actuator commands 
arriving from various controllers are sent to the actuators. 
The priorities encode a hierarchy of controllers and define a 
mechanism to dynamically switch among controllers and 
use multiple ones simultaneously. This system allows high-
priority controllers to subsume control from lower-priority 
controllers, as desired. Additionally, each actuator can be 
controlled by a separate controller, such as a waypoint 

following controller for the steering and a separate velocity 
controller for the throttle and front brake.

Operator Control Station
The OCS GUI is a tab-based program built using Qt that 
presents real-time diagnostic information, debugging ca
pabilities, and a software runstop to a remote human 
operator for the AutoRally robot. Wheel-speed data, real-
time images from the onboard cameras, and all diagnostic 
messages from the ROS /diagnostics topic that contain 
detailed information about the health of running nodes 
are displayed. Diagnostic messages are color coded by 
status and grouped by source for fast status recognition 
by the human operator. All of the data between the OCS 
GUI running on a laptop and the robot travel over a local 
Wi-Fi network.

The OCS GUI also provides an interface for direct con-
trol of the robot’s actuators via sliders. While this interface 
is not appropriate for driving the car, it is used to debug soft-
ware and hardware issues related to the actuators.

Simulation
Despite the robust AutoRally hardware platform, there are 
still high-risk maneuvers and software testing best run in a 
simulation environment before executing them on the phys-
ical platform. The simulation also allows the careful control 
of environmental parameters for gathering statistical data, 
which requires performing repetitive or time-consuming 
experiments that would take weeks or more of testing on 
the physical platform.

The simulation environment, shown in Figure 8(b), is 
based on Gazebo, a robot simulator with tight ROS inte-
gration that includes graphical interfaces and multiple 
physics engines to choose from. The AutoRally Gazebo 
simulation environment and robot model match their 
real-world counterparts and support the same software 
interface through ROS messages as the real hardware. The 
simulated track environment is the same size and config-
uration as GT-ARF. The steering servo and Ackermann 
linkage of the physical robot are approximated by ROS 
joint effort controllers that apply torque to turn each front 
wheel about the vertical axis. The no-load rotation speed, 
maximum torque, and joint limits used in the simulation 
are measured from the steering servo specification pro-
vided by the manufacturer and by the steering linkage 
angles relative to the chassis center line. The powertrain is 
approximated by another ROS effort controller that 
applies torque on the rear axle of the Gazebo model. The 

AutoRally is designed for robustness, ease of use,  

and reproducibility.
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maximum applied torque and angular velocity are calcu-
lated from the motor manufacturers’ specifications. The 
differential in the physical platform is neglected in the 
simulation. The suspension for each wheel is modeled 
with a proportional-integral-derivative controller on a 
linear actuator with a target setpoint, which determines 
the ride height of the vehicle. The I and D terms are 
calculated from the dimensions and coefficients of the 
robot’s spring configuration.

The simulation and physical platform implement identi-
cal ROS messaging interfaces to enable seamless software 
migration between hardware and simulation. Simulated 
GPS, IMU, and cameras are from the hector_gazebo_plugins 
ROS package from Technische Universität Darmstadt [18], 
and they are configured according to the specifications 
of their physical analogs. We developed our own wheel-
speed sensor node because no similar functionality was 
publicly available.

Overall, Gazebo is not considered a high-fidelity simu-
lator with respect to graphics rendering and physics real-
ism for autonomous vehicles, especially as the vehicle 
approaches and surpasses the friction limits of the system. 
The main reason for using Gazebo as the simulator was 
not to produce the most accurate visuals and dynamics 
but, rather, as part of the hardware and software infra-
structure that allows for smooth software testing with 
ROS and the AutoRally platform and to easily debug the 
control, perception, and communication software.

Estimation
Parameter estimation is an essential part of controller 
design, especially for model-based controllers such as 
MPC, which rely on accurate dynamics models for motion 

prediction. This section details the offline and online esti-
mation performed with the AutoRally platform. Offline, 
parameters were estimated to determine the platform 
moments of inertia (MOI) using the bifilar pendulum 
method. Three different vehicle models of increasing fidel-
ity are presented. While the higher-fidelity models can be 
used to more accurately predict vehicle motion, the model 
parameters can be significantly more difficult to estimate 
and computationally expensive to compute. A joint-state 
unscented Kalman filter (JS-UKF) was used to determine 
the parameters of single-track and double-track vehicle 
models with a realistic tire forces model. An 11 degrees-of-
freedom (DOF) full-vehicle model was estimated using an 
adaptive limited-memory unscented Kalman filter (ALM-
UKF). Online, vehicle state is estimated using a factor 
graph-based optimization framework with GPS and IMU 
data, and a cost map of the terrain (similar to a traversabil-
ity grid) is generated from monocular camera images for 
use in a stochastic MPC framework.

Moment of Inertia Estimation  
with the Bifilar Pendulum
The MOI of the platform is more difficult to determine 
than other parameters (such as the mass of the vehicle) but 
is important for physics-based controllers. Modern CAD 
software can automatically compute the MOI if an accu-
rate model exists. No complete CAD model of AutoRally 
is available, so the platform MOI cannot be determined 
with these tools. Methods also exist to compute MOI by 
precomputation [19], [20] or online estimation [21] in cases 
where the full model is unknown or changing. An 
extensive survey of popular methods for experimentally 
determining MOI is presented in [22]. Many methods 

(b)(a)

FIGURE 8 The operator control station (OCS) graphical user interface (GUI) and simulation environment. (a) The OCS GUI showing 
diagnostic, sensor, and actuator information captured during autonomous testing. (b) The simulation environment built in Gazebo is 
modeled after the Georgia Tech Autonomous Racing Facility. Multiple AutoRally robots can be simulated together, and each simulated 
platform has the same Robot Operating System messaging interface and simulated sensors as the physical AutoRally platform. All 
simulation vehicle parameters (such as mass, moments of inertia, and sensor placement and characteristics) are set according to their 
experimentally determined values from a physical robot.
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rely on custom calibration rigs that are time-consuming, 
expensive, and difficult to build. In this work, we com-
puted the necessary MOI experimentally using the bifilar 
pendulum method [22]. As shown in Figure 9(a), two fixed 
parallel cables are attached equidistant from the center of 
gravity of the body to isolate the desired calibration axis. 
The body is rotated by a small angle around the desired 
axis and then released to freely oscillate. Given the dimen-
sions of the test rig and known dimensions and weights of 
the robot, the period of a free oscillation after an excitation 
determines the MOI about that axis. The equation for the 
MOI about a single axis using the bifilar pendulum method 
from [22] is
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4 2
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where m  is the platform mass (including wheels), T is the 
oscillation period, h is the distance of the calibration object 
from the support (taking into account nonvertical support 
wires), and R1  and R2  are the distances from the center 
of gravity to the support wire attachment. The change in 
height from the mounting location as the vehicle is rotated 
is assumed zero when the angle of rotation is small. Our 
setup is simplified using parallel support wires, ,R R b1 2= =  
so that
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which makes (1) for our setup
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Single-Track Vehicle Model
Three different vehicle models of increasing fidelity were 
used to test and compare the results. Here, we briefly 

