
1066-033X/19©2019ieee26  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

T
he technical challenge of creating a self-driving ve-
hicle remains an open problem despite significant
advancements from universities, car manufactur-
ers, and technology companies. Full autonomy,
known as level 5 (see “Society of Automotive

Engineers Levels of Driving Automation”), is defined
as full-time performance by an automated driving sys-
tem of all aspects of the dynamic driving task under all
roadway and environmental conditions that can be managed

BRIAN GOLDFAIN, PAUL DREWS,
CHANGXI YOU, MATTHEW BARULIC,
ORLIN VELEV, PANAGIOTIS TSIOTRAS,
and JAMES M. REHG

An Open Platform
for Aggressive Autonomous Driving

Digital Object Identifier 10.1109/MCS.2018.2876958

Date of publication: 16 January 2019

AutoRally

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  27

by a human driver. It is estimated that level 5 autonomous
vehicles on public roads will help eliminate more than
90% [1] of the 35,000 annual traffic fatalities caused by
human error in the United States [2]; reduce commute
time, road congestion, and pollution; and increase driv-
ing resource utilization [3].

A largely unexplored regime that level 5 vehicles must
master before their introduction to public roads is abnormal
and extreme driving conditions. These corner cases include

precollision regimes, maneuvering at high speeds, and driv-
ing on surfaces other than asphalt and concrete (such as ice,
gravel, and dirt), where severe understeer, oversteer, skid-
ding, and contact loss with the road surface are common.
Additionally, dynamic, unpredictable environments (such as
close proximity to moving vehicles, pedestrians, and other
obstacles) require short timescales for perception, planning,
and control that challenge traditional methodologies.

It is vital to conduct extensive experimental testing to
develop and validate solutions to the corner cases of abnor-
mal and extreme driving. However, cost and safety consid-
erations are major barriers that prohibit routine testing and
experimentation using full-size vehicles. Large investments
(often up to US$1 million per vehicle) are required for vehi-
cle development and testing, the maintenance of infra-
structure and personnel, and the implementation of safety
precautions before any data can be collected. No company
is prepared to perform tests at the limits of performance
where vehicle damage or operator injury are very likely to
occur. Moreover, even for a trial run, a closed track is neces-
sary unless special precautions are taken or registration and
insurance are obtained in one of the states that have enacted
autonomous vehicle legislation [4]. Collecting data during
normal driving conditions on public roads does not help
much in terms of understanding these rare, but very impor-
tant, driving events.

photo courtesy of Brian Goldfain

Summary
utoRally is an open-source, 1:5-scale autonomous ve-

hicle testbed for students, researchers, and engineers

who are interested in autonomous vehicle technologies.

It is designed with robustness and ease of use in mind.

At 1 m in length, weighing 22 kg, and with a top speed of

90 km/h, the platform is large enough to host powerful on-

board computing and sensing and run state-of-the-art algo-

rithms. At the same time, it is simple and small enough to be

maintained and operated by two people, all while providing

the capability of exploring driving scenarios including drifting,

jumping, high-speed driving, and multivehicle interactions.

Build instructions are publicly available, along with a

parts list, computer-aided design models for fabricating

custom components, and operating procedures. The plat-

form uses the Robot Operating System (ROS) and can be

programmed in Python or C++. Tutorials, reference algo-

rithms, a Gazebo-based simulation environment, and a

data set structured as ROS bag files are available from the

AutoRally website. The fleet of six AutoRally platforms at

Georgia Tech have been used to demonstrate control, per-

ception, and estimation research in a high-speed, off-road

driving domain. To date, the fleet has driven hundreds of

kilometers autonomously at the Georgia Tech Autonomous

Racing Facility.

A

28  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

Society of Automotive Engineers Levels of Driving Automation

T he Society of Automotive Engineers International’s J3016

[S1], which was issued in January 2014, provides a com-

mon taxonomy and definitions for automated driving to simplify

communication and facilitate collaboration within technical and

policy domains. It defines more than a dozen key terms, includ-

ing those italicized in Figure S1, and provides full descriptions

and examples for each level.

The report’s six levels of driving automation span from no

automation to full automation and are described in detail in Fig-

ure S1. A key distinction is between level 2 (where the human

driver performs part of the dynamic driving task) and level 3

(where the automated driving system performs the entire dy-

namic driving task).

These levels are descriptive rather than normative and

technical rather than legal. They imply no specific order of mar-

ket introduction. Elements indicate minimum rather than maxi-

mum system capabilities for each level. A particular vehicle

may have multiple driving automation features, such that it

operates at different levels depending upon the feature(s) that

are engaged.

System refers to the driver assistance system, a com-

bination of driver assistance systems, or an automated

FIGURE S1 The Society of Automotive Engineers (SAE) International J3016 levels of driving automation. (Image courtesy of SAE
International.)

SAE
Level Name Narrative Definition

Execution of
Steering and
Acceleration/
Deceleration

Monitoring
of Driving

Environment

Feedback
Performance
of Dynamic

Driving Task

System
Capability
(Driving
Modes)

Human Driver Monitors the Driving Environment

No
Automation

Driver
Assistance

Partial
Automation

Full
Automation

Automated Driving System (“System”) Monitors the Driving Environment

5

4

3

2

1

0

High
Automation

Conditional
Automation

Human
Driver

Human
Driver

Human
Driver N/A

Human
Driver and

System

Human
Driver

Human
Driver

Some
Driving
Modes

System
Human
Driver

Human
Driver

Some
Driving
Modes

System System
Human
Driver

Some
Driving
Modes

System System System
Some
Driving
Modes

System System System
All Driving

Modes

The driving mode-specific performance by an
automated driving system of all aspects of the
dynamic driving task with the expectation that
the human driver will respond appropriately to
a request to intervene.

The driving mode-specific performance by an
automated driving system of all aspects of the
dynamic driving task, even if a human driver
does not respond appropriately to a request
to intervene.

The full-time performance by an automated
driving system of all aspects of the dynamic
driving task under all roadway and environmental
conditions that can be managed by a human
driver.

The full-time performance by the human driver
of all aspects of the dynamic driving task,
even when enhanced by warning or intervention
systems.

The driving mode-specific execution by a
driver assistance system of either steering or
acceleration/deceleration using information
about the driving environment and with the
expectation that the human driver performs
all remaining aspects of the dynamic driving
task.

The driving mode-specific execution by one or
more driver assistance systems of both steering
and acceleration/deceleration using information
about the driving environment and with the
expectation that the human driver performs all
remaining aspects of the dynamic driving task.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  29

Computer simulations offer an alternative to testing with
full-scale vehicles. Indeed, the fidelity of computer simula-
tions has improved significantly in recent years, as they can
be used to generate an almost unlimited number of driving
conditions. However, they cannot completely replicate the
complex interactions of an autonomous vehicle with the real
world. For autonomous vehicles to be safe, the failures and
unforeseen circumstances encountered during real-world
testing (many of which are impossible to duplicate in simu-
lation) must be overcome. The development and evaluation
of new autonomous driving technologies may not be based
solely on computer simulations, which may fail to capture
critical aspects of the real world.

Scaled vehicles provide a useful complement to existing
methods for testing autonomous vehicle technologies in
aggressive driving regimes. Scaled vehicles ranging in size
from 1:16 to 1:5 the size of an actual vehicle [often based on
radio-controlled (RC) vehicles] are easier and less expen-
sive to operate than a full-sized platform. Despite recent
progress and many publications detailing scaled autono-
mous testbeds [5]–[14], much of the available results lack
reproducibility because of the one-off nature of these
testbeds, restrictions imposed by the use of private data
sets, and inconsistent testing methods. Inconsistency is an
especially critical problem because many researchers
should be able to test and compare potential algorithms
under the same conditions and platforms to be able to
obtain meaningful comparisons and advance the science
of high-speed autonomy.

The remainder of this article describes AutoRally, shown
in Figure 1, a 1:5 scale robotics testbed for autonomous vehi-
cle research. As discussed in “Summary,” this article out-
lines the offline and online estimation methods that were
tested on AutoRally and presents experimental results
collected with the fleet of six platforms at the Georgia Tech
Autonomous Racing Facility (GT-ARF).

AutoRally is designed for robustness, ease of use, and
reproducibility, so that a team of two people with limited
knowledge of mechanical engineering, electrical engineering,
and computer science can construct and operate the testbed
to collect real-world autonomous driving data in whatever
domain they wish to study. Complete construction and con-
figuration instructions for the AutoRally platform are pub-
licly available and include all required computer-aided design
(CAD) files for custom part fabrication, a complete parts list,
and wiring diagrams [15]. In addition, operating procedures,

simulation environment, core software and reference control-
lers written in C++ and Python, and a collection of human
and autonomous driving data are publicly available [16]. See
“Build Your Own AutoRally Platform” for more information
about the build process.

SCALED AUTONOMOUS DRIVING PLATFORMS
Experimental testbeds are an essential component of robot-
ics research that enable real-world experimentation and
transition to practice. Here, we summarize some prior
efforts in creating scaled platforms for autonomous vehicle
research. Full-size platforms based on passenger vehicles
are not discussed because they are outside the scope of this
article and include many commercial development activi-
ties that are not in the public domain.

Scaled platforms constructed from modified RC cars
are popular in the academic and hobby communities.
These platforms are typically 0.2–1-m long and weigh
between 1 and 25 kg. Costs range from a few hundred to
tens of thousands of dollars, largely determined by the
size, sensors, and computing. Construction, mainte-
nance, and programming are typically handled by a
small team of students or researchers. Recently, several
open-source projects released complete documentation
and interface software, which is in contrast to the one-off
nature of older work that often lacked enough informa-
tion to replicate.

driving system. Excluded are warning and momentary in-

tervention systems, which do not automate any part of the

dynamic driving task on a sustained basis and, therefore,

do not change the human driver’s role in performing the dy-

namic driving task.

REFERENCES
[S1] SAE On-Road Automated Vehicle Standards Committee. (2014).
Taxonomy and definitions for terms related to on-road motor vehi-
cle automated driving systems. Society of Automotive Engineers.
Warrendale, PA. [Online]. Available: https://www.sae.org/standards/
content/j3016_201806/

FIGURE 1 Autonomous driving with AutoRally at the Georgia Tech
Autonomous Racing Facility.

30  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

Documentation for open-source platforms normally
includes parts lists, build instructions, and interface soft-
ware for the sensors and actuators. The availability of
tutorials, simulation environments, and public data sets
vary by project. Common sensors include wheel speed,
inertial measurement units (IMUs), cameras, depth sen-
sors, ultrasonic units, and light detection and ranging
(lidar) units. The target environment for these platforms
is typically indoors on a smooth surface. The Donkey Car
[5] is an easy-to-build 1:16-scale autonomous platform for
the do-it-yourself Roborace events that target hobbyists.
Onboard computing and sensing are accomplished via a
Raspberry Pi 3 with a matching wide-angle camera. The
Berkeley Autonomous Race Car [6] is a 1:10-scale vehicle
designed as a simple and affordable research platform for
self-driving vehicle technologies that has been success-
fully used to demonstrate various control algorithms.
The onboard ODROID-XU4 is similar in computational

performance to the Raspberry Pi 3, and the sensor suite
includes a hobby-grade camera, IMU, four ultrasonic
range finders, and Hall-effect wheel-speed sensors. The
F1/10 project [7] and accompanying Autonomous Racing
Competition allow teams to race using a common 1:10-
scale platform developed at the University of Pennsylva-
nia. Computing on the F1/10 platform is performed by an
Nvidia Jetson. The sensor suite includes a hobby IMU,
compact indoor Hokuyo 2D lidar, and optional structure
and Zed depth and motion-sensing cameras. The 1:10-
scale Rapid Autonomous Complex-Environment Com-
peting Ackermann-Steering Robot (RACECAR) [8] from
the Massachusetts Institute of Technology is a platform
for researchers creating applications for self-driving cars.
RACECAR also uses the Nvidia Jetson for computing and
includes the same Hokuyo lidar and Zed stereo camera as
the F1/10 platform. Table 1 provides a comparison of
these open-source scaled platforms.

 Build Your Own AutoRally Platform
utoRally is an open-source platform, so complete docu-

mentation to build, configure, and run the platform is pub-

licly available through the AutoRally platform build instructions

on the GitHub repository [15]. Documentation includes build

instructions for the chassis and compute box, a parts list with

suggested vendors, wiring diagrams, files required for custom

part fabrication, and operating procedures. Tutorials and ex-

ample controllers written in C++ and Python that use the Robot

Operating System, a Gazebo-based simulation environment

that resembles the Georgia Tech Autonomous Racing Facility

(GT-ARF) oval track, and a data set of human and autonomous

driving captured at the GT-ARF tracks are available through

the AutoRally software GitHub repository [16]. AutoRally is de-

signed for robustness, ease of use, and reproducibility, so that

a team of two people with limited knowledge of mechanical

engineering, electrical engineering, and computer science can

construct and operate the testbed to collect real-world autono-

mous driving data. Links to tutorials for the background skills

required to construct AutoRally are included in the instructions.

Construction time is 40 h for an AutoRally chassis and

60 h for a compute box. The full platform construction time

of 100 h does not include custom part fabrication time that

depends on the tools available. AutoRally can take significantly

fewer than 100 h to construct with prior experience with radio-

controlled electronics, soldering, computer construction and

wiring, or Ubuntu configuration. Conversely, the platform can

take much more time to construct if individual assemblies are

not thoroughly tested before integration, which can result in

time-consuming rebuilds during verification.

For fabrication of custom components, access to a three-

dimensional (3D) printer, laser cutter, water jet cutter, and

aluminum welding are suggested. If you do not have access

to a 3D printer, all custom parts provided as stereolithogra-

phy files with the build documentation can be fabricated by

a 3D printing service, many of which are available online. If

you do not have access to a laser cutter, the custom foam

and acrylic parts can be cut by hand with a blade using the

provided portable document format files printed on U.S. letter

paper as stencils. If you do not have access to a water jet for

cutting aluminum parts or welding equipment for aluminum,

most local metal fabrication shops should be able to fabricate

the compute box enclosure and front brake bracket using the

drawing interchange files and bend patterns included in the

instruction materials.

