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Abstract. Although analytic solutions for the attitude motion of a rigid body are available, for several special

cases, a comprehensive theory does not exist in the literature for the more complicated problems found in

spacecraft dynamics. In the present paper, analytic solutions in complex form are derived for the attitude

motion of a near symmetric rigid body under the influence of arbitrary, but constant body-fixed torques. The

solution is extremely compact, which enables efficient and rapid machine computation. Numerical simulations

reveal that the solution is very accurate when applied to typical spinning spacecraft problems.
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1. Introduction

Mathematicians have been working on the problem of rigid body motion for over two
centuries. However, an analytic solution to the general problem of an arbitrary rigid body
under the influence of arbitrary external torques, is far from complete. In fact, most existing
analytic theories apply to highly idealized cases, such as torque-free or totally symmetric
bodies. Solutions have been obtained for these and other several special cases by Euler,
Jacobi, Poinsot and others, and are reported by Leimanis (1965) and Grammel (1954).
Unfortunatelly however, these are hardly of practical importance to the more complex
problems encountered in spacecraft dynamics and control. In fact, prior to the advent of jet
propulsion, the problem of the self-excited rigid body, that is, a body under the influence of
body-fixed torques, was mainly of academic interest, and most of the previous analytic
theory was merely concerned with the case when the applied torques are dependent on the
actual orientation of the body. Furthermore, even for these simple cases, such as the the
case of torque-free motion of a general rigid body, where an analytic solution involving
Jacobian elliptic functions has existed since the late 1800’s, most modern authors of classical
mechanics texts have elected not to discuss the details of the explicit analytic solution, in
favor of the motion analogy to an ellipsoid rolling on an inavariable plane, first given by
Poinsot (1851).

As a result of the little attention that has been paid to the development of a
comprehensive analytic theory which treats the rigid body motion, scientists and engineers
have come to rely on numerical methods for the solution of the problem. Even though such
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numerical solutions are easily found by computer simulations, analytic solutions can provide
deeper insight into the problem, and can be used in obtaining quick solutions over large
intervals of time, in error analyses, and in computer algorithms for onboard computations.
Recently, new interest has been revived in the area of analytic solutions for the motion of
spinning spacecraft. Analytical formulations have been obtained for satellite attitude
computations, which significantly extend the classical torque-free and rigid body assumption
of Poinsot motion (Cochran, 1972; Kraige and Junkins, 1976; Kraige and Skaar, 1977;
Cochran and Shu, 1983). Other authors (Junkins et al., 1973; Morton et al., 1974) have also
developed new formulations for Poinsot motion itself. Current interest in the area of analytic
solutions for spinning spacecrafts is carried on, mainly because they have been found to be
extremely useful in control problems and stability analyses associated with this class of
vehicles (Likins, 1967; Larson and Likins, 1973; Junkins and Turner, 1980; Golubev and
Demidov, 1984; Branets et al., 1984; Winfree and Cochran, 1986) Among the recent
developments in this field we can briefly mention especially the work by Larson and Likins
(1974), where they obtained a closed-form solution for linearized equations in which
transverse torques appear, but the spin rate is constant, and also the work by Cochran et al.
(1982) where an exact solution was obtained for the free motion of a dual-spin spacecraft.
For a symmetric rigid body subject to body-fixed torques about its principal axes a solution is
given by Bodewadt (1952), however the solution for the orientation of the body in inertial
space, is incorrect in these references for reasons explained in (Longuski, 1984). The case of
near symmetry is dealt with by Longuski (1980), and its solution is exact for the symmetric
case. The accuracy of the solutions have been tested, and the results are reported by Kia and
Longuski (1984). Price (1981), using Longuski’s solution as a first order approximation, has
developed a semi-analytic solution in the form of power series in one of the applied torques.
Although the series converge very rapidly, the method is limited to selected time intervals,
so it has short term validity. Van der Ha (1984) gives a perturbation solution for the attitude
motion under body-fixed torques, based on the ratio of transverse to spin rotation rate as the
small parameter, but his solution is also valid only for short time intervals.