summarize each model. The performance of each model 
against experimental data is given in the section “Experi-
mental Results.” First, the single-track vehicle model [23]–
[25] used for the AutoRally vehicle is described, which 
considers the longitudinal and lateral displacement, as well 
as the yaw motion of the vehicle, as shown in Figure 10.

X O YI I- -  and X CG YB B- -  (where CG is the center of 
gravity) denote the inertial frame fixed on the ground and 
the body frame fixed on the vehicle, respectively. The equa-
tions of motion of the model can be expressed in a body-
fixed frame with the origin at the CG from [23]

	 ,cos sinV f f f m Vx Fx Fy Rx yd d }= - + +o o^ h � (4a)

	 ,sin cosV f f f m Vy Fx Fy Ry xd d }= + + -o o^ h � (4b)

	 ,cos sinr f f f IFy Fx f Ry r z, ,d d= + -o ^ h6 @ � (4c)

where Vx  and Vy  are the components of V  along the XB  
and YB  directions, respectively; m  is the total mass; and 
Iz  is the moment of inertia of the vehicle about the verti-
cal axis. fij  ( ,i F R=  and , )j x y=  denote the longitudinal 
and lateral friction forces at the front and rear wheels, 
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FIGURE 10 The single-track vehicle model. This model includes the 
longitudinal and lateral displacement as well as the yaw motion of 
the vehicle. We use X YoI I- -  and CGX YB B- -  (where CG is the 
center of gravity) to denote the inertial frame fixed on the ground 
and the body frame fixed on the vehicle, respectively.
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FIGURE 9 The bifilar pendulum setup for experimental determination of moments of inertia (MOI) with AutoRally. (a) An example setup 
with labeled support strings of length d, attached equidistant from the center of gravity (CG) for computing the yaw MOI, .I}  (b) A com-
posite image of a one-half oscillation period for computing the pitch MOI .Ii  
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}  denotes the yaw angle, and d  is the steering angle of 
the front wheel.

Double-Track Model
The double-track model considers the longitudinal, lateral, 
and yaw motion of the vehicle and accounts for the load 
difference between the left and right wheels arising from 
the lateral load transfer.

Let f , ,i j k  , , ,(i L R j L R= =  and , )k x y=  denote the longi-
tudinal or lateral friction force for each wheel, respectively. 
The vehicle’s equations of motion are then
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Full-Vehicle Model
The full-vehicle model considers the dynamics of the sprung 
and unsprung mass of the vehicle separately and is derived 
using Newton–Euler equations for the motion of rigid body 
systems. The equations of motion for the total mass are the 
same as (5a)–(5c) for the double-track model. The air resis-
tance is also considered, and (5a) is modified such that
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where CD is the air resistance coefficient, airt  is the air density, 
and A is the frontal area of the vehicle. The vertical translation 
is accounted for by a riding model, as shown in Figure 11. The 
rolling and pitching model is given in Figure 12.

Scaled platforms show great promise in the wide variety  

of experiments they enable.
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FIGURE 12 The rolling and pitching model. (a) The rolling motion arises from the lateral acceleration and the gravity center offset from the 
rolling center. The parameters hs  and hc  are the heights of the sprung mass center, CR is the rolling center, and {  is the roll. (b) The 
pitching motion arises from the longitudinal acceleration and the gravity center offset of the pitching center (CP) that is assumed to be 
on the ground. i  is the pitch.
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FIGURE 11 The riding model. Ki  and Ci  ( )i f, r=  denote the spring 
stiffness and damping coefficient of the suspension system related to 
each wheel, ( )m i f, r,i tire =  denotes the mass of the front and rear 
tire, respectively, ms  is the sprung mass, and {o  and io  are the rolling 
and pitching rate, respectively.
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In Figure 11, Ki  and ( , )C i f ri =  denote the spring stiff-
ness and the damping coefficient of the suspension system 
related to each wheel, m ,i tire  ( , )i f r=  denotes the mass of the 
front and rear tire, respectively, ms  is the sprung mass, and 
{o  and io  are the rolling and pitching rate, respectively.

Figure 12(a) shows the rolling motion from the lateral 
acceleration and gravity center offset from the rolling center. 
The parameters hs  and hc  are the heights of the sprung mass 
center and rolling center, respectively. Figure 12(b) shows the 
pitching motion arising from the longitudinal acceleration 
and the gravity center offset from the pitching center assumed 
to be on the ground. The dynamic equations of the vertical, 
rolling, and pitching motion of the sprung mass are
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where wi ( )i f, r=  denotes the front and rear track, respec-
tively; ax

s  and ay
s  are the longitudinal and lateral acceleration 

of the sprung mass center in the body-fixed frame; and Ix
R  

and Iy
P  are the MOI of the sprung mass about the rolling axis 

and pitching axis, respectively. Note that in this derivation, 
the small-angle assumption for z  and i  is considered, which 
is a standard assumption.

Tire Force Model
Tire models are required to model the complex interactions 
of the vehicle tires with the ground. They are especially 
important in the driving regime of this work, where the 
vehicle frequently slides on a dirt surface and is almost 
always accelerating. A common tire model (see Figure 13) 
and the one used here are based on Pacejka’s magic tire for-
mula (MF). The important aspect of this model is its ability 
to capture the tire saturation (that is, the coupling between 
the lateral and longitudinal axes). According to this model, 
the generated tire force depends on the tire slip. Tire slip is 
defined by the nondimensional relative velocity instead of 
the angle (as is sometimes used) of each tire with respect to 
the road, along the longitudinal and lateral directions

	 , ,s R
V R

s R
V

ijx
ijx j

ijx ijx j
ijy

ijx j

ijy

~

~

~
=

-
= � (8)

where ,i L R=  correspond to the left and right side, ,j F R=  
correspond to the front and rear, and ,k x yVijk =^ h is the tire 
frame component of the vehicle velocity of each tire. The 
total slip of each tire is defined by ,s s sij ijx ijy

2 2= +  and the 
total friction coefficient related to each tire is calculated 
using the MF from [23]

	 tan ,sin tanD C BS E BS S Sa aE E Eij vn = - - +^ h6 @" , � (9)

where , , ,B C D  and E  are the stiffness, shape, peak, and cur-
vature factors, respectively; ,S s SE ij h= -  where Sh  is the 
horizontal shift; and Sv  is the vertical shift. The tire friction 
force components are

	 , , ;  , ;  , ,f s
s

f i L R j F R k x yijk
ij

ijk
ij ijzn=- = = = � (10)

where fijz  is the normal load on the corresponding tire and 
can be calculated from [23].