It is vital to conduct extensive experimental testing to develop

and validate solutions to the corner cases

of abnormal and extreme driving.

A

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  31

While all of these platforms are easy to build, moderately
priced, and offer some onboard sensing and compute capa-
bilities, their design limits their use to smooth surfaces,
typically indoors. All of the platforms lack a Global Posi-
tioning System (GPS) device, which is a common sensor for
outdoor vehicles. Instead of a GPS, global position informa-
tion can be provided by instrumenting the environment
such as with a VICON external motion-capture system or
beacons rigidly mounted around the environment. These
systems restrict the possible operating space to a couple
hundred square meters because of the sensor field-of-view
(FOV) and resolution restrictions, and they are priced in the
tens of thousands of dollars for out-of-the-box solutions.
The chassis, mounts, and enclosures of the platforms are
typically not designed for repeated crashes and collisions
that are inevitable when testing novel autonomous vehicle
technologies, so the delicate sensors and electronics are
easily damaged when something goes wrong. Onboard
computing is inadequate for much of the state-of-the-art
research because of size and power limitations. This necessi-
tates significant code optimization or offloading of computa-
tion to a remote computer. Offboard
computation introduces its own set
of problems, including increased
latency and dependence on a reli-
able, high-bandwidth wireless con-
nection (which dictates the size and
configuration of testing environ-
ments). The limited payload capacity
and power availability also severely
limit the ability to test new sensors
such as a lidar and high-frame-rate
machine-vision cameras because the
size, weight, and data rates quickly
overwhelm the platforms.

Many one-off experimental plat-
forms have been created for specific
projects. In [9], a model predictive
control (MPC) algorithm running
on a stationary desktop computer
with a motion capture system was
used to drive a custom 1:10-scale
RC platform around an indoor track
with banked turns, jumps, and a
loop-the-loop. Platforms were devel-
oped to test autonomous drifting

controllers in [10] and [6] and to push scaled autonomous
driving to the friction limits of the system in [11]. A frame-
work with multifidelity simulation and accompanying hard-
ware platform for use in reinforcement-learning problems
relating to autonomous driving was presented in [12]. A 1:5-
scale autonomous platform was developed to investigate sta-
bility control in [13] and [14]. While these platforms were
successfully used for their respective experiments, there is
not enough public information available to build, operate,
and program one without starting from scratch.

Traditionally, scaled autonomous driving platforms were
purposely built for one experiment. However, a new wave
of open-source platforms is emerging. Still, none are robust
enough to survive repeatedly pushing the vehicle to its
mechanical and software limits, let alone operate in outdoor
environments with the payload capacity to carry a variety
of popular sensors and powerful onboard computing.
Therefore, scaled platforms show great promise in the wide
variety of experiments they enable. However, previous
attempts fall short in terms of design, fidelity, and repeat-
able performance.

Platform
Cost
(US$)

Build
Time (h)

Weight
(kg) Computing Simulation

Data
Sets

Donkey Car 200 2 2 Raspberry
Pi

Y Y

Berkeley
Autonomous Race
Car

500 3 3.2 Odroid
XU4

Y Y

Massachusetts
Institute of Technology
Rapid Autonomous
Complex-Environment
Competing
Ackermann-Steering
Robot

3,383 10 4.5 Nvidia
Jetson

Y N

F1/10 3,628 3 4.5 Nvidia
Jetson

N Y

Table 1  A comparison of open-source, scaled autonomous platforms. All platforms
are based on 1:10-scale radio-controlled cars and include C++ and Python software
interfaces that use the Robot Operating System software libraries (except for the
Donkey Car). The Donkey Car is 1:16 scale and includes a Python interface. The
build time and cost of each platform do not include three-dimensional-printed parts,
which will vary based on the printer used. In addition to the platforms themselves,
the availability of a simulation world and public data sets is indicated.

The development and evaluation of new autonomous driving technologies

may not be based solely on computer simulations, which may fail

to capture critical aspects of the real world.

32  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

THE AUTORALLY ROBOT
The AutoRally autonomous vehicle platform is based on a
1:5-scale RC trophy truck and is approximately 1-m long,
0.6-m wide, and 0.4-m high; weighs almost 22 kg; and has a
top speed of 90 km/h. The platform is capable of autono-
mous driving using only onboard sensing, computing,
and power. While larger than many other scaled, autono-
mous ground vehicles, the platform offers a cost-effective,
robust, high-performance, and safe alternative to operat-
ing full-sized autonomous vehicles and retains a large
payload capacity compared to other scaled platforms built
from smaller RC cars. AutoRally’s capabilities offer a large
performance improvement over traditional scaled autono-
mous vehicles without the need for the large infrastruc-
ture investments and safety considerations required for
full-sized autonomous vehicles. The complete system dia-
gram for the AutoRally robot with a remote operator con-
trol station (OCS) is shown in Figure 2. The remainder of
this section describes the configuration of the AutoRally
chassis and compute box, including mechanical compo-
nents, sensors, and computing configuration.

Chassis
The chassis is designed as a self-contained system that can
easily interface to a wide variety of computing and sensor
packages. Similar to a standard RC car, the chassis can be
driven manually using the included transmitter. Computer
control and chassis state feedback are provided by a single
universal serial bus (USB) cable connected to an onboard
computer. Feedback from the chassis to an attached com-
puter includes wheel-speed data, electronic speed controller
(ESC) diagnostic information, and the manually provided
actuator commands read from the RC receiver.

The 1:5-Scale Radio-Controlled Truck
The chassis is based on a HPI Baja 5SC RC trophy truck.
Figure 3 shows the assembled chassis with all modifica-
tions installed and the plastic protective body removed.
The total weight of the assembled chassis is 13 kg. The
major upgrades from the stock chassis are an electric pow-
ertrain conversion, front brake installation, and electron-
ics box replacement. The electric conversion replaces
the stock 3-hp, 26-cc, two-stroke gasoline engine with a

OCS

OCS
Computer

Gamepad GPS Base
Station

Runstop

Xbee

RC
Transmitter

AutoRally Robot

Compute Box

Power
Supply

Xbee

IMU

Computer

Left
Camera

Right
Camera

Arduino
Micro

Chassis

RC
Receiver

RC Relay

ESC
Comms

ESC
(Throttle) Steering Front Brake

Multiplexer

Microcontroller

GPS

Wheel-Speed
Sensors

Connection Types
USB
TTL Serial
Wireless
RC PWM
Digital Data

FIGURE 2 The AutoRally system diagram. All major electronic system components and their connections to the rest of the system are
shown. The setup includes the AutoRally robot composed of a chassis and compute box, along with a remote operator control station
(OCS). Communication between the OCS computer and robot are via hobby radio-controlled (RC) signals, Wi-Fi, and 900-MHz XBee
radios. Sensors, including the inertial measurement unit (IMU) and Global Positioning System (GPS) receiver, are connected to the
computer with universal serial bus (USB) cables. The actuators in the chassis include the electronic speed controller (ESC), steering,
and front brake and are controlled by standard 50-Hz hobby pulsewidth modulation (PWM) signals. TTL: transistor–transistor logic.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  33

10-hp peak output electric motor and ESC from Castle Cre-
ations. Compared to the stock engine, the electric motor is
more powerful, responsive, and reliable. It also provides
an integrated electronic rear brake, generates less heat and
no exhaust residue, and requires minimal maintenance.
The motor and chassis electronics are powered by two
four-cell, 14.8-V, 6,500-mAh lithium-polymer batteries
connected in series. A full charge lasts 20–90 min, depend-
ing on usage. Front hydraulic brakes are actuated by a
separate brake servo.

Parts of the chassis structure were upgraded to handle
the increased weight of the sensor and computing pack-
age. The stock plastic steering linkage was replaced with
billet aluminum parts to withstand the increased steering
torque of the upgraded steering servo and weight on the
linkage. The plastic side rail guards used as mount points
for the compute box were replaced with billet aluminum
parts to carry the weight of the compute box without de
flecting. Axle extenders were installed to increase the
track of the vehicle by 3.8 cm to improve lateral stability
and make room to mount the front brakes and wheel-rota-
tion sensors.

The stock suspension springs were replaced with stiffer
ones of similar overall dimensions to reduce body roll
and improve driving dynamics. A full AutoRally platform
weighs 58% more than the stock chassis, so the spring con-
stants were increased by roughly the same percentage.
Custom springs are prohibitively expensive, so off-the-
shelf springs were sourced as close to the desired dimen-
sions and stiffnesses as possible. The front spring constant
increased from 8.48 to 15 lb/in and the rear spring constant
from 11.17 to 19.09 lb/in. The shock oil viscosity was also
increased approximately 58% from 500 to 850 cSt to prop-
erly damp the upgraded springs.

The stock two-channel transmitter was replaced with a
programmable four-channel transmitter as part of the elec-
tronics box upgrade. The first two channels control the
steering and throttle, respectively, and the remaining chan-
nels are used in the vehicle safety system discussed in the
section “Safety System.”

SENSORS
To sense wheel speeds, a Hall-effect sensor and magnets
arranged in a circular pattern to trigger the sensor were
installed on each wheel hub. The chosen sensor is a Hal-
logic OH090U unipolar switch, and the magnets are N52
grade, 0.3175-cm diameter, 0.1588-cm thick. The magnet
can trigger the sensor from up to 0.58 cm away. Larger
magnets could be used to increase the maximum tripping
distance. However, the chosen setup works reliably and fits
easily in the wheel-hub assemblies. Hardware timers in the
Arduino Due in the electronics box are used to accurately
measure the time between magnets. Intermagnet timing
information is translated to rotation rates and sent to the
compute box at 70 Hz.

Inside the electronics box, the RC signals from the
receiver are read by the Arduino Due at 50 Hz and sent to
the compute box so that, even under manual control, the
control signals sent to the actuators can be recorded. This is
especially useful for collecting training data where human
control signals are required. The Due also receives diag-
nostic information from the ESC that is forwarded to the
compute box.

A Hemisphere P307 GPS receiver provides absolute
position at 20 Hz, accurate to approximately 2 cm under
ideal conditions with real-time kinematic (RTK) correc-
tions from a GPS base station. The GPS antenna is mounted
on top of a ground plane at the back of the chassis along
with the receiver. The antenna is located at the maximum
distance from the compute box to reduce interference and
maximize the view of the sky while still being protected
during rollovers. The ground plane is an acrylic sheet
coated with a copper conductive sheet and designed to
break before the GPS antenna or sensitive GPS board in the
event of a severe crash.

Actuators
The chassis requires one servo to operate the steering link-
age and one to actuate the master cylinder for the front
brakes. Both servos use the 7.4-V digital hobby servo stan-
dard, which offers more precise, higher-torque output,
faster response time, and a reduced dead band compared to
traditional 6.0-V analog servos. All control signals, for both
servos and the ESC, are standard 50-Hz hobby pulsewidth
modulation (PWM) signals with a duty cycle from 1 to
2 ms, with a neutral value of 1.5 ms. The servos do not have
position feedback.

FIGURE 3 The assembled AutoRally chassis.

34  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

Custom Components
The custom three-dimensional (3D)-printed acrylonitrile
butadiene styrene (ABS) plastic parts installed in the
AutoRally chassis are a new electronics box, a GPS box,
mounts for the back wheel-rotation sensors and magnets,
and alignment guides for the front brake disks. ABS plastic
is an easy and lightweight medium for quickly manufac-
turing complex geometries for components that do not
experience significant loading. The electronics box replaces
the stock one mounted in the front of the chassis super-
structure, just behind the steering servo and linkage. Con-
tained within the box are the radio receiver, Arduino Due,
servo multiplexer, runstop relay, communication board for
the ESC, and servo glitch capacitor. The GPS box contains
the GPS board; a Cui 3.3-V, 10-W isolated power supply; a
small fan; and the GPS antenna mounted to the ground
plane (which is the lid). Front-brake disk aligners and
mounts for the rear-wheel rotation sensors and magnets
are installed on the chassis. The front-brake disk aligners
are needed to keep the disks rotating smoothly because the

front-wheel rotation sensor magnets unbalance the disks if
left to freely rotate.

Compute Box
Most modern control and perception algorithms are cen-
tral processing unit and graphics processing unit (GPU)
intensive. To maximize performance and reduce hardware
development and software optimization time, the com-
pute box employs standard components instead of special-
ized embedded hardware typical of scaled, autonomous
platforms. The compute box design provides a robust enclo-
sure that mounts to the chassis and fits inside the stock
protective body. The weight of the empty compute box is
3.3 kg (and 8.8 kg with all components installed).

Enclosure Design
The enclosure (see Figure 4) is designed to withstand a 10-g
direct impact from any angle without damaging internal
electronic components and is fabricated out of a 2.286-mm-
thick 3003 aluminum sheet. The 10-g impact is larger than

(a) (b)

(c) (d)

FIGURE 4 The AutoRally mini-ITX compute box. (a) The assembled computer-aided design model. (b) The fully assembled compute box
ready to be mounted on a chassis. (c) The front of the compute box viewed from above with motherboard and compute components
visible. (d) The rear of the compute box viewed from above with the power system components visible.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  35

those experienced when testing at GT-ARF according to IMU
data that included collisions with fixed objects and rollovers.
The box’s impact tolerance was verified using finite element
analysis of the CAD model before fabrication. The 3003 alu-
minum alloy was chosen for its strength, ductility, and rela-
tively light weight. The sides of the box are tungsten inert gas
welded to the bottom to accurately join the large panels of
relatively thick aluminum sheets without leaving gaps. Alu-
minum dust filters coupled with a foam membrane allow
continuous airflow through the box while keeping environ-
mental contaminants such as dust and rocks out. Combined
with the all-aluminum exterior, the assembled compute box
provides excellent electromagnetic interference containment.