The scope of the present paper is to provide analytic solutions to the problem of the
attitude evolution of a near-symmetric rigid body under arbitrary but constant body-fixed
torques. The use of complex variables allows the solution to be expressed in a very compact
form. The solution of Euler velocities is given in terms of a complex Fresnel integral
function, and it is exact for a symmetric body. The solution for Euler angles is more
involved, due to the difficulty in evaluating certain integrals in closed form, and it is limited
by the assumption that the two angles defining the direction of the spin axis must be small.
The accuracy of the solution is tested by numerical simulations and comparison with the
solutions of the governing differential equations. Two cases are presented here, the first a
spin-up maneuver from 3.15 to 10 rpm, and the second a spin-down maneuver through zero
spin rate. Specific parameters were taken from the Galileo spacecraft, and the results reveal
an excellent agreement between the "exact " numerical integration solution, and the analytic
solution.
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2. Solution for angular velocities

Euler’s equations for motion of a rigid body with principal axes at the center of mass are
Mx = Ixω̇x+(Iz−Iy)ωyωz (1a)
My = Iyω̇y+(Ix−Iz)ωzωx (1b)
Mz = Izω̇z+(Iy−Ix)ωxωy (1c)
where Mx,My,Mz are assumed to be constant body-fixed torques, Ix,Iy,Iz are the moments of
inertia about the principal axes and ωx,ωy,ωz are the angular velocity components along the
same axes. For a nearly symmetric rigid body Ix∼∼Iy, and one can immediately solve (1c) to
obtain

ωz(t)∼∼ Iz

Mz���� t+ωz0 , ωz(0) = ωz0 (2)

The approximation (2) is not only valid for nearly symmetric bodies, but also for the
important practical case of spin-stabilized vehicles (such as rockets and spacecrafts), since
then both Euler velocities ωx, and ωy tend to remain smaller than ωz, so that their product ωxωy

can be discarded in a first order approximation. Such a case implies that spinning is about
the principal axis Iz with constant torque Mz, whereas Mx and My acting as disturbance torques
lying in the transverse plane. If the magnitude of the disturbance torques Mx , My is small
compared to the axial torque Mz as is often the case, the transverse angular rates ωx, ωy will
indeed appear to be much smaller than the axial spin rate ωz. This explains why ωx and ωy are
often referred to, as angular velocities errors.

Substitute (2) into (1a),(1b) to get

Mx = Ixω̇x+(Iz−Iy)ωy( Iz

Mz���� t+ωz0) (3a)

My = Iyω̇y+(Ix−Iz)ωx( Iz

Mz���� t+ωz0) (3b)

Note that although we have assumed Ix=Iy for the solution of ωz, we have kept the distinction
between Ix and Iy in the equations for ωx and ωy. This appears to be a trivial extension of the
symmetric rigid body case, however as it will be shown, this assumption has significant
consequences to the accuracy of the solution.

Rearranging terms, equations (3) can be written in the following convenient form
Ω̇x+(At+B)Ωy = Fx (4a)
Ω̇y−(At+B)Ωx = Fy (4b)
where
Ωx=ωx√��ky , Ωy=ωy√��kx , Fx=Mx/Ix√��ky , Fy=My/Iy√��kx

kx=(Iz−Iy)/Ix, ky=(Iz−Ix)/Iy (5)
A=kα, B=kβ, α=Mz/Iz, β=ωz0, k=√����kxky

The above definitions hold when the spinning axis - here assumed to be Iz - is the one which
corresponds to the maximum or the minimum moment of inertia. For the sake of
consistency, we will assume that the principal moments are ordered Iz>Iy>Ix and hence, the
spinning is about the axis of the major principal axis of inertia. Caution should be taken
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however, for the case in which Iz is the minor principal axis, because then, kx and ky should
be taken with a negative sign so that the square roots in (5) are well-defined. The case where
spinning is about the intermediate moment of inertia axis will not be considered here, since it
will always result in unstable motion.

Introducing the complex variables
Ω = Ωx+iΩy , F = Fx+iFy (6)
we can combine (4a),(4b) into the following scalar equation
Ω̇−i(At+B)Ω = F (7)
This is a linear differential equation with time-varying coefficient. For the constant spin-rate
case it reduces to a linear time-invariant differential equation, which can easily be solved by
standard methods of operational calculus, for several special cases of forcing functions
(Kurzhals, 1967). Physically Ω represents the trace of the total transverse rate velocity vector
in the skewed body-fixed xy plane. The term skewed arises from the fact that Ω is not the
actual transverse velocity vector - this would be ωx+iωy - but it is related to it by (5). That is,
when the actual velocity vector traces a unit cirlce in xy plane, the Ω vector traces an ellipse
with semiaxes kx and ky. This discrepancy is the result of the assumed asymmetry, and it is
removed for an axially symmetric body.