Unscented Kalman Filter
To determine the unknown vehicle parameters (includ-
ing the parameters for the tire force model), a JS-UKF was 
used that includes the unknown parameters in the orig-
inal state vector and estimates the new augmented state. 
In this framework, the state and noise are assumed to be 
Gaussian random variables. Recall that for a system

	 ( , ) , ( , ) ,x f x u w y h x u vk k k k k k k k1 = + = ++ � (11)

where ~ ( , )w q QNk  and ~ ( , )v r RNk  are Gaussian process 
and measurement noise, respectively, the extended Kalman 

AutoRally’s capabilities offer a large performance improvement  

over traditional scaled autonomous vehicles.
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x

FIGURE 13 Pacejka’s magic formula tire model. The graph shows 
slip angle (x-axis) versus normalized lateral force (y-axis). Parame-
ters B, C, and D are the stiffness, shape, and peak factors, respec-
tively. Sh  is the horizontal shift, and SV  is the vertical shift.
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filter (EKF) propagates the Gaussian random variable xk  
by linearizing the nonlinear state transition (observation) 
function :f R RUn n

7#  :h R RUn m
7#^ h with the Jaco-

bian matrix at each time step k  [26]. Instead of an EKF, this 
work used an UKF filter since 

1)	 the UKF propagates the Gaussian random variable 
through a nonlinear function more accurately than 
the EKF

2)	 the UKF avoids calculating the Jacobians that may be 
too cumbersome for highly nonlinear systems.

Adaptive Limited Memory Unscented Kalman Filter
A UKF is based on the unscented transformation (UT) and 
avoids calculating the Jacobian matrices at each time step. 
Assuming an L-dimensional Gaussian random variable x  
with mean xt  and covariance ,Px  to calculate the statistics 
of ( ),y g x=  one selects L2 1+  discrete sample points 
{ } ,Xi i

L
0

2
=  which are propagated through the system dynam-

ics. The UKF redefines the state vector as [ , , ] ,x x w vk
a

k k k
T T T T=  

which concatenates the original state and noise variables, 
and then estimates xk

a  recursively [27].
The ALM-UKF, introduced in [28], is an estimation 

algorithm for nonlinear systems that builds on previous 
works on the UKF to simultaneously estimate the system 
state, model parameters, and Kalman filter hyperparam-
eters related to the noise. First, recall that the adaptive 
Kalman filter algorithm [29] adjusts the mean and cova-
riance of the noise online, which is expected to compen-
sate for time-varying modeling errors. Define the set 
of unknown, time-varying hyperparameters for the Kalman 
filter corresponding to the noise statistics at the ith time 
step as , , , .q Q r RSi i i i i_ " ,  Si  is estimated simultaneously 
with the system state and parameters. Since an optimal 
estimator for Si  is unavailable and many suboptimal 
schemes are either too restrictive for nonlinear applica-
tions or too computationally demanding [30], [31], this 
work adopts the adaptive limited memory algorithm in 
[29], with the following two extensions:

1)	 The algorithm is developed for a nonlinear applica-
tion (that is, the UKF).

2)	 The unknown parameters of the system are estimated 
along with the state (instead of just the system state).

In the following, it is assumed that Si  is constant and de
noted by , , , .q Q r RS=" ,

For the observation noise statistics r  and ,R  consider the 
nonlinear observation at time ,k  which is ( , ) .y h x u vk k k k= +  
Since the true value of xk  is unknown, vk  is approximated by

	 ( , ),r y h x uk k k k= - t � (12)

where rk  represents a sample of the observation noise y  at 
time k  and
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Define a new random variable ~ ( , ),r CN rp  and assume 
that there are N  samples , , ,r k N1k f=^ h  such that the srk  
are  N  empirical measurements for .p  An unbiased estima-
tor for r  can be the sample mean

	 ,r N r1
k

k

N

1
=

=

t / � (14)

where the term unbiased implies that [ ] [ ] .r rE E p= =t  An 
unbiased estimator for the covariance of p  is
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where the term unbiased implies [ ] [( ) ( ) ] .C r rE Er
Tp p= - -t  

Because ( , ) ,y h x u vk k k k= +  (12) becomes

	 ( , ) .r h x u h vk k k k k= - +t � (16)

The covariance of p  is therefore calculated as
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where
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Note that xk  and vk  are assumed to be independent 
in (17). An unbiased estimate of R  from (15) and (17) is
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For the process noise statistics q  and ,Q  consider the nonlin-
ear state propagation at time ,k  which is ( , )x f x uk k k1 1= +- -

.wk 1-  Since the true values of xk  and xk 1-  are unknown, 
wk 1-  is approximated by

	 ( , ),q x f x uk k k k1 1= - - -t t � (20)

where qk  represents a sample of the process noise w  at time 
step ,k 1-  and
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We define a new random variable ~ ( , )q CN qg  and assume 
that there are M  samples , , ,q k M1k f=^ h  where the q sk  are 
M  empirical measurements for .g  An unbiased estimator for 
the mean value of g  is the sample mean
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An unbiased estimator for the covariance of g  is
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such that ( ) ( ) .C q qE Eq
Tg g= - -t6 6@ @  The covariance Q  is 

then calculated as
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Then Q  can be estimated without bias using (23) and (24),
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Equations (14), (19), (22), and (26) provide unbiased esti-
mates for , , ,r R q  and ,Q  which are based on N  observation 
noise samples and M  process noise samples, respectively. 
All samples rk  and qk  are assumed to be statistically inde-
pendent and identically distributed. The summarized algo-
rithm of the ALM-UKF based on (12)–(26) is presented in 
[28], where , , ,a b l  and m  are the UT parameters [27].