The cameras and lenses are mounted facing forward on
top of the box on an aluminum plate for rigidity, and they
are protected by covers made from structural fiberglass that
does not affect the signal quality for the antennas mounted
on the top of the box. Each camera cover is secured to the
compute box with four clevis and cotter pins for quick
access to the lens and cameras as needed.

Four 3D-printed components are inside the compute box:
a battery holder, solid-state drive (SSD) holder, GPU holder,
and random access memory holder. The battery holder
tightly secures the compute box battery and power supply.
The battery slot is slightly undersized and lined with foam
so that the battery press fits into the mount and can be
removed for charging and maintenance without removing
any internal screws. The SSD holder is used to securely
mount a 2.5-in SSD to the sidewall of the compute box. The
GPU holder fits over the GPU and secures it to the main
internal strut while still allowing adequate airflow.

The compute box attaches to the chassis with four
3D-printed mounts attached to the bottom of the compute
box. The mounts fit over vertical posts on the chassis rail
guards and are secured to the chassis with a cotter pin
though the mount and post. Special consideration was
given to design the mounts as break-away points for the
compute box in the event of a catastrophic crash. The
mounts are easy and inexpensive to replace and break
away before any of the aluminum compute box parts fail to
protect the electronics within the compute box. By apply-
ing lateral forces with finite element analysis and the CAD
models, the failure point of the mounts is designed to be at
8 g of force on the compute box, compared to the 10-g
design load for the rest of the compute box. In practice, the
compute box mounts break away during hard rollover
crashes, leaving the internal components undamaged.
All panel mount components such as the power button,

light-emitting diodes, and ports are dust resistant or pro-
tected with a plug to keep out debris.

Sensors
A Lord Microstrain 3DM-GX4-25 IMU provides raw accelera-
tion and angular rate data at 200 Hz (maximum 1 kHz) and
fused orientation estimates at 200 Hz (maximum 500 Hz).
The two machine-vision cameras that are mounted on top of
the compute box are Point Grey Flea3 FL3-U3-13E4C-C color
cameras with a global shutter that operates up to 60 Hz.
Lenses are 70° FOV, with a 4.5-mm fixed focal length. Each
camera connects to the motherboard with a USB 3.0 cable and
is externally triggered by an Arduino Micro microcontroller
with a general-purpose input–output connector. Both cam-
eras are connected to the same trigger signal that operates at
a configurable rate. Internal battery voltage and computer
temperature sensors are used to monitor system health.

Computing
A modular, reconfigurable, onboard computing solution
was designed that uses standard consumer computer com-
ponents based on the Mini-ITX form factor. Computing
hardware development outpaces advancements in almost all
other components, so the standard form factor, mounting
method, and data connections enable the reconfiguration of
sensing and computing payloads without mechanical modi-
fications as requirements evolve. Table 2 lists the details of

Component Detail

Motherboard Asus Z170I Pro Gaming, Mini-ITX

Central processing
unit

Intel i7-6700, 3.4 GHz quad-core 65 W

Random access
memory

32 GB DDR4, 2133 MHz

Graphics
processing unit

Nvidia GTX-750ti SC, 640 cores, 2 GB,
1176 MHz

Solid-state drive
storage

512 GB M.2 and 1 TB SATA3

Wireless 802.11ac Wi-Fi, 900 MHz XBee, and
2.4 GHz RC

Power supply Mini-Box M4-ATX, 250 W

Battery 22.2 V, 11-Ah lithium-polymer, 244 Wh

Table 2  AutoRally compute box components. Major computing
and power parts are listed with their specifications.

Scaled vehicles provide a useful complement to existing methods for testing

autonomous vehicle technologies in aggressive driving regimes.

36  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

the compute box components. Wi-Fi is used to remotely
monitor high-bandwidth, non-time-critical data from the
platform, such as images and diagnostic information. A
900-MHz XBee Pro provides a low-latency, low-bandwidth
wireless communication channel. The GPS on the robot
receives RTK corrections from the GPS base station (trans-
mitted over the XBee radio) at approximately 2 Hz to improve
GPS performance. The XBee radio on board the robot also
receives a global software runstop signal at 5 Hz and the
position and velocity of other AutoRally robots within com-
munication range at up to 10 Hz.

The base station XBee, connected to the same computer as
the base station GPS, transmits the software runstop and
RTK correction messages to all AutoRally robots within com-
munication range. The runstop message allows all robots
within radio range (each running its own self-contained soft-
ware system) to be stopped simultaneously with one button.

SOFTWARE INTERFACE
The AutoRally software was designed to leverage existing
tools wherever possible. All computers in the system run the
latest long-term support version of Ubuntu Desktop to take
advantage of the wide availability of compiled packages and
minimal configuration requirements. All AutoRally soft-
ware is developed using the Robot Operating System (ROS)
[17], a flexible framework for writing robot software. It is a
collection of tools, libraries, and conventions that simplifies

the task of creating complex and robust robot behavior across
a wide variety of robotic platforms. Custom ROS interface
programs were developed for each AutoRally component
that lacked a publicly available interface. The time synchro-
nization and safety systems presented in this section are
critical components often overlooked in other scaled plat-
forms. They are a combination of electronics and software
that enables a safe and robust autonomous system. The soft-
ware interface, OCS graphical user interface (GUI), and sim-
ulation environment for the robot are also presented.

Time Synchronization
Distributed system design requires robust time synchroni-
zation across all components in the system. Accurate timing
is especially important as asynchronous data and control
rates increase. Time synchronization is performed within
the AutoRally system on all computing and sensing compo-
nents with a combination of Ubuntu tools. Figure 5 shows
how timing information is propagated for time synchroni-
zation. The time source for the entire system is the GPS
board on the chassis that emits National Marine Electronics
Association (NMEA) 0183 messages and a pulse-per-second
(PPS) signal. The PPS signal provides a marker accurate to
within a few nanoseconds of the start of every second
according to GPS time. NMEA 0183 time messages corre-
sponding to each PPS pulse provide timing information
about that pulse. NMEA 0183 and PPS signals are widely

AutoRally RobotOCS Computer

Chrony

IMU

Right
Camera

Arduino
Micro

Left
Camera

GPS

Chrony

GPSD

System
Clock

System
Clock

Connection Types
GPS Time
PPS Signal
Wi-Fi
Trigger

FIGURE 5 The AutoRally time synchronization diagram. The clocks on the computers and sensors that support clock control are synchro-
nized to Global Positioning System (GPS) time with a combination of the pulse-per-second (PPS) signal that marks the beginning of a
second and timing messages that identify which second the PPS signal represents. On the AutoRally robot and operator control station
(OCS) computers, the system utilities GPS service daemon (GPSD) and Chrony are used for clock synchronization. The two cameras rely
on an external trigger signal to capture frames simultaneously. The Arduino Micro microcontroller generates the camera trigger signal.
IMU: inertial measurement unit.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  37

supported by devices that require time synchronization.
The PPS signal is routed into a GPS service daemon (GPSD)
running on the motherboard, IMU, and Arduino Micro.

GPSD is a daemon used to bridge GPS time sources with
traditional time servers. GPSD runs on the compute box and
receives the GPS PPS signal and NMEA messages. Processed
timing information is communicated through a low-
latency shared memory channel to Chrony, the time server
running on the computer. Compared to traditional Network
Time Protocol servers, Chrony is designed to perform well in
a wide range of conditions including intermittent network
connections, heavily congested networks, changing tem-
peratures, and systems that do not run continuously. Chrony’s
control of system time makes time synchronization transpar-
ent to programs running on the computer. The system time
of the OCS computer is synchronized to the AutoRally robot
by a second Chrony instance on the OCS computer that com-
municates over Wi-Fi with Chrony on the robot.

The IMU provides a dedicated pin for a PPS input. In
addition to the PPS signal, it requires the current GPS second

(GPS time is given in seconds since January 6, 1980) to resolve
the time of the PPS pulse. This value can be derived from the
computer’s system clock. The IMU uses these two pieces of
information to synchronize its own clock and time-stamp
each measurement with an accuracy of significantly lower
than 1 ms to system time.

The cameras provide an external trigger interface to con-
trol when each image is captured. The Arduino Micro pro-
vides the cameras with the triggering pulse at a specified
frame rate. Each time a PPS pulse arrives from the GPS, a
train of evenly spaced pulses at the rate specified in the ROS
system is sent to the cameras. The cameras’ images are time
stamped with the system time when they are received by
the computer.

Safety System
The three-layer AutoRally safety system is designed to
remotely disable robot motion in the event of any software
or electronics failure. The three layers, shown in Figure 6,
are a wireless dead-man relay located in the electronics box

AutoRally Chassis

Autonomous ControlsManual Controls

Multiplexer

RC Relay

Steering
ESC

(Throttle)

RC
Transmitter

Front Brake

MicrocontrollerRC Receiver

Compute
Box

3

2

1

OCS Computer

Runstop Box

OCS GUI

Runstop

Throttle

Signal Types
Wireless
Steering

Front Brake
Control Mode
Throttle Enable

FIGURE 6 The AutoRally safety system. The human-operated radio-controlled (RC) transmitter sends signals to the RC receiver in the
AutoRally chassis. The RC receiver provides actuator signals from the human driver, controls a safety relay to enable and disable the
throttle signal into the electronic speed controller (ESC), and switches between human and computer control. Information relating to the
state of the safety system is presented to the human operator in the operator control station (OCS) graphical user interface (GUI). Layer 1 of
the safety system, shown in purple, is the throttle relay that acts as a wireless throttle live-man switch. Layer 2, shown in green, allows
seamless, remote switching between autonomous and manual control modes. Layer 3, shown in blue and yellow, is the software runstop
used to disable autonomous motion.

38  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

to disconnect the throttle signal, remote switching between
autonomous and manual control with a PWM signal multi-
plexer, and a software-based runstop message. The relay
and autonomous/manual modes are controlled by the state
of buttons on the transmitter that circumvent the Wi-Fi,
XBee, and software control on the compute box using the
additional radio frequency link between the RC transmitter and
receiver located in the electronics box of the chassis. The
dead-man relay monitors the quality of the incoming PWM
control signal so that the throttle signal is automatically
disabled in the event of a signal failure between the trans-
mitter and receiver. Additionally, the throttle signal is con-
nected through the normally open contact of the dead-man
relay, so that the throttle signal disengages in the case of a
power failure on the robot.

Runstop is implemented in software by the AutoRally
chassis interface program, shown in Figure 7, using incoming

runstop ROS messages to enable and disable software con-
trol of the robot. Any program in the AutoRally system can
publish a runstop ROS message. The chassis interface deter-
mines whether autonomous control is enabled with a bit-
wise OR operation of the most recently received runstop
message from each message source. By default, the OCS
GUI and runstop box send runstop messages. The OCS run-
stop message is controlled by a button in the GUI and trans-
mitted over Wi-Fi from the OCS computer to the robot. The
runstop box sends a runstop message, controlled by the
button state of the runstop box, over XBee to the robot. Data
transmitted over the base station XBee are delivered to
every robot within communication range. This means that,
even though there could be multiple AutoRally robots run-
ning at the same time (each with its own self-contained ROS
system), the runstop box signal simultaneously controls
autonomous motion for all of the robots. The AutoRally

AutoRally Chassis Interface

runstopchassisState

Chassis Command Priorities

Priority Commander

0 Controller A

1 Joystick

2 OCS

4 RC

Chassis Calibration (PWM µs)

Actuator Min Center Max

Steering 1000 1520 1980

Throttle 1050 1514 1965

Front Brake — 1500 2000

Runstop

Sender Value

Runstop True

OCS True

Joystick False

Chassis Commands

Commander Data

RC
Steering
Throttle

Front Brake

Controller A
Steering
Throttle

Front Brake

Actuator
Commands

Data Loaded from Files
Data from ROS

Program Logic

chassisCommand

Signal Types
ROS Topics
Serial Data

ESC Data,
Wheel Speeds,
and RC Commands

wheelSpeeds

AutoRally Chassis

ROS System

FIGURE 7 The AutoRally chassis interface program information flow. The program, which runs on the compute box on board the robot,
uses a combination of configuration files loaded at runtime and messages arriving from the Robot Operating System (ROS) interface to
send the highest-priority actuator commands over a universal serial bus connection to the microcontroller in the AutoRally chassis. Simul-
taneously, the AutoRally chassis sends state information back to the chassis interface program that includes electronic speed controller
(ESC) data, wheel speeds, and human-provided actuator commands from the radio-controlled (RC) receiver. The information received
from the chassis is published into the ROS system and can be viewed in the operator control station (OCS) graphical user interface. PWM:
pulsewidth modulation.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  39

robot does not have a true emergency stop that disconnects
actuator power because the size, cost, and power require-
ments for such a system do not fit within the current pack-
age. In practice, the three-layer AutoRally safety system
allows an operator to disable motion and assume manual
control of the platform without delay.

AutoRally Chassis Interface
The AutoRally chassis interface software is implemented as
an ROS nodelet and communicates with the microcon-
troller in the chassis electronics box through a USB cable.
The interface sends actuator commands to the chassis and
receives chassis state information including wheel speeds,
the human-provided control commands read from the RC
receiver, ESC diagnostic information, and safety system-
state information.

The throttle, steering, and front brake of the robot are
controlled by 50-Hz PWM signals standard in the hobby
RC community. The AutoRally chassis software interface
provides a calibration layer above the PWM signal for
standardization across platforms and to prevent physical
damage so commands do not exceed the mechanical
limits in the steering and brake linkages. The chassis
calibration is stored in a file loaded at runtime by the
chassis interface software. Specified in the file is the
minimum, center, and maximum pulse width for each
actuator in microseconds. When properly calibrated, a
/chassisCommand ROS message on any AutoRally plat-
form will elicit the same behavior. For example, com-
manding a steering value of zero will make any calibrated
AutoRally platform drive in a straight line. Valid actua-
tor command values in the /chassisCommand message are
between [–1, 1]. A steering value of –1 will turn the steer-
ing all the way left, and a value of one will steer all the
way right. A throttle value of –1 is full (rear) brake and 1
is full throttle. The front brake value ranges from zero
for no brake to one for full front brake, while negative
values are undefined.