It can be easily verified that the solution of (7) is given by

Ω(t) = Ω0exp[i(A
2
t2���+Bt+C)] + exp[i(A

2
t2���+Bt+C)]F

0
∫
t

exp[−i(A
2
t2���+Bt+C)]dt (8)

where the first term of the right hand side of the equation represents the homogeneous part of
the solution, and the second term represents the particular part due to the forcing function F.
For reasons that will become obvious later, we choose the constant C to be equal to

C =
2A
B2
���� (9)

Then Ω0 is related to the initial condition on Ω(t) as follows

Ω(0) = Ω0exp(i
2A
B2
���� ) (10)

Thus, given the initial conditions ωx(0) , ωy(0) , ωz(0), and the mass properties of the body
kx , ky, one can use equation (10), in order to determine Ω0. Note from (8), that the choice of
C affects only the homogeneous part of the solution, so we can always pick the value of the
constant C arbitrarily, as long as we define the relation between the constant Ω0 and the
initial conditions Ω(0) in a consistent manner, as done here in (10). With this choice of C, and
recalling that F is constant, equation (8) can be rewritten

Ω(t) = Ω0exp[i
2A

(At+B)2�������� ] + exp[i
2A

(At+B)2�������� ]F
0
∫
t

exp[−i
2A

(Aτ+B)2�������� ]dτ (11)

In order to evaluate the integral involved in (11), consider the following transformation

σ =
2�A�

(Aτ+B)2�������� (12)

then
(Aτ+B)dτ = s3dσ and (Aτ+B) = s2√�����2�A�σ (13)
where
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s3 = sgn(A) and s2 = sgn(Aτ+B) (14)
and sgn(.) is the signum function, defined by

sgn(x) =

�
�
�
�
�
−1

0

1

if x<0

if x=0

if x>0

Note that s3 = +1 corresponds to a spin-up maneuver, and s3 = −1 corresponds to a spin-down
maneuver. The case s3 = 0 corresponds to constant spin-rate and it will not be considered
here. Under the previous definitions, the integral involved in (11) becomes

Iω =
0
∫
t

exp[−i
2A

(Aτ+B)2�������� ]dτ =
√����2�A�

1������
σ0

∫
σ1

sgn(τ+
A
B��� )

√��σ

exp(−is3σ)����������dσ (15)

where

σ1 = 2�A�
(At+B)2�������� and σ0 = 2�A�

B2
����� (16)

Integrals of the form

C2(x) =
√���2π
1�����

0
∫
x

√��η
cos(η)�������dη , S2(x) =

√���2π
1�����

0
∫
x

√��η
sin(η)������dη , (17)

are called Fresnel Integrals, and have been extensively studied, and their values have been
tabulated (Abramowitz and Stegan, 1972). If we now define the complex Fresnel integral
function by

E(x) = C2(x)−i s3S2(x) =
√���2π
1�����

0
∫
x

√��σ

exp(−is3σ)����������dσ (18)

we can readily evaluate Iω as

Iω = √���A�
π����

�
�
�
sgn(t+

A
B��� )E[

2�A�
(At+B)2�������� ] − sgn(

A
B��� )E[

2�A�
B2

����� ]
�
�
�

(19)

= √���A�
π���� [s1E(σ1)−s0E(σ0)]

where

s1 = sgn(t+
A
B��� ) and s0 = sgn(

A
B��� ) (20)

3. Evaluation of Fresnel integrals

Fresnel integrals are notorious for their difficulty in approximating over a large range of
their parameter. However, an excellent approximation based on the τ−method of Lanczos
(1956), and given by Boersma (1960) is satisfactory . According to this method, two
approximations are used, one valid for small values of the parameter, and the other valid for
large values of the parameter.