Parameter Estimation
For the system given in (11), the following dynamics are 
introduced for the parameter vector ,p

	 ,p p wk k k1
p

= ++ � (27)

where ~ ( , )w q QNk
p p p  is Gaussian process noise. The aug-

mented state is defined as [ , ] .x x pa T T T=  It then follows from 
(11) and (27) that

	 ( , ) , ( , ) ,x F x u w y H x u vk k k k k k k k1
a a a a= + = ++ � (28)

where , .w w wk k k
a T p T T
= ^ h6 @

The matrices Rt  and Qt  in (19) and (26) may become neg-
ative-definite during the implementation (which is also 
mentioned in [29]). In this work, the nearest positive-defi-
nite matrices of Rt  or Qt  are calculated when negative eigen-
values of Rt  or Qt  are observed, such that a symmetric 
positive-definite matrix nearest to Rt  or Qt  in terms of the 
Frobenius norm can be obtained [32].

Artificial Gaussian process noise wp
k  in (27) is used to 

change the parameter p when the UKF is running. However, 
if the value of wp

k  is large, then the parameter p  will be 
changed by a large amount at each time step. This condition 
may further cause the filter to diverge, since the parame-
terized vehicle model in the section “Single-Track Vehicle 
Model” is sensitive to p  and may therefore become unstable 
for unreasonable values of .p  This problem was addressed 
by rescaling the diagonal entries of Qp  to be some small 
positive values at each time step. Other discussions on the 
numerical instability problems of the UKF can be found in 
[29] and [32].

Online State Estimation
Accurate state estimation is required for the controllers to 
run reliably online. Many control methods assume accu-
rate knowledge of the system state. In general, more 
accurate and high-rate information is preferred. Some 
states, such as the wheel speeds, can be directly measured. 
However, position, orientation, and velocity estimates are 
required for the control and planning of the AutoRally 
platform. This information, in general, cannot be mea-
sured with a single sensor, requiring some form of sensor 
fusion estimation.

GPS data are inherently low rate and lack orientation 
information. IMU measurements are relatively high rate 
but do not directly provide heading or linear velocity infor-
mation. By combining the time-synchronized signals 
from these two sensors, a very accurate and high-rate esti-
mate of position, velocity, and orientation can be obtained. 
This state information is sufficient for many advanced con-
trol systems.

Previously, many systems have had success with sensor 
fusion using methods such the EKF or UKF, as presented in 
the previous section. Filtering methods are limited by the 
fact that all previous state and measurement information 
is discarded. If, instead, the system is modeled as a set of 
hidden states (in this case, the position and velocity of the 
vehicle), with sensor measurements providing probabilistic 
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information about these states, more accurate estimates 
(via smoothing) can be achieved.

Factor graphs combined with advanced inference algo-
rithms such as incremental smoothing and mapping 2 
(iSAM2) [33] allow smoothing over many types of measure-
ments, while retaining the ability to relinearize previous 
information. This reduces many of the problems found in 
the Kalman filter with states or measurements that are not 
approximately linear in the measurement time frame.

The factor graph representation of sensor fusion is a 
method of visualizing states and measurements as a bipar-
tite graph (an example is shown in Figure 14). The factor 
graph has two types of nodes: factor nodes f Fi !  and variable 
nodes .j !i H  Edges eij  always connect factor and variable 
nodes. Variable nodes correspond to the unmeasured quan-
tities to be estimated. Factor nodes correspond to probabilis-
tic information gained from a measurement zi  about a set of 
variables (connected to the factor by edges). The factor graph 
as a whole represents the probability distribution generated 
by the probabilistic information encoded in the factors

	 ( , , , | , , , ),p z z zn k1 2 1 2f fi i i � (29)

where ii  is a variable that is not directly observed and z j  is 
a measured variable. This function can then be factorized as

	 ( ) ( ),f fi i
i

H H=% � (30)

where H  is the set of all variables in the graph and iH  is the 
set of variables connected to factor fi  by an edge. ( )fi iH  
takes, for example, the following form for the first IMU 
factor in Figure 14, which is

	 ( , , , , , , , , , ),p X V B X V a a ax y z x y z1 1 1 2 2 ;~ ~ ~ � (31)

where X V ,,i i  and Bi  are the position, velocity, and bias state 
variables, respectively, and wn  and an  are the measured angu-
lar velocity and linear acceleration, respectively, from an IMU.

Independence relationships in the measurements in 
( )f H  are encoded in the edges ,ei j  where each factor fi  is a 

function of variables .jH  The goal in sensor fusion is to find 
the variable assignment *H  that minimized the function 

( )f H  in (30),

	 ( ) .argmax f*H H=
H

� (32)

Each ( )f H  can be written in terms of a difference between 
the measured value zi  and the predicted value from the 
measurement function ( ) .hi iH  By framing this in terms of 
log-likelihood, this maximization problem becomes
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where ( )hi iH  are the measurement functions relating a set 
of variables iH  to a sensor measurement .zi  This minimiza-
tion problem can be solved with several different nonlinear 
minimization strategies, including Gauss–Newton or Lev-
enberg–Marquardt, which iteratively linearize and solve 
this problem. Using these methods, an entire graph of mea-
surements can be created (as in Figure 14) to solve for ,*H  
which will be the maximum likelihood estimate of the 
variables H  being estimated.

However, when estimating the state of the AutoRally 
platform, this problem is solved at each time step to produce 
a maximum likelihood estimate of the current state vari-
ables position ,Xi  velocity V ,i  and accelerometer and gyro-
scope bias .Bi  Reoptimizing the entire factor graph would 
be very inefficient, so the iSAM2 algorithm is used.

The iSAM2 algorithm is a part of the Georgia Tech 
smoothing and mapping (GTSAM) [34], [35] software pack-
age, which uses a factor graph representation to iteratively 
solve the smoothing and mapping problem. See “Georgia 
Tech Smoothing and Mapping” for a brief discussion of 
GTSAM. iSAM2 efficiently performs iterative updates to a 
factor graph and optimizes this new graph without relinear-
izing the full problem. To perform this optimization, a factor 
graph (shown in Figure 14) is constructed with successive 
measurements and iteratively optimized. At each smoothing 
time step, an additional set of states X, V, and B are added to 
the graph. Measurement factors for the GPS and IMU sen-
sors also are added, along with a bias smoothness factor. To 
keep the computational load low while maintaining high 
accuracy, the factor graph contains state nodes for measure-
ments taken at 10 Hz. The factors in the graph correspond to 
GPS measurements and preintegrated IMU measurements 
[36]. Online, the IMU measurements are integrated to inter-
polate the 10-Hz smoothed position to publish the state esti-
mate at 200 Hz. Example trajectories are shown in Figure 15.