On startup, the chassis interface loads a priority list of
controllers from a configuration file. The priority list is used
while operating to determine which actuator commands
arriving from various controllers are sent to the actuators.
The priorities encode a hierarchy of controllers and define a
mechanism to dynamically switch among controllers and
use multiple ones simultaneously. This system allows high-
priority controllers to subsume control from lower-priority
controllers, as desired. Additionally, each actuator can be
controlled by a separate controller, such as a waypoint

following controller for the steering and a separate velocity
controller for the throttle and front brake.

Operator Control Station
The OCS GUI is a tab-based program built using Qt that
presents real-time diagnostic information, debugging ca
pabilities, and a software runstop to a remote human
operator for the AutoRally robot. Wheel-speed data, real-
time images from the onboard cameras, and all diagnostic
messages from the ROS /diagnostics topic that contain
detailed information about the health of running nodes
are displayed. Diagnostic messages are color coded by
status and grouped by source for fast status recognition
by the human operator. All of the data between the OCS
GUI running on a laptop and the robot travel over a local
Wi-Fi network.

The OCS GUI also provides an interface for direct con-
trol of the robot’s actuators via sliders. While this interface
is not appropriate for driving the car, it is used to debug soft-
ware and hardware issues related to the actuators.

Simulation
Despite the robust AutoRally hardware platform, there are
still high-risk maneuvers and software testing best run in a
simulation environment before executing them on the phys-
ical platform. The simulation also allows the careful control
of environmental parameters for gathering statistical data,
which requires performing repetitive or time-consuming
experiments that would take weeks or more of testing on
the physical platform.

The simulation environment, shown in Figure 8(b), is
based on Gazebo, a robot simulator with tight ROS inte-
gration that includes graphical interfaces and multiple
physics engines to choose from. The AutoRally Gazebo
simulation environment and robot model match their
real-world counterparts and support the same software
interface through ROS messages as the real hardware. The
simulated track environment is the same size and config-
uration as GT-ARF. The steering servo and Ackermann
linkage of the physical robot are approximated by ROS
joint effort controllers that apply torque to turn each front
wheel about the vertical axis. The no-load rotation speed,
maximum torque, and joint limits used in the simulation
are measured from the steering servo specification pro-
vided by the manufacturer and by the steering linkage
angles relative to the chassis center line. The powertrain is
approximated by another ROS effort controller that
applies torque on the rear axle of the Gazebo model. The

AutoRally is designed for robustness, ease of use,

and reproducibility.

40  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

maximum applied torque and angular velocity are calcu-
lated from the motor manufacturers’ specifications. The
differential in the physical platform is neglected in the
simulation. The suspension for each wheel is modeled
with a proportional-integral-derivative controller on a
linear actuator with a target setpoint, which determines
the ride height of the vehicle. The I and D terms are
calculated from the dimensions and coefficients of the
robot’s spring configuration.

The simulation and physical platform implement identi-
cal ROS messaging interfaces to enable seamless software
migration between hardware and simulation. Simulated
GPS, IMU, and cameras are from the hector_gazebo_plugins
ROS package from Technische Universität Darmstadt [18],
and they are configured according to the specifications
of their physical analogs. We developed our own wheel-
speed sensor node because no similar functionality was
publicly available.

Overall, Gazebo is not considered a high-fidelity simu-
lator with respect to graphics rendering and physics real-
ism for autonomous vehicles, especially as the vehicle
approaches and surpasses the friction limits of the system.
The main reason for using Gazebo as the simulator was
not to produce the most accurate visuals and dynamics
but, rather, as part of the hardware and software infra-
structure that allows for smooth software testing with
ROS and the AutoRally platform and to easily debug the
control, perception, and communication software.

Estimation
Parameter estimation is an essential part of controller
design, especially for model-based controllers such as
MPC, which rely on accurate dynamics models for motion

prediction. This section details the offline and online esti-
mation performed with the AutoRally platform. Offline,
parameters were estimated to determine the platform
moments of inertia (MOI) using the bifilar pendulum
method. Three different vehicle models of increasing fidel-
ity are presented. While the higher-fidelity models can be
used to more accurately predict vehicle motion, the model
parameters can be significantly more difficult to estimate
and computationally expensive to compute. A joint-state
unscented Kalman filter (JS-UKF) was used to determine
the parameters of single-track and double-track vehicle
models with a realistic tire forces model. An 11 degrees-of-
freedom (DOF) full-vehicle model was estimated using an
adaptive limited-memory unscented Kalman filter (ALM-
UKF). Online, vehicle state is estimated using a factor
graph-based optimization framework with GPS and IMU
data, and a cost map of the terrain (similar to a traversabil-
ity grid) is generated from monocular camera images for
use in a stochastic MPC framework.

Moment of Inertia Estimation
with the Bifilar Pendulum
The MOI of the platform is more difficult to determine
than other parameters (such as the mass of the vehicle) but
is important for physics-based controllers. Modern CAD
software can automatically compute the MOI if an accu-
rate model exists. No complete CAD model of AutoRally
is available, so the platform MOI cannot be determined
with these tools. Methods also exist to compute MOI by
precomputation [19], [20] or online estimation [21] in cases
where the full model is unknown or changing. An
extensive survey of popular methods for experimentally
determining MOI is presented in [22]. Many methods

(b)(a)

FIGURE 8 The operator control station (OCS) graphical user interface (GUI) and simulation environment. (a) The OCS GUI showing
diagnostic, sensor, and actuator information captured during autonomous testing. (b) The simulation environment built in Gazebo is
modeled after the Georgia Tech Autonomous Racing Facility. Multiple AutoRally robots can be simulated together, and each simulated
platform has the same Robot Operating System messaging interface and simulated sensors as the physical AutoRally platform. All
simulation vehicle parameters (such as mass, moments of inertia, and sensor placement and characteristics) are set according to their
experimentally determined values from a physical robot.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  41

rely on custom calibration rigs that are time-consuming,
expensive, and difficult to build. In this work, we com-
puted the necessary MOI experimentally using the bifilar
pendulum method [22]. As shown in Figure 9(a), two fixed
parallel cables are attached equidistant from the center of
gravity of the body to isolate the desired calibration axis.
The body is rotated by a small angle around the desired
axis and then released to freely oscillate. Given the dimen-
sions of the test rig and known dimensions and weights of
the robot, the period of a free oscillation after an excitation
determines the MOI about that axis. The equation for the
MOI about a single axis using the bifilar pendulum method
from [22] is

	 ,I m
h

gR R
T

4 2
1 2 2

r
= � (1)

where m is the platform mass (including wheels), T is the
oscillation period, h is the distance of the calibration object
from the support (taking into account nonvertical support
wires), and R1 and R2 are the distances from the center
of gravity to the support wire attachment. The change in
height from the mounting location as the vehicle is rotated
is assumed zero when the angle of rotation is small. Our
setup is simplified using parallel support wires, ,R R b1 2= =
so that

	 () ,h d R R d2
1 2

2= - - = � (2)

which makes (1) for our setup

	 .I m
d

gb
T

4 2

2
2

r
= � (3)

Single-Track Vehicle Model
Three different vehicle models of increasing fidelity were
used to test and compare the results. Here, we briefly

summarize each model. The performance of each model
against experimental data is given in the section “Experi-
mental Results.” First, the single-track vehicle model [23]–
[25] used for the AutoRally vehicle is described, which
considers the longitudinal and lateral displacement, as well
as the yaw motion of the vehicle, as shown in Figure 10.

X O YI I- - and X CG YB B- - (where CG is the center of
gravity) denote the inertial frame fixed on the ground and
the body frame fixed on the vehicle, respectively. The equa-
tions of motion of the model can be expressed in a body-
fixed frame with the origin at the CG from [23]

	 ,cos sinV f f f m Vx Fx Fy Rx yd d }= - + +o o^ h � (4a)

	 ,sin cosV f f f m Vy Fx Fy Ry xd d }= + + -o o^ h � (4b)

	 ,cos sinr f f f IFy Fx f Ry r z, ,d d= + -o ^ h6 @ � (4c)

where Vx and Vy are the components of V along the XB
and YB directions, respectively; m is the total mass; and
Iz is the moment of inertia of the vehicle about the verti-
cal axis. fij (,i F R= and ,)j x y= denote the longitudinal
and lateral friction forces at the front and rear wheels,

CG

Y1 YB

XB

X1
O

r

αr

αf

lr
lfvr

vf

fRx

fRy

fFx

fFy

δ

ψ
v

R
ref

β

FIGURE 10 The single-track vehicle model. This model includes the
longitudinal and lateral displacement as well as the yaw motion of
the vehicle. We use X YoI I- - and CGX YB B- - (where CG is the
center of gravity) to denote the inertial frame fixed on the ground
and the body frame fixed on the vehicle, respectively.

CG

d

b b

(a) (b)

FIGURE 9 The bifilar pendulum setup for experimental determination of moments of inertia (MOI) with AutoRally. (a) An example setup
with labeled support strings of length d, attached equidistant from the center of gravity (CG) for computing the yaw MOI, .I} (b) A com-
posite image of a one-half oscillation period for computing the pitch MOI .Ii

42  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

} denotes the yaw angle, and d is the steering angle of
the front wheel.

Double-Track Model
The double-track model considers the longitudinal, lateral,
and yaw motion of the vehicle and accounts for the load
difference between the left and right wheels arising from
the lateral load transfer.

Let f , ,i j k , , ,(i L R j L R= = and ,)k x y= denote the longi-
tudinal or lateral friction force for each wheel, respectively.
The vehicle’s equations of motion are then

 
V }+

cos sinV f f f f f f mx LFx RFx LFy RFy LRx RRx

y

d d= + - + + +o

o

^ ^h h6 @
�
(5a)

,V }-

sin cosV f f f f f f my LFx RFx LFy RFy LRy RRy

x

d d= + + + + +o

o

^ ^h h6 @
�
(5b)

 
.

cos sinr f f f f

f f I
LFy RFy LFx RFx f

LRy RRy r z

,

,

d d= + + +

- +

o ^
^

^h
h

h6 @"
, �

(5c)

Full-Vehicle Model
The full-vehicle model considers the dynamics of the sprung
and unsprung mass of the vehicle separately and is derived
using Newton–Euler equations for the motion of rigid body
systems. The equations of motion for the total mass are the
same as (5a)–(5c) for the double-track model. The air resis-
tance is also considered, and (5a) is modified such that

	
/ ,

cos sinV f f f f f f m

V C AV 22

x LFx RFx LFy RFy LRx RRx

y D air x

d d

} t

= + - + + +

+ -

o

o

^ ^h h6 @
� (6)

where CD is the air resistance coefficient, airt is the air density,
and A is the frontal area of the vehicle. The vertical translation
is accounted for by a riding model, as shown in Figure 11. The
rolling and pitching model is given in Figure 12.

Scaled platforms show great promise in the wide variety

of experiments they enable.

θ

φ

(a) (b)

–msay msax

msg
msg

hs

hc

CR

CP

FIGURE 12 The rolling and pitching model. (a) The rolling motion arises from the lateral acceleration and the gravity center offset from the
rolling center. The parameters hs and hc are the heights of the sprung mass center, CR is the rolling center, and { is the roll. (b) The
pitching motion arises from the longitudinal acceleration and the gravity center offset of the pitching center (CP) that is assumed to be
on the ground. i is the pitch.

ZB

YB

XB

r

ms
θ
.

φ
.

Kf, Cf

Kf, CfKr, Cr

Kr, Cr

mf,tire

mf,tiremr,tire

mr,tire

FIGURE 11 The riding model. Ki and Ci ()i f, r= denote the spring
stiffness and damping coefficient of the suspension system related to
each wheel, ()m i f, r,i tire = denotes the mass of the front and rear
tire, respectively, ms is the sprung mass, and {o and io are the rolling
and pitching rate, respectively.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  43

In Figure 11, Ki and (,)C i f ri = denote the spring stiff-
ness and the damping coefficient of the suspension system
related to each wheel, m ,i tire (,)i f r= denotes the mass of the
front and rear tire, respectively, ms is the sprung mass, and
{o and io are the rolling and pitching rate, respectively.

Figure 12(a) shows the rolling motion from the lateral
acceleration and gravity center offset from the rolling center.
The parameters hs and hc are the heights of the sprung mass
center and rolling center, respectively. Figure 12(b) shows the
pitching motion arising from the longitudinal acceleration
and the gravity center offset from the pitching center assumed
to be on the ground. The dynamic equations of the vertical,
rolling, and pitching motion of the sprung mass are

() () ()
() / ,

V K K C C V K K

C C m

2 2 2
2

z
s

f r f r z
s

f f r r

f f r r
s

, ,

, ,

i {

i

= - + - + + -

+ -

o

o

^
h �

(7a)
 

() () ()
() ,sin cos
K K z C C V K K

C C m gh m a h I

2 2 2
2

2 2

2 2

f f r r
s

f f r r z
s

f f r r

f f r r
s s s

x
s

y
P

s

, , , , , ,

, ,

i i

i i i

= - + - - +

- + + +

p

o

6
@

�
(7b)

 
/ / / /

() () / ,sin cos
w K w C w K w C

m g h h m a h h I

2 2 2 22 2 2 2
f f f f r r r r

s s c s
y
s s c

x
R

{ { { { {

{ {

= - - - -

+ - + -

p o o6
@ �

(7c)

where wi ()i f, r= denotes the front and rear track, respec-
tively; ax

s and ay
s are the longitudinal and lateral acceleration

of the sprung mass center in the body-fixed frame; and Ix
R

and Iy
P are the MOI of the sprung mass about the rolling axis

and pitching axis, respectively. Note that in this derivation,
the small-angle assumption for z and i is considered, which
is a standard assumption.