If we define the function

f(x) =
0
∫
x

√���2πt

e−it
�����dt = C2(x) − i S2(x) (21)

then
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f(x) = e−ix

n=0
Σ
11

(an+ibn)
�
�
� 4
x��

�
�
�

n+
2
1���

for 0 ≤ x ≤ 4 (22)

f(x) =
2

1−i���� + e−ix

n=0
Σ
11

(cn+idn)
�
�
� x
4��

�
�
�

n+
2
1���

for x > 4 (23)

The numerical values of the coefficients an , bn , cn and dn are given by Boersma (1960). The
maximum error is 1.6 × 10−9 for the first approximation and 0.5 × 10−9 for the second
approximation. The complex functions E(x) and f(x) are related by

E(x) =
�
�
� f*(x)

f(x)

if s3=−1

if s3=+1
(24)

where the asterisk indicates complex conjugate. The advantage of this approximation, is that
it provides both Fresnel integrals in complex form, as required by equation (19). It is then an
easy matter to separate the real and imaginary parts, if desired.

Other approximations for Fresnel integrals and for integrals of Fresnel integrals, using
asymptotic and/or series expansions or rational functions can be found in Abramowitz and
Stegan (1972).

4. Solution for the Euler angles

If we use a 3-1-2 Euler angle sequence to describe the orientation of the body-fixed
reference frame, with respect to an inertially fixed reference frame, the following kinematic
equations hold:
φ̇x = ωxcosφy + ωzsinφy (25a)
φ̇y = ωy−(ωzcosφy−ωxsinφy)tanφx (25b)
φ̇z = (ωzcosφy−ωxsinφy)secφx (25c)
A small angle approximation for φx,φy reduces the previous system of equations to
φ̇x = ωx + φyωz (26a)
φ̇y = ωy − φxωz (26b)
φ̇z = ωz − φyωx (26c)
If we also assume that the product φyωx is small compared to ωz, we can immediately solve
for φz to get

φz(t) =
0
∫
t

ωz(τ)dτ (27)

Note that the differential equations (26a) and (26b) are independent of φz, hence the accuracy
of the solution of φx, and φy will not be affected by dropping the term −φyωx in (26c). If
however, one wishes a more precise solution for φz, it may be possible to reinstate the
ignored term as a perturbation.

Using the expression for ωz(t) from (2), one can readily perform the integration for φz(t) to
obtain

φz(t) = 2
1��

Iz

Mz���� t2 + ωz0t + φz0, φz(0) = φz0 (28)
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Introducing the complex variables
φ = φx+iφy and ω = ωx+iωy (29)
we can combine (26a) and (26b) into a simple scalar equation
φ̇+iωzφ = ω (30)
The solution of (30) has the same form as for the case of the angular velocities, where now
the forcing term is ω(t). The solution is given by

φ(t) = φ0exp[−i(α
2
t2���+βt+γ)] + exp[−i(α

2
t2���+βt+γ)]

0
∫
t

ω(τ)exp[i(α
2
τ2
���+βτ+γ)]dτ (31)

Again, the choice of γ affects only the homogeneous part in (31) so we can choose the
constant γ and the initial conditions such that

γ =
2α
β2
���� , φ(0) = φ0exp(−i

2α
β2
���� ) (32)

Then we can rewrite (31) in the form

φ(t) = φ0exp[−i
2α

(αt+β)2������� ] + exp[−i
2α

(αt+β)2������� ]
0
∫
t

ω(τ)exp[i
2α

(ατ+β)2�������� ]dτ (33)

Recall that ω(t) = ωx(t)+iωy(t) and Ω(t) = Ωx(t)+iΩy(t) thus, we can express the angular velocity
ω(t) in terms of Ω(t) as follows

ω(t) =
√��ky

Ωx(t)������ + i
√��kx

Ωy(t)������ =
2√��ky

Ω(t)+Ω*(t)���������� +
2√��kx

Ω(t)−Ω*(t)���������� (34)

Using this relation the integral in (33) can be rewritten as

Iφ =
0
∫
t

ω(τ)exp[i
2α

(ατ+β)2�������� ]dτ =
2√����kxky

√��kx +√��ky��������� Iφ1
+

2√����kxky

√��kx −√��ky��������� Iφ2
(35)

where

Iφ1
=

0
∫
t

Ω(τ)exp[i
2α

(ατ+β)2�������� ]dτ , and Iφ2
=

0
∫
t

Ω*(τ)exp[i
2α

(ατ+β)2�������� ]dτ (36)