In practice, the measurements from the GPS sensor can 
drift slightly each day, primarily because of the RTK correc-
tion antenna position not being fixed for each test. To coun-
teract these changes, the robot is always positioned at the 
same place on the track when the state estimator is started. 
This track position is used as the origin of a local Euclidean 
coordinate system, oriented tangent to the GPS reference 
ellipsoid. This prevents GPS drift from effecting the vehicle 
state estimate relative to the fixed-track boundaries.
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FIGURE 14 The factor graph structure used for Global Positioning 
System (GPS) and inertial measurement unit (IMU) sensor fusion 
using the Georgia Tech smoothing and mapping optimization library. 
The circles represent states, and the squares represent factors.
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FIGURE 15 Example states generated by the state estimator built with the Georgia Tech smoothing and mapping optimization library. 
Inputs to the state estimator are Global Positioning System and inertial measurement unit sensor data. Each experiment is composed 
of four laps of data collected at the Georgia Tech Autonomous Racing facility oval track. Track boundaries are colored black, and state 
estimates are color coded according to the speed at which the AutoRally robot was traveling. (a) Model predictive path integral control-
ler driving with a target speed of 6 m/s. (b) Manual driving for the system identification data set.

Georgia Tech Smoothing and Mapping

The Georgia Tech Smoothing and Mapping (GTSAM) tool 

box [34], [35] is a C++ factor graph library released under 

the BSD license and developed by the Borg Lab at the Georgia 

Institute of Technology. It provides state-of-the-art solutions to 

the simultaneous localization and mapping (SLAM) and struc-

ture from motion problems and can be used to model and solve 

many other simple and complex estimation problems. Matlab 

and Python interfaces enable rapid prototyping, visualization, 

and user interaction.

GTSAM allows users to model a problem, such as state 

estimation, using a factor graph. A factor graph is a graphi-

cal model that contains variables related through factors. An 

example factor graph used for state estimation is shown in 

Figure 14. The variables are vehicle states at specific points 

in time, and the factors encode probabilistic information re-

lating to sensor measurements of one or more of these vari-

ables. The absolute or relative values of several variables 

are the result of measurements by a sensor such as an in-

ertial measurement unit or Global Positioning System (GPS) 

receiver. This factor graph representation of the state esti-

mation problem allows GTSAM to solve the problem by find-

ing a maximum a posteriori estimate of all of the variables in 

the graph.

In addition to simplifying SLAM and state estimation, it is 

easy to extend GTSAM to solve new problems that are natu-

rally formulated as the set of functions mapping hidden vari-

ables to measurements. Every factor in the graph can be ex-

pressed as a measurement function relating quantities to be 

estimated with sensor measurements. New types of factors 

are implemented by defining a measurement function and its 

derivative for each directly related variable

	 ( , ),z h x x xk k k k kn0 1f= � (S1)

where zk  is measurement k  and xkn  is the state xn  related to 

measurement .zk  As a concrete example, the GPS factors in 

Figure 14 are direct measurements of position, with additive 

Gaussian noise

	 Z X ,i ii ~= + � (S2) 

where [ , , ]Z x y zi mi mi mi=  is the measured position in Euclidean 

space, [ , , ]X x y zi i i i=  is the state variable being estimated, and 

[ , , ]i xi yi zi~ ~ ~ ~=  is Gaussian noise on the measurement.

The noise in the variable w  has a straightforward interpreta-

tion as the measurement uncertainty. For Gaussian noise, one 

must assume that the measurement is unbiased, that is, the 

mean is zero. The variance of the noise then becomes the uncer-

tainty on the measurement. For example, if the GPS receiver is 

specified to have a position standard deviation of 1 m in the x- and 

y-directions and 2 m in the z-direction, then these become the 

parameters of the Gaussian noise , ,xi yi zi~ ~ ~  in the factor graph.

GTSAM exploits sparsity for computational efficiency. 

Typically, measurements only provide information on the rela-

tionship between a handful of variables, so the resulting fac-

tor graph will be sparsely connected. This is exploited by the 

algorithms implemented in GTSAM to reduce computational 

complexity. Even when graphs are too dense to be handled ef-

ficiently by direct methods, GTSAM provides iterative methods 

that are quite efficient.
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Semantic Segmentation  
Using Convolutional Neural Networks
An important step in dynamic visual scene understanding 
for autonomous driving is to analyze the images captured 
from the onboard cameras and segment important objects 
[such as cars, pedestrians, or signs (using bounding boxes)] 
and label the key surfaces in the environment (such as 
streets, sidewalks, and building facades). The task of group-
ing pixels and labeling the surfaces they belong to is known 
as semantic segmentation. In the specific context of the 
racing domain, the primary goal is to label pixels as track or 
nontrack so that the vehicle knows where it can drive. In this 
section, a method to create and train a deep convolutional 
neural network (CNN) [37], [38] architecture is described 
that receives an image from the onboard cameras and out-
puts a pixel-wise labeling of track and nontrack.

Recent works have demonstrated the success of deep 
neural network architectures consisting of multiple CNN 
layers in solving challenging semantic segmentation prob-
lems [39]–[42]. The structure of the CNN takes advantage of 
the spatial properties of an image, namely, that nearby pixels 
are likely to have similar labels. For this work, we wish to 
perform semantic segmentation by learning a function that 
can map an input image ( , )I u v  to an output image with 
binary pixel labels corresponding to track and nontrack and 
given by

( , ) ( , ), , , ,Y u v f I u v u u r u r v v r v rg gH= = - + = - +l l l l6 @
� (34)

where u  and v  are pixel coordinates, r  is the receptive field 
for an output pixel (which is dependent on the structure 
of ),f  and H  is the set of parameters in ( )f $  that can be 
changed to create the desired function mapping.

The constructed deep neural network is composed of ten 
convolutional layers and two 2 2#  max pooling layers (after 
the third and sixth layers) to reduce the 640 480-# sized 
input image to .160 128#  All layers are 3 3#  convolution 
kernels, except the last three layers, which have 5 5# ker-
nels. Layers before the first maxpool have 32 kernels, layers 
between the first and second have 64 kernels, and the final 
three have 96, 128, and 256 kernels, respectively.