Tire Force Model
Tire models are required to model the complex interactions
of the vehicle tires with the ground. They are especially
important in the driving regime of this work, where the
vehicle frequently slides on a dirt surface and is almost
always accelerating. A common tire model (see Figure 13)
and the one used here are based on Pacejka’s magic tire for-
mula (MF). The important aspect of this model is its ability
to capture the tire saturation (that is, the coupling between
the lateral and longitudinal axes). According to this model,
the generated tire force depends on the tire slip. Tire slip is
defined by the nondimensional relative velocity instead of
the angle (as is sometimes used) of each tire with respect to
the road, along the longitudinal and lateral directions

	 , ,s R
V R

s R
V

ijx
ijx j

ijx ijx j
ijy

ijx j

ijy

~

~

~
=

-
= � (8)

where ,i L R= correspond to the left and right side, ,j F R=
correspond to the front and rear, and ,k x yVijk =^ h is the tire
frame component of the vehicle velocity of each tire. The
total slip of each tire is defined by ,s s sij ijx ijy

2 2= + and the
total friction coefficient related to each tire is calculated
using the MF from [23]

	 tan ,sin tanD C BS E BS S Sa aE E Eij vn = - - +^ h6 @" , � (9)

where , , ,B C D and E are the stiffness, shape, peak, and cur-
vature factors, respectively; ,S s SE ij h= - where Sh is the
horizontal shift; and Sv is the vertical shift. The tire friction
force components are

	 , , ; , ; , ,f s
s

f i L R j F R k x yijk
ij

ijk
ij ijzn=- = = = � (10)

where fijz is the normal load on the corresponding tire and
can be calculated from [23].

Unscented Kalman Filter
To determine the unknown vehicle parameters (includ-
ing the parameters for the tire force model), a JS-UKF was
used that includes the unknown parameters in the orig-
inal state vector and estimates the new augmented state.
In this framework, the state and noise are assumed to be
Gaussian random variables. Recall that for a system

	 (,) , (,) ,x f x u w y h x u vk k k k k k k k1 = + = ++ � (11)

where ~ (,)w q QNk and ~ (,)v r RNk are Gaussian process
and measurement noise, respectively, the extended Kalman

AutoRally’s capabilities offer a large performance improvement

over traditional scaled autonomous vehicles.

Sh

Sv

xm

ya
D

atan (BCD)

y Y

X

x

FIGURE 13 Pacejka’s magic formula tire model. The graph shows
slip angle (x-axis) versus normalized lateral force (y-axis). Parame-
ters B, C, and D are the stiffness, shape, and peak factors, respec-
tively. Sh is the horizontal shift, and SV is the vertical shift.

44  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

filter (EKF) propagates the Gaussian random variable xk
by linearizing the nonlinear state transition (observation)
function :f R RUn n

7# :h R RUn m
7#^ h with the Jaco-

bian matrix at each time step k [26]. Instead of an EKF, this
work used an UKF filter since

1)	 the UKF propagates the Gaussian random variable
through a nonlinear function more accurately than
the EKF

2)	 the UKF avoids calculating the Jacobians that may be
too cumbersome for highly nonlinear systems.

Adaptive Limited Memory Unscented Kalman Filter
A UKF is based on the unscented transformation (UT) and
avoids calculating the Jacobian matrices at each time step.
Assuming an L-dimensional Gaussian random variable x
with mean xt and covariance ,Px to calculate the statistics
of (),y g x= one selects L2 1+ discrete sample points
{ } ,Xi i

L
0

2
= which are propagated through the system dynam-

ics. The UKF redefines the state vector as [, ,] ,x x w vk
a

k k k
T T T T=

which concatenates the original state and noise variables,
and then estimates xk

a recursively [27].
The ALM-UKF, introduced in [28], is an estimation

algorithm for nonlinear systems that builds on previous
works on the UKF to simultaneously estimate the system
state, model parameters, and Kalman filter hyperparam-
eters related to the noise. First, recall that the adaptive
Kalman filter algorithm [29] adjusts the mean and cova-
riance of the noise online, which is expected to compen-
sate for time-varying modeling errors. Define the set
of unknown, time-varying hyperparameters for the Kalman
filter corresponding to the noise statistics at the ith time
step as , , , .q Q r RSi i i i i_ " , Si is estimated simultaneously
with the system state and parameters. Since an optimal
estimator for Si is unavailable and many suboptimal
schemes are either too restrictive for nonlinear applica-
tions or too computationally demanding [30], [31], this
work adopts the adaptive limited memory algorithm in
[29], with the following two extensions:

1)	 The algorithm is developed for a nonlinear applica-
tion (that is, the UKF).

2)	 The unknown parameters of the system are estimated
along with the state (instead of just the system state).

In the following, it is assumed that Si is constant and de
noted by , , , .q Q r RS=" ,

For the observation noise statistics r and ,R consider the
nonlinear observation at time ,k which is (,) .y h x u vk k k k= +
Since the true value of xk is unknown, vk is approximated by

	 (,),r y h x uk k k k= - t � (12)

where rk represents a sample of the observation noise y at
time k and

	 (,) (,) .h x u W h u hX
()

,k k i
m

i

L

i k
x

k k
0

2

_=
=

t t/ � (13)

Define a new random variable ~ (,),r CN rp and assume
that there are N samples , , ,r k N1k f=^ h such that the srk
are N empirical measurements for .p An unbiased estima-
tor for r can be the sample mean

	 ,r N r1
k

k

N

1
=

=

t / � (14)

where the term unbiased implies that [] [] .r rE E p= =t An
unbiased estimator for the covariance of p is

	 () () ,C N r r r r1
1 T

r k
k

N

k
1

=
-

- -
=

t t t/ � (15)

where the term unbiased implies [] [() ()] .C r rE Er
Tp p= - -t

Because (,) ,y h x u vk k k k= + (12) becomes

	 (,) .r h x u h vk k k k k= - +t � (16)

The covariance of p is therefore calculated as

	

(,)

(,)

(,) (,)

() () ,

[() ()] [() ()]

R

r r N r r r r

N h x u h v r

h x u h v r

N h x u h x u

h h

1

1

1

E

E

E E
k

N

k k

k

N

k k k k

k k k k

k k k k
k

N

k k

1

1

1

T

T

T

T T

#

p p

= - + -

- + -

=

- +

- - = - -

=

=

=

t

t

t t

^

h

6

6
6

6@ @

@

@

"

"
,

,

/

/

/

�

(17)

where

[][] [] [](,) (,) (,) (,) .h x u h x u W h u h uE X X
()

, ,k k k k i
m

i

L

i k
x

k i k
x

k
0

2
T T=

=

" , /
� (18)

Note that xk and vk are assumed to be independent
in (17). An unbiased estimate of R from (15) and (17) is

	
.()()h h

() ()

(,) (,)

R N r r r r

N
N h x u h x u

1
1

1 E

k k
k

N

k k k k k k

1

T

T T

=
-

- -

- - -

=

t t t

t t B^ h

6

6 6@ @" ,

/

� (19)

For the process noise statistics q and ,Q consider the nonlin-
ear state propagation at time ,k which is (,)x f x uk k k1 1= +- -

.wk 1- Since the true values of xk and xk 1- are unknown,
wk 1- is approximated by

	 (,),q x f x uk k k k1 1= - - -t t � (20)

where qk represents a sample of the process noise w at time
step ,k 1- and

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  45

	 (,) (,) .f x u W f u fX
()

,k k i
m

i

L

i k
x

k k1 1
0

2

1 1 1_=- -

=

- - -
t t/ � (21)

We define a new random variable ~ (,)q CN qg and assume
that there are M samples , , ,q k M1k f=^ h where the q sk are
M empirical measurements for .g An unbiased estimator for
the mean value of g is the sample mean

	 .q M q1
k

k

M

1
=

=

t / � (22)

An unbiased estimator for the covariance of g is

	 () () ,C M q q q q1
1

q k
k

M

k
1

T=
-

- -
=

t t t/ � (23)

such that () () .C q qE Eq
Tg g= - -t6 6@ @ The covariance Q is

then calculated as

() (,) ()

(,) (,) () ()

[],

[() ()]
[() ()]

w q w q

w q q q w q q q

M x x f x u f q q q q

M f x u f x u f f P

C

1

1

E

E

E

E

E

T

T T

k k
T

k k k k k k
T

k

M

k k k k k k k

k k k k k k k
k

M

q

1
1 1 1

1 1 1 1 1 1
1

1 1

1 1

= - - - + - -

= - -

+

- -

= - + - - + -

=

- - -

- - - - - -

=

- -

- -

t t

t t

t

^

^ ^ h

h

h

6

6

6@ @

@"

" ,

,/

/
� (24)

where

	
(,) (,)

(,) (,) .

f x u f x u

W f u f u

E

X X
()

, ,

k k k k

i
m

i

L

i k
x

k i k
x

k

1 1 1 1

0

2

1 1 1 1

T

T
=

- - - -

=

- - - -

6
6
6

6
@ @

@ @
" ,
/ � (25)

Then Q can be estimated without bias using (23) and (24),

() ()

.(,) (,)

Q M q q q q M
M

f x u f x u f f P

1
1 1

E

k k
k

M

k k k k k k k

1

1 11 1 1 1

T

TT#

=
-

- - + -

- -

=

- -- - - -

t t t

t t` ^ ^h h j6

8

6@ @ B" ,

/

� (26)

Equations (14), (19), (22), and (26) provide unbiased esti-
mates for , , ,r R q and ,Q which are based on N observation
noise samples and M process noise samples, respectively.
All samples rk and qk are assumed to be statistically inde-
pendent and identically distributed. The summarized algo-
rithm of the ALM-UKF based on (12)–(26) is presented in
[28], where , , ,a b l and m are the UT parameters [27].

Parameter Estimation
For the system given in (11), the following dynamics are
introduced for the parameter vector ,p

	 ,p p wk k k1
p

= ++ � (27)

where ~ (,)w q QNk
p p p is Gaussian process noise. The aug-

mented state is defined as [,] .x x pa T T T= It then follows from
(11) and (27) that

	 (,) , (,) ,x F x u w y H x u vk k k k k k k k1
a a a a= + = ++ � (28)

where , .w w wk k k
a T p T T
= ^ h6 @

The matrices Rt and Qt in (19) and (26) may become neg-
ative-definite during the implementation (which is also
mentioned in [29]). In this work, the nearest positive-defi-
nite matrices of Rt or Qt are calculated when negative eigen-
values of Rt or Qt are observed, such that a symmetric
positive-definite matrix nearest to Rt or Qt in terms of the
Frobenius norm can be obtained [32].

Artificial Gaussian process noise wp
k in (27) is used to

change the parameter p when the UKF is running. However,
if the value of wp

k is large, then the parameter p will be
changed by a large amount at each time step. This condition
may further cause the filter to diverge, since the parame-
terized vehicle model in the section “Single-Track Vehicle
Model” is sensitive to p and may therefore become unstable
for unreasonable values of .p This problem was addressed
by rescaling the diagonal entries of Qp to be some small
positive values at each time step. Other discussions on the
numerical instability problems of the UKF can be found in
[29] and [32].

Online State Estimation
Accurate state estimation is required for the controllers to
run reliably online. Many control methods assume accu-
rate knowledge of the system state. In general, more
accurate and high-rate information is preferred. Some
states, such as the wheel speeds, can be directly measured.
However, position, orientation, and velocity estimates are
required for the control and planning of the AutoRally
platform. This information, in general, cannot be mea-
sured with a single sensor, requiring some form of sensor
fusion estimation.

GPS data are inherently low rate and lack orientation
information. IMU measurements are relatively high rate
but do not directly provide heading or linear velocity infor-
mation. By combining the time-synchronized signals
from these two sensors, a very accurate and high-rate esti-
mate of position, velocity, and orientation can be obtained.
This state information is sufficient for many advanced con-
trol systems.

Previously, many systems have had success with sensor
fusion using methods such the EKF or UKF, as presented in
the previous section. Filtering methods are limited by the
fact that all previous state and measurement information
is discarded. If, instead, the system is modeled as a set of
hidden states (in this case, the position and velocity of the
vehicle), with sensor measurements providing probabilistic

46  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

information about these states, more accurate estimates
(via smoothing) can be achieved.

Factor graphs combined with advanced inference algo-
rithms such as incremental smoothing and mapping 2
(iSAM2) [33] allow smoothing over many types of measure-
ments, while retaining the ability to relinearize previous
information. This reduces many of the problems found in
the Kalman filter with states or measurements that are not
approximately linear in the measurement time frame.

The factor graph representation of sensor fusion is a
method of visualizing states and measurements as a bipar-
tite graph (an example is shown in Figure 14). The factor
graph has two types of nodes: factor nodes f Fi ! and variable
nodes .j !i H Edges eij always connect factor and variable
nodes. Variable nodes correspond to the unmeasured quan-
tities to be estimated. Factor nodes correspond to probabilis-
tic information gained from a measurement zi about a set of
variables (connected to the factor by edges). The factor graph
as a whole represents the probability distribution generated
by the probabilistic information encoded in the factors

	 (, , , | , , ,),p z z zn k1 2 1 2f fi i i � (29)

where ii is a variable that is not directly observed and z j is
a measured variable. This function can then be factorized as

	 () (),f fi i
i

H H=% � (30)

where H is the set of all variables in the graph and iH is the
set of variables connected to factor fi by an edge. ()fi iH
takes, for example, the following form for the first IMU
factor in Figure 14, which is

	 (, , , , , , , , ,),p X V B X V a a ax y z x y z1 1 1 2 2 ;~ ~ ~ � (31)

where X V ,,i i and Bi are the position, velocity, and bias state
variables, respectively, and wn and an are the measured angu-
lar velocity and linear acceleration, respectively, from an IMU.