Let λ = 1/k , then from (5) α = λA and β = λB. Using the already known solution for Ω(t) and
the new independent variable σ introduced in (12), we can rewrite the integral Iφ1

as

Iφ1
=

	
�


Ω0 − F√���A�

π���� s0E(σ0)
�
�
� 0
∫
t

exp[i(λ+1)
2A

(Aτ+B)2�������� ]dτ (37)

+ F√���A�
π����

0
∫
t

exp[i(λ+1)
2A

(Aτ+B)2�������� ]sgn(τ+
A
B��� )E(σ)dτ

It is not difficult to show that the first integral in the above equation is easily evaluated as in
(15), with an obvious change of independent variable, as follows

Jφ1
=

0
∫
t

exp[i(λ+1)
2A

(Aτ+B)2�������� ]dτ (38)

= √�����A�(λ+1)
π��������

�
�
�
s1E

*[(λ+1)σ1] − s0E
*[(λ+1)σ0]

�
�
�

The evaluation of the second integral in (37) is more involved. Use the transformation (12)
to rewrite the integral in the form

Jφ2
=

0
∫
t

exp[i(λ+1)
2A

(Aτ+B)2�������� ]sgn(τ+
A
B��� )E(σ)dτ =

√����2�A�

1������ [W1(λ,σ1)−W1(λ,σ0)] (39)

where
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W1(λ,x) =
o
∫
x

√��η

exp(is3(λ+1)η)E(η)�����������������dη (40)

is a function to be evaluated later. Then, Iφ1
takes the final from

Iφ1
=

	
�


Ω0−F√���A�

π���� s0E(σ0)
�
�
�√�����A�(λ+1)

π��������
�
�
�
s1E

*[(λ+1)σ1]−s0E
*[(λ+1)σ0]

�
�
�

(41)

+
�A�
F����√��2

π�� [W1(λ,σ1)−W1(λ,σ0)]

In a similar way, one can show that the integral Iφ2
is given by

Iφ2
=

	
�


Ω*

0−F*√���A�
π���� s0E

*(σ0)
�
�
�√�����A�(λ−1)

π��������
�
�
�
s1E

*[(λ−1)σ1]−s0E
*[(λ−1)σ0]

�
�
�

(42)

+
�A�
F*

����√��2
π�� [W2(λ,σ1)−W2(λ,σ0)]

where

W2(λ,x) =
o
∫
x

√��η

exp(is3(λ−1)η)E*(η)������������������dη (43)

The evaluation of the integrals W1(λ,x) and W2(λ,x) will be discussed next. Without loss of
generality, and for the sake of brevity, we will consider only the case when s3 = +1, since for
the case s3 = −1 one can simply substitute W1(λ,x) and W2(λ,x) in (41),(42) by their complex
conjugates. First recall that the expression for E(x) involves according to (24), two different
approximations, one valid for 0 ≤ x ≤ 4 and the other valid for x > 4. Thus, we can rewrite
Wi(λ,x), (i=1,2) as

Wi(λ,x) =
�
�
� W′i (λ,4) + W′′i (λ,x)

W′i (λ,x)

x > 4

0 ≤ x ≤ 4
(44)

where

W′′1(λ,x) =
4
∫
x

√��η

exp(is3(λ+1)η)E(η)�����������������dη (45)

W′′2(λ,x) =
4
∫
x

√��η

exp(is3(λ−1)η)E*(η)������������������dη (46)

After substitution of (24) into (40) and (43), and integrating term by term, we get

W′1(λ,x) =
2λ
1���

n=0
Σ
11

(4λ)n
(an+ibn)�������� I′n(x) for 0≤ x ≤4 (47a)

W′′1(λ,x) =
2

1−i����
�
�
� λ+1

2π����
�
�
�

1/2 �
�
�
E*[(λ+1)x]−E*[(λ+1)4]

�
�
�

(47b)

+ 2
n=0
Σ
11

(cn+idn)(4λ)nI′′n(x) for x > 4

and

W′2(λ,x) =
2λ
1���

n=0
Σ
11

(4λ)n
(an−ibn)�������� I′n(x) for 0 ≤ x ≤ 4 (48a)

W′′2(λ,x) =
2

1+i����
�
�
� λ−1

2π����
�
�
�

1/2 �
�
�
E*[(λ−1)x]−E*[(λ−1)4

�
�
�

(48b)

+ 2
n=0
Σ
11

(cn−idn)(4λ)nI′′n(x) for x > 4
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where