The standard mini-batch gradient descent method was 
used to train a CNN function approximator to output the cor-
rect pixel labels given an input image. To use gradient descent, 
a loss function l must first be defined to optimize. In this 
work, a cross-entropy function that rewards the network for 
producing an output closer to the desired value of nontrack (1) 
or track (0). The gradient of each parameter is computed with 
respect to the loss function / l2 2H  to provide a direction and 
magnitude to move each parameter that pushes the generated 
output closer to the desired output. However, because com-
puting this gradient over all images is computationally pro-
hibitive, the derivative is computed for a random subset of ten 
images, the parameters are moved a small amount H in the 
direction of the gradient, and the process is repeated until 
convergence. A large set of training data must be created to 
train a neural network from scratch. Over 100,000 ground-
truth-labeled images were automatically generated using data 
collected from the AutoRally platform. The images were 
labeled using a precomputed GPS survey of the test track, the 
output from the state estimator, and the IMU to perform 
camera calibration. The training and testing pipeline is shown 
in Figure 16. The state estimator frame is at the IMU, so a 
homography matrix must be computed that transforms the 
surveyed track map from world coordinates to image plane 
coordinates using the calibrated transformation between the 
IMU and the camera

	 ,H kT Tim
car

car
world= � (35)

where Tcar
world  is the position of the car in world coordinates, 

T im
car  is the transformation between the IMU and camera ref-

erence frames, and k  is the matrix of camera intrinsics. 
Given this mapping, points in the ground coordinate frame 
can be projected into the image

	 , ,p Hp H
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im world= =t t > H � (36)

where pim  and pworld  are homogeneous points. Using this 
method, all points on the image plane for a given image 
can be projected to the ground plane and given a ground 
truth label.

World Frame Cost Map
Darker Blue Is Lower Cost

Camera Image

Reproject
Using

Orientation

Reproject
Using
Pose

Image Plane
Cost Map Loss

Convolutional
Neural
Network

Test

Train

FIGURE 16 The convolutional neural network pipeline for training 
and testing pixel-wise image labeling of track and nontrack using 
images from the onboard AutoRally. For training, a survey of the 
track boundaries, calibrated inertial measurement unit sensor to 
camera transform, and state estimate is used to automatically 
label image pixels. For testing, the network labels each pixel of an 
input image as track or nontrack.
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EXPERIMENTAL RESULTS
This section describes the testing facility and shows/validates 
the results of the parameter estimations using the bifilar pen-
dulum method, standard UKF, ALM-UKF, and neural network 
cost map estimation. Data for all of the estimation results were 
collected with a human manually driving the AutoRally robot 
around GT-ARF. The same data were also used to train the 

dynamics model used in the model predictive path integral 
(MPPI) controller described in “Model Predictive Path Integral 
Control.” The data consist of approximately 30 min of human-
controlled driving at speeds varying from 4 to 10 m/s. The driv-
ing was broken into five distinct behaviors: 

1)	 normal driving at low speeds (4–6 m/s)
2)	 zig-zag maneuvers performed at low speeds (4–6 m/s)

Model Predictive Path Integral Control
ll experimental data collected for training and testing track 

surface labeling were gathered at the Georgia Tech Au-

tonomous Racing Facility (GT-ARF) using the model predictive 

path integral (MPPI) controller. MPPI is a stochastic model pre-

dictive control (MPC) method that can drive AutoRally up to, 

and beyond, the friction limits of the track. It has been shown 

to work well in practice when applied to AutoRally and some 

simulated systems [S2]–[S4]. A version of MPPI along with a 

dynamics model for AutoRally learned from human driving is 

available in the AutoRally GitHub repository.

MPC works by interleaving optimization and execution. First, 

an open-loop control sequence over a finite time horizon is opti-

mized. Then, the first control in that sequence is executed by the 

vehicle. Next, state feedback is received, and the whole optimiza-

tion process repeats. MPPI is a sampling-based, derivative-free 

approach to MPC that has been successfully applied to aggres-

sive autonomous driving using learned nonlinear dynamics [S3].

At each iteration, MPPI begins with the estimate of the op-

timal control sequence from the previous time step and uses 

importance sampling to generate thousands of new sequences 

of control inputs. These control sequences are then propagat-

ed forward in the state space using the system dynamics, and 

each trajectory is evaluated according to a cost function. The 

estimate of the optimal control sequence is then updated with a 

cost-weighted average over the sampled trajectories. State feed-

back is then introduced to begin the next iteration. Real-time ex-

ecution of MPPI on AutoRally is enabled by the onboard Nvidia 

graphics processing unit (GPU).

Mathematically, let the current planned control sequence 

be , , ,u u u U RT
m T

0 1 1f != #
-^ h  and let , K1 2ff f f^ h be a set of 

random control sequences, with each ,k k k
T0 1ff e e= -^ h and each 

~ ( , ) .uNk
t

te R  The control sequence update is 

	 ( ,)exp S u1
k
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k t
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k
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The parameters m  and c  determine the selectiveness of the 

weighted average, also known as the temperature and the im-

portance of the control cost, respectively. The function ( )S f  

accepts an input sequence and propagates it through the 

dynamics to find the resulting trajectory and then computes 

the state-dependent cost of that trajectory sequence, which is 

denoted as ( , , ) .C x x x q xT t
T

t0 1 0f R= = ^ h  In the implementation 

of this algorithm on AutoRally, only an instantaneous running 

cost is used. There is no terminal cost, and we sample trajec-

tories on a GPU using several different dynamics models. The 

instantaneous running cost is

	 ( ) ( , ), ( ) , . , ,q x w C p p v v I v
v

0 9· M x y x x
d t

x

y2
2

= - c m; E � (S5)

where the first term ( , )C p pM x y  is the positional cost of being at the 

body frame position ( , ) .p px y  This positional cost is derived from 

a presurveyed Global Positioning System registered cost map in 

most of our data collection and from the output of the neural net-

work in the section “Track Surface Labeling” and [S5]. The second 

term is the cost for achieving a desired speed ,vx
d  and the third 

term in the cost is an indicator variable that is turned on if the track 

cost, roll angle, or heading velocity are too high. The final term in 

the cost is a penalty on the slip angle of the vehicle. The coefficient 

vector used in the experiments was , . , , , .100 4 25 10 000 1 75 ;w = h^  

note that all but the first term are trivial to compute given the ve-

hicle’s state estimate, while the first term requires an analysis of 

the vehicle’s environment. In practice, parameter weights of the 

cost function require some tuning. However, the tuning is relatively 

intuitive, as the weights correspond to easily understandable real-

world values.