Independence relationships in the measurements in
()f H are encoded in the edges ,ei j where each factor fi is a

function of variables .jH The goal in sensor fusion is to find
the variable assignment *H that minimized the function

()f H in (30),

	 () .argmax f*H H=
H

� (32)

Each ()f H can be written in terms of a difference between
the measured value zi and the predicted value from the
measurement function () .hi iH By framing this in terms of
log-likelihood, this maximization problem becomes

	 2 ,=

() ()

()

argmax argmin log

argmin

f f

h z2
1

i i i
i

i

H H

H

= -

-

H H

H
R

6 @

/ �
(33)

where ()hi iH are the measurement functions relating a set
of variables iH to a sensor measurement .zi This minimiza-
tion problem can be solved with several different nonlinear
minimization strategies, including Gauss–Newton or Lev-
enberg–Marquardt, which iteratively linearize and solve
this problem. Using these methods, an entire graph of mea-
surements can be created (as in Figure 14) to solve for ,*H
which will be the maximum likelihood estimate of the
variables H being estimated.

However, when estimating the state of the AutoRally
platform, this problem is solved at each time step to produce
a maximum likelihood estimate of the current state vari-
ables position ,Xi velocity V ,i and accelerometer and gyro-
scope bias .Bi Reoptimizing the entire factor graph would
be very inefficient, so the iSAM2 algorithm is used.

The iSAM2 algorithm is a part of the Georgia Tech
smoothing and mapping (GTSAM) [34], [35] software pack-
age, which uses a factor graph representation to iteratively
solve the smoothing and mapping problem. See “Georgia
Tech Smoothing and Mapping” for a brief discussion of
GTSAM. iSAM2 efficiently performs iterative updates to a
factor graph and optimizes this new graph without relinear-
izing the full problem. To perform this optimization, a factor
graph (shown in Figure 14) is constructed with successive
measurements and iteratively optimized. At each smoothing
time step, an additional set of states X, V, and B are added to
the graph. Measurement factors for the GPS and IMU sen-
sors also are added, along with a bias smoothness factor. To
keep the computational load low while maintaining high
accuracy, the factor graph contains state nodes for measure-
ments taken at 10 Hz. The factors in the graph correspond to
GPS measurements and preintegrated IMU measurements
[36]. Online, the IMU measurements are integrated to inter-
polate the 10-Hz smoothed position to publish the state esti-
mate at 200 Hz. Example trajectories are shown in Figure 15.

In practice, the measurements from the GPS sensor can
drift slightly each day, primarily because of the RTK correc-
tion antenna position not being fixed for each test. To coun-
teract these changes, the robot is always positioned at the
same place on the track when the state estimator is started.
This track position is used as the origin of a local Euclidean
coordinate system, oriented tangent to the GPS reference
ellipsoid. This prevents GPS drift from effecting the vehicle
state estimate relative to the fixed-track boundaries.

X1Prior

Prior

Prior

GPS GPS

V1

B1 B2

X2

V2
IMU

Bias

GPS

B3

X3

V3
IMU

Bias

GPS

B4

X4

V4
IMU

Bias

FIGURE 14 The factor graph structure used for Global Positioning
System (GPS) and inertial measurement unit (IMU) sensor fusion
using the Georgia Tech smoothing and mapping optimization library.
The circles represent states, and the squares represent factors.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  47

–20 –15 –10 –5 0

–10

–5

0

5

10

Y
 (

m
)

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

F
or

w
ar

d
S

pe
ed

 (
m

/s
)

X (m)
–20 –15 –10 –5 0

–10

–5

0

5

10

Y
 (

m
)

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

F
or

w
ar

d
S

pe
ed

 (
m

/s
)

X (m)

(a) (b)

FIGURE 15 Example states generated by the state estimator built with the Georgia Tech smoothing and mapping optimization library.
Inputs to the state estimator are Global Positioning System and inertial measurement unit sensor data. Each experiment is composed
of four laps of data collected at the Georgia Tech Autonomous Racing facility oval track. Track boundaries are colored black, and state
estimates are color coded according to the speed at which the AutoRally robot was traveling. (a) Model predictive path integral control-
ler driving with a target speed of 6 m/s. (b) Manual driving for the system identification data set.

Georgia Tech Smoothing and Mapping

The Georgia Tech Smoothing and Mapping (GTSAM) tool

box [34], [35] is a C++ factor graph library released under

the BSD license and developed by the Borg Lab at the Georgia

Institute of Technology. It provides state-of-the-art solutions to

the simultaneous localization and mapping (SLAM) and struc-

ture from motion problems and can be used to model and solve

many other simple and complex estimation problems. Matlab

and Python interfaces enable rapid prototyping, visualization,

and user interaction.

GTSAM allows users to model a problem, such as state

estimation, using a factor graph. A factor graph is a graphi-

cal model that contains variables related through factors. An

example factor graph used for state estimation is shown in

Figure 14. The variables are vehicle states at specific points

in time, and the factors encode probabilistic information re-

lating to sensor measurements of one or more of these vari-

ables. The absolute or relative values of several variables

are the result of measurements by a sensor such as an in-

ertial measurement unit or Global Positioning System (GPS)

receiver. This factor graph representation of the state esti-

mation problem allows GTSAM to solve the problem by find-

ing a maximum a posteriori estimate of all of the variables in

the graph.

In addition to simplifying SLAM and state estimation, it is

easy to extend GTSAM to solve new problems that are natu-

rally formulated as the set of functions mapping hidden vari-

ables to measurements. Every factor in the graph can be ex-

pressed as a measurement function relating quantities to be

estimated with sensor measurements. New types of factors

are implemented by defining a measurement function and its

derivative for each directly related variable

	 (,),z h x x xk k k k kn0 1f= � (S1)

where zk is measurement k and xkn is the state xn related to

measurement .zk As a concrete example, the GPS factors in

Figure 14 are direct measurements of position, with additive

Gaussian noise

	 Z X ,i ii ~= + � (S2)

where [, ,]Z x y zi mi mi mi= is the measured position in Euclidean

space, [, ,]X x y zi i i i= is the state variable being estimated, and

[, ,]i xi yi zi~ ~ ~ ~= is Gaussian noise on the measurement.

The noise in the variable w has a straightforward interpreta-

tion as the measurement uncertainty. For Gaussian noise, one

must assume that the measurement is unbiased, that is, the

mean is zero. The variance of the noise then becomes the uncer-

tainty on the measurement. For example, if the GPS receiver is

specified to have a position standard deviation of 1 m in the x- and

y-directions and 2 m in the z-direction, then these become the

parameters of the Gaussian noise , ,xi yi zi~ ~ ~ in the factor graph.

GTSAM exploits sparsity for computational efficiency.

Typically, measurements only provide information on the rela-

tionship between a handful of variables, so the resulting fac-

tor graph will be sparsely connected. This is exploited by the

algorithms implemented in GTSAM to reduce computational

complexity. Even when graphs are too dense to be handled ef-

ficiently by direct methods, GTSAM provides iterative methods

that are quite efficient.

48  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

Semantic Segmentation
Using Convolutional Neural Networks
An important step in dynamic visual scene understanding
for autonomous driving is to analyze the images captured
from the onboard cameras and segment important objects
[such as cars, pedestrians, or signs (using bounding boxes)]
and label the key surfaces in the environment (such as
streets, sidewalks, and building facades). The task of group-
ing pixels and labeling the surfaces they belong to is known
as semantic segmentation. In the specific context of the
racing domain, the primary goal is to label pixels as track or
nontrack so that the vehicle knows where it can drive. In this
section, a method to create and train a deep convolutional
neural network (CNN) [37], [38] architecture is described
that receives an image from the onboard cameras and out-
puts a pixel-wise labeling of track and nontrack.

Recent works have demonstrated the success of deep
neural network architectures consisting of multiple CNN
layers in solving challenging semantic segmentation prob-
lems [39]–[42]. The structure of the CNN takes advantage of
the spatial properties of an image, namely, that nearby pixels
are likely to have similar labels. For this work, we wish to
perform semantic segmentation by learning a function that
can map an input image (,)I u v to an output image with
binary pixel labels corresponding to track and nontrack and
given by

(,) (,), , , ,Y u v f I u v u u r u r v v r v rg gH= = - + = - +l l l l6 @
� (34)

where u and v are pixel coordinates, r is the receptive field
for an output pixel (which is dependent on the structure
of),f and H is the set of parameters in ()f $ that can be
changed to create the desired function mapping.

The constructed deep neural network is composed of ten
convolutional layers and two 2 2# max pooling layers (after
the third and sixth layers) to reduce the 640 480-# sized
input image to .160 128# All layers are 3 3# convolution
kernels, except the last three layers, which have 5 5# ker-
nels. Layers before the first maxpool have 32 kernels, layers
between the first and second have 64 kernels, and the final
three have 96, 128, and 256 kernels, respectively.

The standard mini-batch gradient descent method was
used to train a CNN function approximator to output the cor-
rect pixel labels given an input image. To use gradient descent,
a loss function l must first be defined to optimize. In this
work, a cross-entropy function that rewards the network for
producing an output closer to the desired value of nontrack (1)
or track (0). The gradient of each parameter is computed with
respect to the loss function / l2 2H to provide a direction and
magnitude to move each parameter that pushes the generated
output closer to the desired output. However, because com-
puting this gradient over all images is computationally pro-
hibitive, the derivative is computed for a random subset of ten
images, the parameters are moved a small amount H in the
direction of the gradient, and the process is repeated until
convergence. A large set of training data must be created to
train a neural network from scratch. Over 100,000 ground-
truth-labeled images were automatically generated using data
collected from the AutoRally platform. The images were
labeled using a precomputed GPS survey of the test track, the
output from the state estimator, and the IMU to perform
camera calibration. The training and testing pipeline is shown
in Figure 16. The state estimator frame is at the IMU, so a
homography matrix must be computed that transforms the
surveyed track map from world coordinates to image plane
coordinates using the calibrated transformation between the
IMU and the camera

	 ,H kT Tim
car

car
world= � (35)

where Tcar
world is the position of the car in world coordinates,

T im
car is the transformation between the IMU and camera ref-

erence frames, and k is the matrix of camera intrinsics.
Given this mapping, points in the ground coordinate frame
can be projected into the image

	 , ,p Hp H
H
H
H

H
H
H

H
H
H

11

21

31

12

22

32

14

24

34

im world= =t t > H � (36)

where pim and pworld are homogeneous points. Using this
method, all points on the image plane for a given image
can be projected to the ground plane and given a ground
truth label.

World Frame Cost Map
Darker Blue Is Lower Cost

Camera Image

Reproject
Using

Orientation

Reproject
Using
Pose

Image Plane
Cost Map Loss

Convolutional
Neural
Network

Test

Train

FIGURE 16 The convolutional neural network pipeline for training
and testing pixel-wise image labeling of track and nontrack using
images from the onboard AutoRally. For training, a survey of the
track boundaries, calibrated inertial measurement unit sensor to
camera transform, and state estimate is used to automatically
label image pixels. For testing, the network labels each pixel of an
input image as track or nontrack.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  49

EXPERIMENTAL RESULTS
This section describes the testing facility and shows/validates
the results of the parameter estimations using the bifilar pen-
dulum method, standard UKF, ALM-UKF, and neural network
cost map estimation. Data for all of the estimation results were
collected with a human manually driving the AutoRally robot
around GT-ARF. The same data were also used to train the

dynamics model used in the model predictive path integral
(MPPI) controller described in “Model Predictive Path Integral
Control.” The data consist of approximately 30 min of human-
controlled driving at speeds varying from 4 to 10 m/s. The driv-
ing was broken into five distinct behaviors:

1)	 normal driving at low speeds (4–6 m/s)
2)	 zig-zag maneuvers performed at low speeds (4–6 m/s)

Model Predictive Path Integral Control
ll experimental data collected for training and testing track

surface labeling were gathered at the Georgia Tech Au-

tonomous Racing Facility (GT-ARF) using the model predictive

path integral (MPPI) controller. MPPI is a stochastic model pre-

dictive control (MPC) method that can drive AutoRally up to,

and beyond, the friction limits of the track. It has been shown

to work well in practice when applied to AutoRally and some

simulated systems [S2]–[S4]. A version of MPPI along with a

dynamics model for AutoRally learned from human driving is

available in the AutoRally GitHub repository.

MPC works by interleaving optimization and execution. First,

an open-loop control sequence over a finite time horizon is opti-

mized. Then, the first control in that sequence is executed by the

vehicle. Next, state feedback is received, and the whole optimiza-

tion process repeats. MPPI is a sampling-based, derivative-free

approach to MPC that has been successfully applied to aggres-

sive autonomous driving using learned nonlinear dynamics [S3].

At each iteration, MPPI begins with the estimate of the op-

timal control sequence from the previous time step and uses

importance sampling to generate thousands of new sequences

of control inputs. These control sequences are then propagat-

ed forward in the state space using the system dynamics, and

each trajectory is evaluated according to a cost function. The

estimate of the optimal control sequence is then updated with a

cost-weighted average over the sampled trajectories. State feed-

back is then introduced to begin the next iteration. Real-time ex-

ecution of MPPI on AutoRally is enabled by the onboard Nvidia

graphics processing unit (GPU).