I′n(x) =
0
∫
λx

exp(iη)ηndη , for 0 ≤ x ≤ 4, n=0,1,2,...,11 (49)

I′′n(x) =
λ4
∫
λx

ηn+1

exp(iη)�������dη , for x > 4, n=0,1,2,...,11 (50)

The previous sequences of integrals can be evaluated recursively, using the relationships
I′n+1(x) = −i(λx)n+1exp(iλx) + i(n+1)I′n(x) n=0,1,2,...,11 (51)

I′′n+1(x) = −
(n+1)(λx)n+1

exp(iλx)������������ +
(n+1)(λ4)n+1

exp(iλ4)������������ + i
n+1

I′′n(x)������ n=0,1,2,...,11 (52)

The first integrals of the above sequences are

I′0(x) =
0
∫
λx

exp(iη)dη = −i(exp(iλx)−1) (53a)

I′′0(x) =
λ4
∫
λx

η
exp(iη)�������dη = [Ci(λx)−Ci(λ4)] + i[Si(λx)−Si(λ4)] (53b)

Where Si(x) and Ci(x) are the well-known sine and cosine integrals defined by

Si(x) =
0
∫
x

t
sin(t)������dt Ci(x) = γ

�
+ ln(x) +

0
∫
x

t
cos(t)−1��������dt (54)

and γ
�

= Euler’s constant (= 0.57721 ...). The evaluation of the sine and cosine integrals in
(54) can be easily performed uniformly, by rational approximations (Abramowitz and
Stegan, 1972).

We should mention in passing, that one should be careful with the definition of the
complex function E(x) since its argument should be always positive. It is a well-known fact
however, that the following relations hold between the principal moments of inertia of an
arbitrary rigid body
Ix+Iy>Iz , Ix+Iz>Iy , Iy+Iz>Ix (55)
From the first and second equations, along with the definitions for kx and ky, we get that
−1 < kx < 1 and −1 < ky < 1 (56)
As mentioned at the beginning, for a rigid body spinning about one of the two stable
principal axes, k = √����kxky > 0. Hence, the parameter k satisfies the inequality 0 < k < 1, and
since λ = 1/k, we have that
1 < λ < ∞ (57)
As a consequence, both λ+1 > 0 and λ−1 > 0 and the arguments of E(x) are well-defined in
equations (41),(42),(47b) and (48b).

5. Discussion of the solution

Taking advantage of the special symmetric structure of the problem, we have used a
complex analytic approach to derive analytic solutions for the problem of the attitude
motion of a self-excited rigid body. The use of complex variables allowed for the
formulation of the solution in a very compact form, which is appealing especially for
machine computations. This is very important, since it appears that for future applications,
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realistic compact analytical expressions modelling the attitude evolution, will become vital
in on board attitude control software. Certain difficulties arise from the sign functions in the
solution, but these were included, in order to give the solution in a complete form, i.e., a
solution for both Eulerian rates and angles, valid for both spin-up and spin-down maneuvers,
and valid also in the critical neighborhood of zero-spin rate case. This is the first time that
such a complete solution for this problem is reported in the literature, as far as the authors
know.

Although, even in complex form the analytic solutions are considerably shorter than
previous related results, they are still quite lengthy for hand computations. Nevertheless,
definite conclusions can be drawn about the asymptotic behaviour of the solution. By
keeping in the solution for example, only those terms that create secular effects, one can
capture the essential behavior of the motion, thus gaining an invaluable insight to the nature
of the problem. In fact, it has been shown in the past, that even such simplified procedures,
can be proven to be extremely successful for the study of attitude motion and control of
modern spacecraft (Longuski, 1989).

6. Numerical examples

The application of the theory is illustrated by means of practical examples, such as spin-
up or spin-down maneuvers of the Galileo spacecraft. Two cases are examined, the first case
a spin-up maneuver from ωz(0) = 3.15 rpm to ωz(tf) = 10 rpm. The second is spin-down maneuver
from ωz(0) = 3.15 rpm to ωz(tf) = −3.15 rpm. For both cases, the following initial conditions are
assumed
ωx(0) = ωy(0) = 0 (58)
φx(0) = φy(0) = φz(0) = 0 (59)
The mass properties for the Galileo spacecraft are
Ix = 2985 kg−m2, Iy = 2729 kg−m2, Iz = 4183 kg−m2 (60)
In general, transverse torques arise during spin-up or spin-down maneuvers, due to error
sources such as thruster misalignment or thruster mismatch. The Galileo spacecraft is a
rather extreme example of a spacecraft that uses a single thruster for the spin-up and spin-
down maneuvers. Moreover, the center of mass does not lie in the plane of the applied thrust
force. As a result, there are significant torques about all three body-fixed axes. The torques
generated about the body axes, are given by
Mx = −1.253 N−m, My = −1.494 N−m, Mz = ±13.5 N−m (62)
where the plus sign in Mz corresponds to spin-up, and the minus sign to spin-down.