This algorithm was used to drive the AutoRally platform 

several hundred kilometers around the GT-ARF. Because it 

does not require explicit derivatives, it supports advanced uses 

such as the noisy cost maps detailed in the section “Track Sur-

face Labeling.” It has shown good performance rejecting large 

disturbances from potholed and muddy track conditions, while 

reliably running for a full battery charge at high speeds.
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3)	 linear acceleration maneuvers that consist of acceler-
ating the vehicle as much as possible in a straight 
line, then braking before starting to turn

4)	 sliding maneuvers, where the pilot attempts to slide 
the vehicle as much as possible

5)	 high-speed driving up to 10 m/s, where the pilot tries 
to drive the vehicle around the track as fast as possible.

Each one of these maneuvers was performed for 3 min 
while moving clockwise around the track and another 
3 min moving counterclockwise.

Georgia Tech Autonomous Racing Facility
All experiments were conducted at the GT-ARF (shown in 
Figure 17), which is a 68-m-long dirt track with required site 
infrastructure to support autonomous vehicle testing. The 
track is a 3.3-m-wide flat clay surface with two straights con-
nected by 180° constant radius turns. The outer dimensions 
of the track are 27.5 and 15.5 m, and the straights are 11.5-m 
long. The boundaries of the track are 0.15-m-diameter corru-
gated drainage pipes secured in place with stakes to provide 
a semirigid crash barrier. The controlled track environment 
allows the robot to operate fully autonomously up to the 
limits of its mechanical, electrical, and software systems and 
beyond the friction limits of the track.

A ground station is established in the center of the track 
that consists of an OCS laptop, wireless runstop box, and 
base station GPS module that provides RTK corrections. 
The OCS laptop and associated hardware are used to 
remotely communicate and monitor the status of the robot.

Bifilar Pendulum
Many vehicle parameters can be directly measured with a 
scale or ruler or are available through manufacturer docu-
mentation. Those parameters of the AutoRally platform 
are listed in Table 3. Data were collected using the setup 
shown in Figure 9 to estimate the MOI of the primary axis 
of the robot and the axis of rotation for the front and rear 
wheels. Table 4 details the measured parameters for each 
configuration and the resulting MOI. In each case, T is cal-
culated as an average of 60 oscillation periods.

T (s) b (m) d (m) Parameter MOI (kg-m2)

2.63 0.14 1.90 Ix 0.347

2.12 0.295 1.88 Iy 1.131

2.48 0.26 1.93 Iz 1.124

1.81 0.182 0.935 If 0.048

1.67 0.182 0.915 Ir 0.044

Table 4 T he moments of inertia (MOI) about primary axes 
and related parameters. Values are experimentally calculated 
using the bilifilar pendulum method and (3) and the measured 
masses and lengths. The oscillation period T is calculated by 
averaging 60 oscillation periods using the bifilar pendulum 
method. g = 9.81 was used for all calculations. The front- and 
rear-wheel MOI include both wheels.

Parameter Value Units

Total mass 21.88 kg

Front wheel mass, each 0.82 kg 

Rear wheel mass, each 0.89 kg 

Overall length 0.90 m 

Overall width 0.46 m 

Overall height 0.32 m

Wheelbase 0.57 m 

Rear axle to CG, x offset 0.23 m 

Rear axle to CG, z offset 0.12 m 

Front track 0.395 m 

Rear track 0.405 m 

Wheel diameter 0.195 m 

Table 3  AutoRally robot parameters. Values were measured 
with a digital scale or ruler or provided by manufacturer 
documentation. Rear axle offset distances are with respect to 
the center of gravity (CG). 

(a)

(b)

FIGURE 17 The Georgia Tech Autonomous Racing Facility. (a) The 
aggressive autonomous driving experiments. (b) An autonomous 
driving demo for third-grade students and parents.



FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  51

Standard Unscented Kalman Filter
The standard JS-UKF was first implemented using the 
three different vehicle models in the section “Estimation.” 
The hyperparameters of the filter are critical for the filter 
design, especially the process noise covariance Q [43]. In 
this section, the diagonal elements of these matrices are 
recursively tuned until the parameterized vehicle model 
shows satisfactory simulation results.

A total of 113 s of experimental data generated by a human 
driver using the AutoRally vehicle were selected. The first 100 s 
of data were used to tune the hyperparameters and estimate 
the vehicle parameters, and the remaining 13 s (a complete 
cycle around the testing track) were used to validate the results. 
Figure 18 shows the estimates for several selected states of the 
system for the single-track model. It can be seen that the esti-
mates of the states agree well with the data. The results for the 
other vehicle models were similar and hence omitted.

Next, the estimated parameters in the simulation were 
validated to ensure that the obtained parameters were able to 
satisfactorily reproduce the data, hence accurately predicting 
the vehicle’s motion in practical applications. Figure 19 shows 
the simulated trajectories for different vehicle models config-
ured with the estimated parameters. The results in Figure 19 
indicate that the larger the DOF of the model, the more accu-
rate the results and the better the agreement with data.

Adaptive Limited Memory Unscented Kalman Filter
Instead of tuning the noise, the ALM-UKF was implemented to 
find the suboptimal estimation of the noise statistics online, 
during which the augmented state and noise are estimated 
simultaneously. Experimental data collected with the AutoRally 
robot were used to validate the ALM-UKF, which is presented 
in algorithmic form in [28]. The noise samples at each time step 
k are from the estimation based on the last 10 s of data. The esti-
mation of the velocities, yaw angle, and positions states is not 
difficult. Thus, only the estimation results of the unknown 
vehicle parameters are shown. The ALM-JUKF [28] was imple-
mented to estimate the parameters of a full-vehicle model 
from (5a)–(7c) using the AutoRally experimental data, which 

includes the measurements for , , , , , , , , ,V V V rx y z i z ] i zo o  and 
the GPS coordinates.

For stable state estimation, the joint-state system with the 
parameter dynamics equations in (27) must be observable. 
To this end, the Jacobian of the joint-state system is calcu-
lated, and the rank of the observability matrix is inspected. 
The result indicates that the spring stiffness and damping 
coefficients of the suspension system Ki  and C i f, ri =^ h are 
unobservable (see Figure 11), which means that one cannot 
uniquely identify Ki  and C i f, ri =^ h based on current mea-
surements. This issue is addressed to obtain the observabil-
ity by fixing the values of any two of the four parameters, 
specifically .K K 2000 N/mf r= =  The values for Kf  and Kr  
were chosen by assuming a 1–2-cm average deformation of 
the springs caused by the gravity of the sprung mass.

As discussed, the artificial Gaussian process noise wk
p  in 

(27) is used to change the parameter p  when the UKF is 
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working. However, if the value of wk
p is large, then the param-

eter p  will be changed by a large amount at each time step. 
This condition may further cause the filter to diverge, since 
the parameterized vehicle models are sensitive to p  and may 
become unstable for unreasonable values of .p  This problem 
was addressed by rescaling the diagonal entries of Qp  to be 
small positive values at each time step. Other discussions on 
the numerical instability problems of the UKF can be found 
in [29] and [32].

Figure 20 shows the time trajectories of several parame-
ters listed in Table 5 during the estimation process, where 
all the parameters converge fast and stabilize after approxi-
mately 10–20 s. Figure 21 compares simulated outputs from 
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models using the adaptive limited-memory, joint-state unscented 
Kalman filter.

Parameter ALM-UKF Bifilar Difference Units

m 20.6093 21.88 5.8% kg 

Iz 1.024 1.124 8.9% kg-m2

Ir 0.0499 0.044 13.4% kg-m2

h 0.0961 0.12 19.9% m 

f,  0.4650 0.34 36.8% m 

Table 5  A parameter comparison for the adaptive limited-memory 
unscented Kalman filter (ALM-UKF)  and bifilar pendulum methods. 
The parameters that do not closely match across methods result 
because the ALM-UKF method uses real-world driving data, where 
these dimensions are constantly changing due to suspension and 
steering articulation, and the bilfilar method estimates all parameters 
when the vehicle is suspended and stationary. 
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the full-vehicle model using the estimated parameters for 
the AutoRally platform and real-world data. It can be seen 
that, as expected, the identified vehicle model satisfactorily 
reproduces the data. Data collected using the AutoRally 
vehicle show obvious non-Gaussian noise that may have 
some effect on the estimation process.

Compared with the results in Figure 19, the simulated 
trajectories of the AutoRally vehicle in Figure 21 show larger 
deviation from the data. The reason may be that the estima-
tion of the noise statistics of the standard UKF are tuned to 
be optimal (to some degree), but the ALM-UKF algorithm 
used a suboptimal estimator for the noise statistics. The 
advantages of the ALM-UKF are that it is more efficient and 
can operate online. The ALM-UKF algorithm is expected to 
be especially useful for time-varying parameters estimation 
problems, such as estimation of a linear- parameter-varying 
driver model [44].

Table 6 shows the MF model parameters for the single-
track-vehicle model estimated using the UKF of the AutoRally 
platform. All of the parameters stabilized after approxi-
mately 20 s of data.

Some parameters were estimated by both the bilfilar 
pendulum and ALM-UKF methods, which are compared in 
Table 5. While the mass and MOI values estimated by both 
methods agree, the estimated dimensions are not as closely 
aligned with hand-measured values. This is because, in the 
bilfilar method, all parameters are measured when the vehicle 
is stationary, whereas the ALM-UKF method uses real-world 
driving data where these dimensions are constantly changing, 
due to suspension and steering articulation.

Track Surface Labeling
A data set of over 100,000 images, along with the correspond-
ing position and orientation in a local coordinate frame, was 
recorded over the course of several days of testing with the 
MPPI algorithm at GT-ARF. The images were then postpro-
cessed using the automatic labeling pipeline to produce 
ground-truth training images for the labeling task. The 

neural network was trained using the Tensorflow [45] frame-
work for 100,000 mini-batches, with each containing ten 
images. The results for an example training image can be 
seen in Figure 22, and a failure case of the network can be 
seen in Figure 23. The failure was a result of the dry grass 
adjacent to the track having a similar color and texture to the 
track surface and a mislabeling of the interior of the plastic 
protective body. Overall, the neural network was able to cor-
rectly label 97% of the pixels on the training set and 91% of 
the pixels on a held-out test set. Note that this approach may 
not generalize to variations in track conditions such as illu-
mination changes and dynamic obstacles.

CONCLUSION
Despite decades of prior research and a renewed interest from 
technology companies and the research community, many 
gaps still remain in the capabilities of autonomous vehicles. 
This article introduces AutoRally, a high-performance robotics 
testbed that is 1:5 the size of a passenger car, which enables 
researchers to conduct experiments and collect real-world 
data under driving conditions that were previously untestable 
due to safety and cost concerns. The robust design and small 

(a) (b) (c)

FIGURE 22 The neural network track surface labeling from camera images. (a) A training image captured by one of the cameras on 
AutoRally at the Georgia Tech Autonomous Racing Facility. (b) A ground-truth image generated by the labeling pipeline. (c) The pixel 
labeling of track and nontrack produced by the neural network.

Parameter Value Units

B 1.1559 none

C 1.1924 none

D 0.9956 none

E -0.8505 none

sh -0.0540 m 

sv 0.1444 m 

Table 6 T ire model parameters estimated by the unscented 
Kalman filter for the single-track model of the AutoRally 
platform. Human driving data were collected at the Georgia 
Tech Autonomous Racing Facility.
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size of AutoRally ameliorate the risk of high-speed crashes, 
allowing researchers to evaluate algorithms under conditions 
that would be too dangerous or expensive with a full-sized 
vehicle and too complex to model accurately in simulation.

A variety of online and offline estimation algorithms 
have been developed and applied to the platform to deter-
mine properties frequently required by control systems, 
including MOI and other difficult-to-measure properties. 
In addition, an approach based on CNNs was developed to 
address the task of online image segmentation trained 
from automatically labeled ground-truth images. To date, 
the fleet of six AutoRally platforms has logged over 300 km 
of fully autonomous driving using only onboard sensing 
and computing at the GT-ARF, resulting in the validation of 
multiple control and perception algorithms.

AutoRally is open source, so all of the documentation 
needed to build, configure, and run the platform is publicly 
available on the AutoRally GitHub repositories, including 
build instructions, a parts list, files required for custom fab-
rication, and operating procedures [15]. Tutorials and exam-
ple controllers written in C++ and Python with ROS and 
Gazebo [16] are also available, along with a data set of human 
and autonomous driving. See “Build Your Own AutoRally 
Platform” for more information and tips on building an 
AutoRally platform. AutoRally opens a new frontier for the 
safe development and testing of autonomous vehicle tech-
nologies across a much more diverse set of operating regimes 
and a broader audience of investigators than previous exper-
imental platforms have supported.
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