Mathematically, let the current planned control sequence

be , , ,u u u U RT
m T

0 1 1f != #
-^ h and let , K1 2ff f f^ h be a set of

random control sequences, with each ,k k k
T0 1ff e e= -^ h and each

~ (,) .uNk
t

te R The control sequence update is

	 (,)exp S u1
k

K

k t
T

t

T

k
t

1 0

1
1h

m
f ec R= - +

= =

-
-= G) 3/ / � (S3)

	 (.)expU S u1 1
k t

T

t

T

k
t

k
k

K

1 0

1
1

h m
ff c eR= - +

= =

-
-e o= G) 3/ / � (S4)

The parameters m and c determine the selectiveness of the

weighted average, also known as the temperature and the im-

portance of the control cost, respectively. The function ()S f

accepts an input sequence and propagates it through the

dynamics to find the resulting trajectory and then computes

the state-dependent cost of that trajectory sequence, which is

denoted as (, ,) .C x x x q xT t
T

t0 1 0f R= = ^ h In the implementation

of this algorithm on AutoRally, only an instantaneous running

cost is used. There is no terminal cost, and we sample trajec-

tories on a GPU using several different dynamics models. The

instantaneous running cost is

	 () (,), () , . , ,q x w C p p v v I v
v

0 9· M x y x x
d t

x

y2
2

= - c m; E � (S5)

where the first term (,)C p pM x y is the positional cost of being at the

body frame position (,) .p px y This positional cost is derived from

a presurveyed Global Positioning System registered cost map in

most of our data collection and from the output of the neural net-

work in the section “Track Surface Labeling” and [S5]. The second

term is the cost for achieving a desired speed ,vx
d and the third

term in the cost is an indicator variable that is turned on if the track

cost, roll angle, or heading velocity are too high. The final term in

the cost is a penalty on the slip angle of the vehicle. The coefficient

vector used in the experiments was , . , , , .100 4 25 10 000 1 75 ;w = h^

note that all but the first term are trivial to compute given the ve-

hicle’s state estimate, while the first term requires an analysis of

the vehicle’s environment. In practice, parameter weights of the

cost function require some tuning. However, the tuning is relatively

intuitive, as the weights correspond to easily understandable real-

world values.

This algorithm was used to drive the AutoRally platform

several hundred kilometers around the GT-ARF. Because it

does not require explicit derivatives, it supports advanced uses

such as the noisy cost maps detailed in the section “Track Sur-

face Labeling.” It has shown good performance rejecting large

disturbances from potholed and muddy track conditions, while

reliably running for a full battery charge at high speeds.

REFERENCES
[S2] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2016, pp. 1433–1440.
[S3] G. Williams, N. Wagener, B. Goldfain, P. Drews, B. Boots, J. M.
Rehg, and E. A. Theodorou, “Information theoretic MPC for model-based
reinforcement learning,” in Proc. IEEE Int. Conf. Robotics and Automa-
tion (ICRA), Singapore, 2017, pp. 1714–1721.
[S4] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory parallel computation,” J. Guidance
Control Dyn., vol. 40, no. 2, pp. 1–14, 2017.
[S5] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg,
“Aggressive deep driving: Combining convolutional neural networks
and model predictive control,” in Proc. 1st Annu. Conf. Robot Learning,
2017, pp. 133–142.

A

50  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

3)	 linear acceleration maneuvers that consist of acceler-
ating the vehicle as much as possible in a straight
line, then braking before starting to turn

4)	 sliding maneuvers, where the pilot attempts to slide
the vehicle as much as possible

5)	 high-speed driving up to 10 m/s, where the pilot tries
to drive the vehicle around the track as fast as possible.

Each one of these maneuvers was performed for 3 min
while moving clockwise around the track and another
3 min moving counterclockwise.

Georgia Tech Autonomous Racing Facility
All experiments were conducted at the GT-ARF (shown in
Figure 17), which is a 68-m-long dirt track with required site
infrastructure to support autonomous vehicle testing. The
track is a 3.3-m-wide flat clay surface with two straights con-
nected by 180° constant radius turns. The outer dimensions
of the track are 27.5 and 15.5 m, and the straights are 11.5-m
long. The boundaries of the track are 0.15-m-diameter corru-
gated drainage pipes secured in place with stakes to provide
a semirigid crash barrier. The controlled track environment
allows the robot to operate fully autonomously up to the
limits of its mechanical, electrical, and software systems and
beyond the friction limits of the track.

A ground station is established in the center of the track
that consists of an OCS laptop, wireless runstop box, and
base station GPS module that provides RTK corrections.
The OCS laptop and associated hardware are used to
remotely communicate and monitor the status of the robot.

Bifilar Pendulum
Many vehicle parameters can be directly measured with a
scale or ruler or are available through manufacturer docu-
mentation. Those parameters of the AutoRally platform
are listed in Table 3. Data were collected using the setup
shown in Figure 9 to estimate the MOI of the primary axis
of the robot and the axis of rotation for the front and rear
wheels. Table 4 details the measured parameters for each
configuration and the resulting MOI. In each case, T is cal-
culated as an average of 60 oscillation periods.

T (s) b (m) d (m) Parameter MOI (kg-m2)

2.63 0.14 1.90 Ix 0.347

2.12 0.295 1.88 Iy 1.131

2.48 0.26 1.93 Iz 1.124

1.81 0.182 0.935 If 0.048

1.67 0.182 0.915 Ir 0.044

Table 4 T he moments of inertia (MOI) about primary axes
and related parameters. Values are experimentally calculated
using the bilifilar pendulum method and (3) and the measured
masses and lengths. The oscillation period T is calculated by
averaging 60 oscillation periods using the bifilar pendulum
method. g = 9.81 was used for all calculations. The front- and
rear-wheel MOI include both wheels.

Parameter Value Units

Total mass 21.88 kg

Front wheel mass, each 0.82 kg

Rear wheel mass, each 0.89 kg

Overall length 0.90 m

Overall width 0.46 m

Overall height 0.32 m

Wheelbase 0.57 m

Rear axle to CG, x offset 0.23 m

Rear axle to CG, z offset 0.12 m

Front track 0.395 m

Rear track 0.405 m

Wheel diameter 0.195 m

Table 3  AutoRally robot parameters. Values were measured
with a digital scale or ruler or provided by manufacturer
documentation. Rear axle offset distances are with respect to
the center of gravity (CG).

(a)

(b)

FIGURE 17 The Georgia Tech Autonomous Racing Facility. (a) The
aggressive autonomous driving experiments. (b) An autonomous
driving demo for third-grade students and parents.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  51

Standard Unscented Kalman Filter
The standard JS-UKF was first implemented using the
three different vehicle models in the section “Estimation.”
The hyperparameters of the filter are critical for the filter
design, especially the process noise covariance Q [43]. In
this section, the diagonal elements of these matrices are
recursively tuned until the parameterized vehicle model
shows satisfactory simulation results.

A total of 113 s of experimental data generated by a human
driver using the AutoRally vehicle were selected. The first 100 s
of data were used to tune the hyperparameters and estimate
the vehicle parameters, and the remaining 13 s (a complete
cycle around the testing track) were used to validate the results.
Figure 18 shows the estimates for several selected states of the
system for the single-track model. It can be seen that the esti-
mates of the states agree well with the data. The results for the
other vehicle models were similar and hence omitted.

Next, the estimated parameters in the simulation were
validated to ensure that the obtained parameters were able to
satisfactorily reproduce the data, hence accurately predicting
the vehicle’s motion in practical applications. Figure 19 shows
the simulated trajectories for different vehicle models config-
ured with the estimated parameters. The results in Figure 19
indicate that the larger the DOF of the model, the more accu-
rate the results and the better the agreement with data.

Adaptive Limited Memory Unscented Kalman Filter
Instead of tuning the noise, the ALM-UKF was implemented to
find the suboptimal estimation of the noise statistics online,
during which the augmented state and noise are estimated
simultaneously. Experimental data collected with the AutoRally
robot were used to validate the ALM-UKF, which is presented
in algorithmic form in [28]. The noise samples at each time step
k are from the estimation based on the last 10 s of data. The esti-
mation of the velocities, yaw angle, and positions states is not
difficult. Thus, only the estimation results of the unknown
vehicle parameters are shown. The ALM-JUKF [28] was imple-
mented to estimate the parameters of a full-vehicle model
from (5a)–(7c) using the AutoRally experimental data, which

includes the measurements for , , , , , , , , ,V V V rx y z i z] i zo o and
the GPS coordinates.

For stable state estimation, the joint-state system with the
parameter dynamics equations in (27) must be observable.
To this end, the Jacobian of the joint-state system is calcu-
lated, and the rank of the observability matrix is inspected.
The result indicates that the spring stiffness and damping
coefficients of the suspension system Ki and C i f, ri =^ h are
unobservable (see Figure 11), which means that one cannot
uniquely identify Ki and C i f, ri =^ h based on current mea-
surements. This issue is addressed to obtain the observabil-
ity by fixing the values of any two of the four parameters,
specifically .K K 2000 N/mf r= = The values for Kf and Kr
were chosen by assuming a 1–2-cm average deformation of
the springs caused by the gravity of the sprung mass.

As discussed, the artificial Gaussian process noise wk
p in

(27) is used to change the parameter p when the UKF is

–15
–10
–5
0
5

10

Simulated Trajectory
True Trajectory

58
60
62
64

–20
–15
–10
–5
0
5

10

N
or

th
w

ar
d

(m
)

56
58
60
62
64

Y
aw

 A
ng

le
 (

ra
d)

Simulated Yaw Angle
True Yaw Angle

–10 0 10
Eastward (m)

–20
–15
–10
–5
0
5

100 105 110 115
Time (s)

56
58
60
62
64Full Vehicle

Double Track

Single Track

FIGURE 19 The simulation results of the estimated vehicle models
using a standard unscented Kalman filter.

3

6

9

V
x

(m
/s

)
V

y
(m

/s
)

ψ
 (

ra
d)

Recorded Vx

Estimated Vx

Recorded Vy

Estimated Vy

Recorded ψ
Estimated ψ

–3

0

3

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

50

100

FIGURE 18 The state estimation for the single-track model using joint-state unscented Kalman filter.

52  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

working. However, if the value of wk
p is large, then the param-

eter p will be changed by a large amount at each time step.
This condition may further cause the filter to diverge, since
the parameterized vehicle models are sensitive to p and may
become unstable for unreasonable values of .p This problem
was addressed by rescaling the diagonal entries of Qp to be
small positive values at each time step. Other discussions on
the numerical instability problems of the UKF can be found
in [29] and [32].

Figure 20 shows the time trajectories of several parame-
ters listed in Table 5 during the estimation process, where
all the parameters converge fast and stabilize after approxi-
mately 10–20 s. Figure 21 compares simulated outputs from

1

5

9

I z
 (k

g-
m

2)

Iz
Iz ± 2σ

0.1

0.3

0.5

l f
(m

)

0.1

0.3

0.5

h
(m

)

0.1

0.5

0.9

D
 (

–)
0 10 20 30 40 50 60 70

Time (s)
0 10 20 30 40 50 60 70

Time (s)

0.1

0.5

0.9

G
ea

r
R

at
io

 (
–)

0.1

0.4

0.7

C
D
 (

–)

h

h ± 2σ

D

D ± 2σ

If

If ± 2σ

Gear Ratio

Gear Ratio ± 2σ

Air Coefficient
Air Coefficient ± 2σ

FIGURE 20 The convergence of the vehicle parameters along with the estimation process. All the parameters converge fast and stabilize
after approximately 10–20 s.

Eastward (m)
–20

–15

–10

–5

0

5

N
or

th
w

ar
d

(m
)

Simulated Trajectory
True Trajectory

Simulated Yaw Angle
True Yaw Angle

75 80 85 90
Time (s)

43

45

47

49

51

Y
aw

 A
ng

le
 (

ra
d)

FIGURE 21 The simulation results of the estimated vehicle
models using the adaptive limited-memory, joint-state unscented
Kalman filter.

Parameter ALM-UKF Bifilar Difference Units

m 20.6093 21.88 5.8% kg

Iz 1.024 1.124 8.9% kg-m2

Ir 0.0499 0.044 13.4% kg-m2

h 0.0961 0.12 19.9% m

f, 0.4650 0.34 36.8% m

Table 5  A parameter comparison for the adaptive limited-memory
unscented Kalman filter (ALM-UKF) and bifilar pendulum methods.
The parameters that do not closely match across methods result
because the ALM-UKF method uses real-world driving data, where
these dimensions are constantly changing due to suspension and
steering articulation, and the bilfilar method estimates all parameters
when the vehicle is suspended and stationary.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  53

the full-vehicle model using the estimated parameters for
the AutoRally platform and real-world data. It can be seen
that, as expected, the identified vehicle model satisfactorily
reproduces the data. Data collected using the AutoRally
vehicle show obvious non-Gaussian noise that may have
some effect on the estimation process.

Compared with the results in Figure 19, the simulated
trajectories of the AutoRally vehicle in Figure 21 show larger
deviation from the data. The reason may be that the estima-
tion of the noise statistics of the standard UKF are tuned to
be optimal (to some degree), but the ALM-UKF algorithm
used a suboptimal estimator for the noise statistics. The
advantages of the ALM-UKF are that it is more efficient and
can operate online. The ALM-UKF algorithm is expected to
be especially useful for time-varying parameters estimation
problems, such as estimation of a linear- parameter-varying
driver model [44].

Table 6 shows the MF model parameters for the single-
track-vehicle model estimated using the UKF of the AutoRally
platform. All of the parameters stabilized after approxi-
mately 20 s of data.

Some parameters were estimated by both the bilfilar
pendulum and ALM-UKF methods, which are compared in
Table 5. While the mass and MOI values estimated by both
methods agree, the estimated dimensions are not as closely
aligned with hand-measured values. This is because, in the
bilfilar method, all parameters are measured when the vehicle
is stationary, whereas the ALM-UKF method uses real-world
driving data where these dimensions are constantly changing,
due to suspension and steering articulation.

Track Surface Labeling
A data set of over 100,000 images, along with the correspond-
ing position and orientation in a local coordinate frame, was
recorded over the course of several days of testing with the
MPPI algorithm at GT-ARF. The images were then postpro-
cessed using the automatic labeling pipeline to produce
ground-truth training images for the labeling task. The

neural network was trained using the Tensorflow [45] frame-
work for 100,000 mini-batches, with each containing ten
images. The results for an example training image can be
seen in Figure 22, and a failure case of the network can be
seen in Figure 23. The failure was a result of the dry grass
adjacent to the track having a similar color and texture to the
track surface and a mislabeling of the interior of the plastic
protective body. Overall, the neural network was able to cor-
rectly label 97% of the pixels on the training set and 91% of
the pixels on a held-out test set. Note that this approach may
not generalize to variations in track conditions such as illu-
mination changes and dynamic obstacles.