6.1. CASE 1: SPIN-UP FROM 3.15 TO 10 RPM

The analytic solutions for the attitude motion are compared to the "exact" solutions
which are found by numerical integration of equations (1) and (25). Fig. 1 compares the
exact solution for ωx(t) with the analytic solution. In Fig. 1a both exact and analytic solutions
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are displayed, but they are indistinguishable from one another. Their difference, presented
in Fig. 1b, has oscillatory behaviour, with a linearly increasing envelope. The same plot
indicates that the analytic solution for ωx(t) deviates from the exact solution by only about
0.1%. Similar results were found also for the solution for ωy(t). Fig.2 demonstrates that the
linearity assumption (2) for ωz(t) is reasonable, since the error indicates a discrepancy of only
about 0.01% from the exact solution.

In Fig. 3, the exact solution for φx(t) is compared to the analytic solution. The discrepancy
between the exact and analytic solutions is not apparent in Fig. 4a, but Fig. 4b, which
displays their difference reveals that the error is of the order 0.5%. In Fig. 5 the analytic
solution for φz(t) is shown to be within about 0.01% of the exact solution.

6.2. CASE 2: SPIN-DOWN FROM 3.15 TO -3.15 RPM

The second example examines the very important case of despinning, possibly through
the region of zero spin rate. Low spin-rate, in conjuction with the nonlinear rate coupling
effect inherent in the Euler equations, can have catastrophic consequences, as was vividly
demonstrated by the GEOS-1 satellite experiment (Van der Ha, 1984).

Plots reveal that the assumption ωz(t) = Mz/Iz+ωz0 still remains valid, although the error
with the exact solution has increased to 0.3%. The solutions for ωx(t) and ωy(t) are still very
accurate, and up to the point when ωz(t) crosses the critical zero spin rate value, the error is of
the same order of magnitude as in the previous case. At very low spin rates, however, the
transverse torques create large angular displacements, and the small angle approximation for
φx(t), φy(t) is no longer valid. The kinematics equations have entered the region of
nonlinearity, which is clearly illustrated by the phase shift in Fig. 8 and Fig. 9. From this
point of view, a nonlinear method, such as the Poincaré’s or Lindstedt’s method of small
parameters (Blaquiere, 1966), could be proven to be useful, in a second order approximation
of the solution. Regardless of this fact, the solutions are still qualitatively correct, and the
analytic solution predicts the time history of the attitude orientation very closely. The
degradation of the accuracy of the solution at the low spin rate region should be expected;
further simulations however, not presented herein, have shown that low spin-rate by itself is
not a matter of concern. Rather the relative magnitude of the axial to the transverse torques
i.e., Mz/(Mx

2+My
2)1/2, acting during the time that the body is in the neighborhood of zero spin

rate, has proven to be the major factor for the inaccuracy of the analytic solution.

7. Conclusions

Analytic solutions have been derived for the attitude motion of spinning, self-excited
near-symmetric rigid body. The complex representation enabled the solution to take a
compact form, especially suitable for implementation in maneuver or attitude control
software. The solution assumes exact axial symmetry in order to write the solution for the
angular velocity about the spinning axis in a linear form, but keeps the distinction of the
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moments of inertia in the other two equations for the angular velocities. A small angle
approximation allowed the Euler angles to be given as the solution of a linear, time-varying
system with the expression for the angular velocities acting as a forcing function. Numerical
simulations reveal that the solutions are very accurate in describing the rotational motion of a
typical spacecraft. Current and previous research indicates, that such analytic solutions,
although cumbersome for hand computations, can be extremely helpful in capturing the
fundamental behavior of the motion, by neglecting the non-secular terms, and provide insight
into the mechanics of the motion, which cannot be derived from numerical solutions.
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