CONCLUSION
Despite decades of prior research and a renewed interest from
technology companies and the research community, many
gaps still remain in the capabilities of autonomous vehicles.
This article introduces AutoRally, a high-performance robotics
testbed that is 1:5 the size of a passenger car, which enables
researchers to conduct experiments and collect real-world
data under driving conditions that were previously untestable
due to safety and cost concerns. The robust design and small

(a) (b) (c)

FIGURE 22 The neural network track surface labeling from camera images. (a) A training image captured by one of the cameras on
AutoRally at the Georgia Tech Autonomous Racing Facility. (b) A ground-truth image generated by the labeling pipeline. (c) The pixel
labeling of track and nontrack produced by the neural network.

Parameter Value Units

B 1.1559 none

C 1.1924 none

D 0.9956 none

E -0.8505 none

sh -0.0540 m

sv 0.1444 m

Table 6 T ire model parameters estimated by the unscented
Kalman filter for the single-track model of the AutoRally
platform. Human driving data were collected at the Georgia
Tech Autonomous Racing Facility.

54  IEEE CONTROL SYSTEMS MAGAZINE  »  FEBRUARY 2019

size of AutoRally ameliorate the risk of high-speed crashes,
allowing researchers to evaluate algorithms under conditions
that would be too dangerous or expensive with a full-sized
vehicle and too complex to model accurately in simulation.

A variety of online and offline estimation algorithms
have been developed and applied to the platform to deter-
mine properties frequently required by control systems,
including MOI and other difficult-to-measure properties.
In addition, an approach based on CNNs was developed to
address the task of online image segmentation trained
from automatically labeled ground-truth images. To date,
the fleet of six AutoRally platforms has logged over 300 km
of fully autonomous driving using only onboard sensing
and computing at the GT-ARF, resulting in the validation of
multiple control and perception algorithms.

AutoRally is open source, so all of the documentation
needed to build, configure, and run the platform is publicly
available on the AutoRally GitHub repositories, including
build instructions, a parts list, files required for custom fab-
rication, and operating procedures [15]. Tutorials and exam-
ple controllers written in C++ and Python with ROS and
Gazebo [16] are also available, along with a data set of human
and autonomous driving. See “Build Your Own AutoRally
Platform” for more information and tips on building an
AutoRally platform. AutoRally opens a new frontier for the
safe development and testing of autonomous vehicle tech-
nologies across a much more diverse set of operating regimes
and a broader audience of investigators than previous exper-
imental platforms have supported.

ACKNOWLEDGMENTS
The authors wish to thank all of the undergraduate students
who have helped build and maintain the fleet of AutoRally
platforms, including Jason Gibson, Jeffrey McKendree, Alex-
andra Miner, Dominic Pattison, Sarah Selim, Cory Wacht,
and Justin Zheng. This work was made possible, in part, by
the U.S. Army Research Office through the Multidisciplinary
University Research Initiative award W911NF-11-1-0046 and

Defense University Research Instrumentation Program awards
W911NF-12-1-0377 and N00014-17-1-2318.

AUTHOR INFORMATION
Brian Goldfain (bgoldfain3@gatech.edu) received the B.S. de-
gree in electrical and computer engineering with a minor
in robotics from Carnegie Mellon University, Pittsburgh,
Pennsylvania, in 2010 and the M.S. degree in computer sci-
ence from the Georgia Institute of Technology, Atlanta, in
2013. He is currently a robotics Ph.D. student in the School
of Interactive Computing at the Georgia Institute of Tech-
nology. His research interests focus on autonomous vehi-
cle testbed development and autonomous racing. He can
be contacted at the Georgia Institute of Technology, 85 5th
St. NW, Office 218a, Atlanta, GA 30308 USA.

Paul Drews received the B.S. degree in electrical engineer-
ing from the Missouri University of Science and Technol-
ogy, Rolla, in 2008. He is currently a robotics Ph.D. student
in the School of Electrical and Computer Engineering at the
Georgia Institute of Technology, Atlanta.

Changxi You received the B.S. and M.S. degrees from the
Department of Automotive Engineering, Tsinghua Universi-
ty, Beijing, China, and the M.S. degree from the Department
of Automotive Engineering, RWTH-Aachen University, Ger-
many. He is currently a Ph.D. student under the supervi-
sion of Prof. Panagiotis Tsiotras in the School of Aerospace
Engineering, Georgia Institute of Technology, Atlanta. His
current research interests focus on system identification, ag-
gressive driving, and control of (semi)autonomous vehicles.

Matthew Barulic received the B.S. degree in computer sci-
ence from the Georgia Institute of Technology, Atlanta, in 2016.
He is currently a software engineer at Wheego Technologies, Inc.

Orlin Velev received the B.S. degree in mechanical engi-
neering from the Georgia Institute of Technology, Atlanta,
in 2017. Currently, he is a vehicle structures engineer at Space
Exploration Technologies (SpaceX).

Panagiotis Tsiotras is a professor in the School of Aero-
space Engineering and the Institute for Robotics and

(a) (b) (c)

FIGURE 23 The neural network image labeling failure case. (a) The image input from the camera onboard AutoRally. (b) The ground-truth
image generated by the labeling pipeline. (c) The pixel labeling of track and nontrack produced by the neural network. The failure is likely
caused by the appearance similarity between the track surface and dry grass outside of the track.

FEBRUARY 2019  «  IEEE CONTROL SYSTEMS MAGAZINE  55

Intelligent Machines, Georgia Institute of Technology, At-
lanta, where he is the director of the Dynamics and Control
Systems Laboratory.

James M. Rehg is a professor in the School of Interactive
Computing at the Georgia Institute of Technology, Atlanta,
where he is director of the Center for Behavioral Imaging, co-
director of the Center for Computational Health, and codirec-
tor of the Computational Perception Lab.

REFERENCES
[1] D. Schaper, “Human errors drive growing death toll in auto crashes,” NPR.
Accessed on: Mar. 2017. [Online]. Available: http://www.npr.org/2016/
10/20/498406570/tech-human-errors-drive-growing-death-toll-in-auto-crashes
[2] K. Henry, “Traffic fatalities up sharply in 2015,” U.S. Department of
Transportation. Accessed on: Feb. 2017. [Online]. Available: https://www
.nhtsa.gov/press-releases/traffic-fatalities-sharply-2015
[3] M. Bertoncello and D. Wee. (2015, June). Ten ways autonomous driving
could redefine the automotive world. McKinsey & Company. [Online].
http://www.mckinsey.com/insights/automotive_and_assembly/ten_
ways_autonomous_ driving_could_redefine_the_automotive_world
[4] National Conference of State Legislatures, “Autonomous vehicles: Self-
driving vehicles enacted legislation.” Accessed on: Mar. 2017. [Online].
Available: http://www.ncsl.org/research/transportation/autonomous-vehicles-
self-driving-vehicles-enacted-legislation.aspx#enacted
[5] Donkey Car. Accessed on: Nov. 2017. [Online]. Available: http://www
.donkeycar.com/
[6] J. Gonzales, F. Zhang, K. Li, and F. Borrelli, “Autonomous drifting with on-
board sensors,” in Proc. 13th Int. Symp. Advanced Vehicle Control (AVEC’16), Mu-
nich, Germany, 2016, p. 133.
[7] F1/10 Autonomous Racing Competition. Accessed on: Nov. 2017. [On-
line]. Available: http://f1tenth.org/competition
[8] Rapid Autonomous Complex-Environment Competing Ackermann-
steering Robot (RACECAR). Accessed on: Nov. 2017. [Online]. Available:
https://mit-racecar.github.io/
[9] N. Keivan and G. Sibley, “Realtime simulation-in-the-loop control for
agile ground vehicles,” in Proc. Conf. Towards Autonomous Robotic Systems,
New York, 2013, pp. 276–287.
[10] J. L. Jakobsen, “Autonomous drifting of a 1:5 scale model car,” M.S. the-
sis, Dept. Eng. Cybernetics, Institutt for Teknisk Kybernetikk, Trondheim,
Norway, 2011.
[11] S. Song, “Towards autonomous driving at the limit of friction,” M.S.
thesis, Dept. Mechanical and Mechatronics Eng., University of Waterloo,
Ontario, Canada, 2015.
[12] M. Cutler, T. J. Walsh, and J. P. How, “Reinforcement learning with
multi-fidelity simulators,” in Proc. 2014 IEEE Int. Conf. Robotics and Automa-
tion, 2014, pp. 3888–3895.
[13] D. I. Katzourakis, I. Papaefstathiou, and M. G. Lagoudakis, “An open-
source scaled automobile platform for fault-tolerant electronic stability con-
trol,” IEEE Trans. Instrum. Meas., vol. 59, no. 9, pp. 2303–2314, 2010.
[14] W. E. Travis, R. J. Whitehead, D. M. Bevly, and G. T. Flowers, “Using
scaled vehicles to investigate the influence of various properties on rollover
propensity,” in Proc. IEEE American Control Conference (ACC), New York,
2004, pp. 3381–3386.
[15] AutoRally Platform Instructions. Accessed on: May 2017. [Online].
Available: https://github.com/AutoRally/autorally_platform_instructions
[16] AutoRally Software. Accessed on: May 2017. [Online]. Available:
https://github.com/AutoRally/autorally
[17] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: An open-source robot operating system,”
presented at the ICRA Workshop on Open Source Software, 2009.
[18] Hector Gazebo Plugins ROS Package. Accessed on: Mar. 2017. [Online].
Available: http://wiki.ros.org/hector_gazebo_plugins
[19] C. Doniselli, M. Gobbi, and G. Mastinu, “Measuring the inertia tensor
of vehicles,” Veh. Syst. Dyn., vol. 37, suppl. 1, pp. 301–313, 2003.
[20] M. Gobbi, G. Mastinu, and G. Previati, “A method for measuring the inertia
properties of rigid bodies,” Mech. Syst. Signal Process., vol. 25, no. 1, pp. 305–318, 2011.
[21] M. Rozyn and N. Zhang, “A method for estimation of vehicle inertial
parameters,” Veh. Syst. Dyn., vol. 48, no. 5, pp. 547–565, 2010.
[22] G. Genta and C. Delprete, “Some considerations on the experimental de-
termination of moments of inertia,” Meccanica, vol. 29, no. 2, pp. 125–141, 1994.

[23] E. Velenis, E. Frazzoli, and P. Tsiotras, “Steady-state cornering equilib-
ria and stabilisation for a vehicle during extreme operating conditions,” Int.
J. Veh. Autonomous Syst., vol. 8, no. 2-4, pp. 217–241, 2010.
[24] K. Lundahl, J. Åslund, and L. Nielsen, “Investigating vehicle model
detail for close to limit maneuvers aiming at optimal control,” in Proc. 22nd
Int. Symp. Dynamic on Vehicle, Manchester, U.K., 2011.
[25] M. S. Burhaumudin, P. M. Samin, H. Jamaluddin, R. A. Rahman, and S.
Sulaiman, “Integration of magic formula tire model with vehicle handling
model,” Int. J. Res. Eng. Technol., vol. 1, no. 3, pp. 139–145, 2012.
[26] S. Hong, T. Smith, F. Borrelli, and J. K. Hedrick, “Vehicle inertial param-
eter identification using extended and unscented Kalman filters,” in Proc.
IEEE Conf. Intelligent Transportation Systems, 2013, pp. 1436–1441.
[27] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for
nonlinear estimation,” in Proc. Adaptive Systems for Signal Processing, Com-
munications, and Control Symposium, Alberta, Canada, 2000, pp. 153–158.
[28] C. You and P. Tsiotras, “Vehicle modeling and parameter estimation
using adaptive limited memory joint-state UKF,” in Proc. IEEE American
Control Conference (ACC), 2017, pp. 322–327.
[29] K. Myers and B. Tapley, “Adaptive sequential estimation with unknown
noise statistics,” IEEE Trans. Autom. Control, vol. 21, no. 4, pp. 520–523, Aug.
1976.
[30] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Mineola, NY:
Courier Corp., 2007.
[31] J. Han, Q. Song, and Y. He, “Adaptive unscented Kalman filter and its
applications in nonlinear control,” in Kalman Filter Recent Advances and Ap-
plications V. M. Moreno and A. Pigazo, Eds. Vienna, Austria: InTech, 2009.
[32] J. Qi, K. Sun, J. Wang, and H. Liu, “Dynamic state estimation for multi-
machine power system by unscented Kalman filter with enhanced numeri-
cal stability,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1184–1196, 2016.
[33] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,
“iSAM2: Incremental smoothing and mapping using the Bayes tree,” Int. J.
Robotics Res., vol. 31, no. 2, pp. 216–235, 2012.
[34] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Inst. Technology, Atlanta, GA, Tech. Rep. GT-RIM-CP&R-2012-002,
Sept. 2012.
[35] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization
and mapping via square root information smoothing,” Int. J. Robot. Res.,
vol. 25, no. 12, pp. 1181–1203, 2006.
[36] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU preintegra-
tion on manifold for efficient visual-inertial maximum-a-posteriori estima-
tion,” presented at Robotics: Science and Systems, Rome, Italy, July 2015.
[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.
[38] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA: MIT Press, 2016.
[39] A. Kundu, V. Vineet, and V. Koltun, “Feature space optimization for
semantic video segmentation,” in Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition (CVPR), June 2016, pp. 3168–3175.
[40] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, 2017, pp. 2481–2495.
[41] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2015, pp. 3431–3440.
[42] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFS,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, 2018, pp. 834–848.
[43] M. Saha, B. Goswami, and R. Ghosh, “Two novel costs for determining
the tuning parameters of the Kalman filter,” in Proc. Advances in Control and
Optimization of Dynamic Systems, Bangalore, India, 2012, pp. 1–8.
[44] C. You and P. Tsiotras, “Optimal two-point visual driver model and
controller development for driver-assist systems for semi-autonomous ve-
hicles,” in Proc. IEEE American Control Conference (ACC), 2016, pp. 5976–5981.
[45] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. [Online]. Available: http://tensor
flow.org/

�

