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Abstract

Many alternative coordinate choices exist for the description
of the rotational motion of a rigid body� Not all the choices
are equivalent with respect to their domain of validity for
accurate attitude representation or the ease they o	er in the
control design process� In this paper we present two choices of
coordinates which seem to be appropriate for two important
control problems� the stabilization of a rigid body with re�
duced control actuation and stabilization with limited sensor
information� Both coordinate sets have the common charac�
teristic of introducing a passive map from the angular veloci�
ties to the attitude coordinates�

�� Introduction

In most control problems the choice of coordinates has a pro�
found e	ect on the design process and the 
nal properties of
the proposed control law� This is true even for linear sys�
tems where an insightful choice of coordinates is often the
key for successful control law design ��� �� For nonlinear
systems �which generically live on manifolds� the choice of
coordinates is even more crucial� This is clearly evident from
the recent advances in nonlinear control design methodologies
using geometric methods �e�g�� feedback linearization� where
the search for a di	eomorphic transformation �i�e�� coordinate
change� is perhaps the most di�cult step the control engineer
has to face during the control design process ���� Coordinate
neighborhoods �charts� are then used to translate operations
on manifolds to operations on the euclidean space IRn�

In this paper we address the coordinate choice problem for
a particular nonlinear system which often appears in control
applications� Namely� the rotational motion of a rigid body�
Although there is a plethora of valid attitude representations
commonly used by both scientists and engineers alike� their
e	ect on analysis� stabilization and control problems varies
a great deal� General statements about the relative merit
of each coordinate choice cannot be made easily� since the
rami
cations of each choice depends on the particular prob�
lem at hand� We provide a preliminary discussion on certain
coordinates for the attitude kinematics which can be very use�
ful for control applications� In particular� we investigate two
coordinate sets with the following attractive properties� the
associated singularity of the coordinate set is moved as far
from the equilibrium as possible� in addition� the coordinates
introduce a passive map from the angular velocity vector in
body frame to the kinematic variables�

A number of reasons motivates our close examination of
the equations of the motion of a rotating rigid body� First� it
is probably the most widely encountered nonlinear system in
applications� Second� it has enough geometric structure which
allows for the derivation of certain elegant results� And third�

it illustrates the close connection between dynamical system
analysis and nonlinear control�

�� The Con�guration Space SO���

The orientation of a rigid body which rotates freely in space
can be uniquely described by an orthogonal matrix R with
positive determinant� Therefore� the con
guration manifold
of the motion is the special orthogonal group SO���� The
time evolution of the matrix R on SO��� gives rise to the
attitude kinematics of the motion

�R � S���R ��

where S��� is the skew�symmetric matrix

S��� ��

�
� �� ���

��� � ��
�� ��� �

�
���

and � �� ���� ��� ���
T is the angular velocity vector in body�

axes�
There are many parameterizations of the attitude kine�

matics� Loosely speaking� one can think of di	erent param�
eterizations as di	erent choices of coordinates on the rota�
tion group SO���� that is� as di	erent parameterizations of
the matrix R� Standard coordinates on SO��� are the Eule�
rian angles� the Euler parameters �quaternions�� the Cayley�
Rodrigues parameters� the Cayley�Klein parameters� the axis�
azimuth parameters� etc� ��� ��� A major classi
cation of
these parameterizations is according to their dimension� Since
SO��� is a three�dimensional compact manifold ���� a minimal
parameterization is necessarily of third order�

�� E�ect of Singularities

The Eulerian angles� the Cayley�Rodrigues parameters and
the axis�azimuth parameters are examples of three dimen�
sional parameterizations of SO���� Three dimensional pa�
rameterizations introduce necessarily a singularity� as it is
not possible to 
nd a globally di	eomorphic transformation
between SO��� �which is compact� and the euclidean space
IR� �which is not�� In order to appreciate the e	ect of the co�
ordinate singularity let us consider the problem of spin�axis
stabilization of a rotating� symmetric body �e�g�� a spinning
top��

Typically� a ���� Eulerian angle set ��� �� �� is chosen for
the description of the attitude kinematics for this problem
��� �� ���� This Eulerian angle choice has the advantage that
it requires only one angle �the second angle �� in order to de�
scribe the departure of the local spin�axis from its initial �e�g��
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Figure � Spinning top and tilt angle ��

inertial� orientation �cf� Fig �� The kinematic equations in
terms of �� � and � are given by ���� �� ��

�� � ��� cos� � �� sin ��� sin � ��a�

�� � �� cos�� �� sin � ��b�

�� � �� � ��� cos�� �� sin ��� tan � ��c�

The equilibrium point is � � � � � � �� Thus� the objective
of the control law is to make � � �� Notice however� that this
���� Eulerian angle set has a singularity �i�e�� the kinematic
di	erential equations are not de
ned� at � � �� It is there�
fore clear that� although all minimal parameterizations will
introduce a singularity in the description of the kinematics�
the e�ect of this singularity for a particular problem can vary
a great deal� The appropriate choice of coordinates for such
systems �or for general nonlinear systems� for that matter�
cannot be overemphasized� For the previous example� the
poor choice of kinematic parameters introduced the singular�
ity exactly at the equilibrium point� The previous discussion
reveals that �at least for stabilization problems� it is desirable
to move the singularity associated with three�dimensional at�
titude parameterizations as far from the equilibrium as pos�
sible� In the sequel we introduce two nonstandard parame�
terizations which have exactly this property� The derivation
of both these representations is based on the idea of stereo�
graphic projection �� ���

�� Two Nonstandard Coordinate Choices

���� The �w� z� coordinates

The method of stereographic projection can be used to elimi�
nate the unity constraint associated with the elements of any
column �or row� of the rotation matrix R� This procedure
introduces a complex coordinate �w� in order to describe the
relative location of a given axis in the body frame� Going
back to the example of the spinning top� one can de
ne the
unit vector � �� ���� ��� ���

T in the negative gravity direction
expressed in body coordinates� In other words� ��� ��� �� are
the direction cosines of the inertial ��axis with respect to the
local body�
xed axes� The kinematic equations in terms of �
are given by

�� � S���� ���

Because of the constraint ����������� �  the vector � lies on
the unit sphere S� in IR�� Let us consider the stereographic
projection S� � C� of the unit sphere S� onto the extended

complex plane C�
�

� C � f�g� de
ned by

w � w� � iw� ��
�� � i ��
 � ��

���

where i ��
p�� The kinematic equation for this coordi�

nate satis
es a complex Riccati equation and is related to the
work of Darboux in classical di	erential geometry ���� Using
Eqs� ��� and ��� one obtains ��� ���

�w � �i ��w �
�c
�

�
��c
�
w� ���

where the bar denotes complex conjugate and where �c ��
�� � i ��� This stereographic projection establishes a one�to�
one correspondence between the unit sphere and the extended
complex plane� Note that by choosing the pole of the stereo�
graphic projection to be the point ��� ���� we have moved �
in e	ect � the singularity of this coordinate choice as far from
the equilibrium point ��� �� � as possible�

A complete coordinate set for SO��� requires the intro�
duction of an additional coordinate to complement �w�� It
can be shown ���� ��� that this coordinate �z� satis
es the
following di	erential equation

�z � �� �
i

�
���cw� �c �w� ���

���� The ��� Coordinates

Higher�dimensional parameterizations� such as the Euler pa�
rameters� are singularity�free and therefore provide a global
description� such parameterizations are� however� redundant�
Since the Euler parameter vector q �� �q�� q�� q�� q��

T obeys
the constraint qT q �  it evolves on the four�dimensional unit
sphere S� in IR�� One can therefore apply the stereographic
projection S� � IR� � f�g on the Euler parameters and in�
troduce a set of coordinates �referred to in the literature as
the Modi
ed Rodrigues parameters ��� �� �� ��� by

�i ��
qi

 � q�
� i � � �� � ���

These attitude coordinates allow for eigenaxis rotations of up
to ��� deg whereas the classical Rodrigues parameters are
limited to eigenaxis rotations of only up to �� deg� There�
fore� the Rodrigues parameters necessarily introduce an in�

nite number of singular orientations� whereas the Modi
ed
Rodrigues parameters only introduce a single singular con
g�
uration on SO���� the Modi
ed Rodrigues parameters have
a larger domain of validity when compared to other three di�
mensional parameterizations�

The kinematics in terms of the Modi
ed Rodrigues pa�
rameter vector � �� ���� ��� ���

T is given by

�� � G����� ���� � �� ���

where

G��� �� �

�

�
I� � S��� � ��T �  � �T �

�
I�

�
� ���

and I� is the �� � identity matrix� Direct calculation shows
that the matrix G��� in Eq� ��� satis
es the following two
identities

�TG���� �

�
 � �T �

�

�
�T� ��



and

GT ���G��� �

�
 � �T�

�

��

I� ���

for all �� � � IR��

	� Two Control Problems

A new family of small spacecraft has been recently proposed�
which intends to reduce the overall operational cost of today�s
ultra�expensive satellites ��� ��� These proposed satellites will
be task�speci
c� thus reducing the time and e	ort required
for their design� construction and operation� Moreover� if the
cost of these spacecraft is to be kept at a minimum� sensor
and�or actuator redundancy must be avoided�

It is therefore of prime interest the problem of stabiliza�
tion without complete actuation or without complete sensor
information� In this section we show how the two sets of co�
ordinates previously introduced can be used to solve these
two problems� We emphasize the useful property of passivity
for these choices of coordinates� that is� for these kinematic
parameters the map from the angular velocities to the ori�
entation coordinates is passive� This property � along with
the well�known passivity from the torques to the angular ve�
locities � allows for linear globally asymptotically stabilizing
control laws and for global stabilization with no angular ve�
locity feedback�

Let H and X denote two Hilbert spaces and let 	 �� � 
H
denote the inner product in H�

De�nition 	�� A system with input u � H and output y �
H is called passive �with storage function V � if there exists a
positive de
nite function V � X � IR� such thatZ

T

�

	 y�t�� u�t� 
H dt � V �x�T ��� V �x���� ���

where x � X is the state of the system�

De�nition 	�� A system with input u � H and output y �
H is called strictly passive �with storage function V and dis�
sipation rate �� if there exist positive de
nite functions V �
X � IR� and � � X � IR� such thatZ

T

�

	 y�t�� u�t� 
H dt � V �x�T ���V �x�����

Z
T

�

��x�t��dt

���

Passivity is a very desirable property for a system� First� be�
cause it implies some very good robustness properties� Sec�
ond� because� under mild assumptions� feedback interconnec�
tion of a passive and a strictly passive system is globally
asymptotically stable ����

	��� The under
actuated body

Consider an axially�symmetric rigid body with Ia and Ir being
the axial and the radial moments of inertia� If there is no
available torque along the symmetry axis �say� the ��axis� then
the angular velocity component along this axis is constant�
That is� ����� � ���� The equations of motion can then be
written in the form

��c � �i �����c � uc� �c��� � �c� ��a�

�w � �i ���w �
�c
�

�
��c
�
w�� w��� � w� ��b�

where � � �Ir � Ia��Ir and uc �� u� � i u� is the acting
torque� Equation ��a� will be referred to as the dynamics
and Eq� ��b� will be referred to as the kinematics of the
motion�

In the sequel j � j denotes absolute value of a complex
number and k�k denotes the euclidean norm in IRn� Moreover�
the inner products in C and IRn are de
ned� as usual� by
	 xc� yc 
C� Re��xcyc� and 	 x�y 
IRn� xT y for xc� yc � C
and x� y � IRn� respectively�

The system in Eqs� ��� has some nice passivity charac�
teristics�

Proposition 	�� �i� Consider the system ���a� with in�
put uc and output �c� This system is passive with stor�
age function

V���c� � �

�
j�cj� ���

�ii� Consider the system ���b� with input �c and output w�
This system is passive with storage function

V��w� � ln� � jwj�� ���

Proof� �i� In order to show that the dynamics subsystem
in Eq� ��a� is passive notice that the derivative of V�
in Eq� ��� along the trajectories of ��a� is

dV�
dt

� Re���cuc� ���

Integrating both sides of the previous equation from �
to T � we arrive at Eq� ����

�ii� In order to show that the kinematics subsystem in Eq� ��b�
is passive notice that the derivative of V� in Eq� ���
along the trajectories of ��b� is

dV�
dt

� Re��w�c� ���

Integrating both sides we arrive at Eq� ����

This proposition shows that the system in Eqs� ��� is a
cascade interconnection of two passive systems� We now show
that the cascade interconnection of the two passive systems in
Eqs� ��a� and ��b� can be globally asymptotically stabilized
using linear feedback in terms of the subsystem outputs� This
result is a consequence of the particular choice of coordinates
which make the kinematics subsystem passive� Hence the
following lemma�

Lemma 	�� The control law

uc � �k��c � c ����

with k� 
 � renders the subsystem ���a� strictly passive from
c to �c with storage function V� and dissipation rate ���c� �
k�j�cj��

Proof� Letting V� as in Eq� ��� and using Eqs� ��� and ����
we get that

dV�
dt

� �k�j�cj� �Re���cc� ���

Integrating both sides of the previous equation one obtainsZ
T

�

Re���cc� dt � V���c�T ��� V���c���� � k�

Z
T

�

j�cj� dt
����

which� according to Eq� ��� implies that the system from c
to �c is strictly passive�



Choosing now a negative feedback c � �k�w one obtains
a feedback interconnection of a strictly passive system and a
passive system which� using a certain observability condition
can be shown to be globally asymptotically stable ��� ���

Theorem 	�� Consider the cascade interconnection ���a��
���b�� The linear control

uc � �k��c � k�w ����

where k�� k� 
 � globally asymptotically stabilizes this system
at the origin�

Proof� Consider the positive de
nite� radially unbounded
function

V ��c�w� � V���c��k�V��w� �
�

�
j�cj��k� ln�� jwj�� ����

Taking the derivative of V along the trajectories of Eqs� ����
���� one obtains

�V � Re���c ��c� �
�k�

 � jwj�Re��w �w�

� �k�j�cj� � k�Re���cw� �
k�

 � jwj�Re��w�c � �w��cw
��

� �k�j�cj� ����

and the system is stable� Asymptotic stability follows using
a standard LaSalle�type argument�

	��� The under
sensed body

In this section we address the problem of stabilization on
SO��� with incomplete state information� In particular� we
investigate the case of no angular velocity feedback� Control
laws which do not require angular velocity feedback can be
utilized in control strategies for small satellites for the rea�
sons stated earlier� In addition� even for traditional space�
craft� angular velocity information is usually provided by rate
gyros which are prone to failure� thus� implementation of feed�
back control schemes without angular velocity information is
clearly desirable�

Consider again the axi�symmetric body described by Eqs�
��� where now it is assumed that the sensors provide only
attitude orientation signals as measured by the coordinate
�w�� The passivity properties of this system can be utilized
for velocity�free stabilizing control laws� Lemma �� shows
that the feedback control law uc � �k��c � c makes the
system ��a� strictly passive from c to �c� Consider now
instead the control law

uc � �k�w � vc ����

Lemma 	�� Let the system ���� and the control law in Eq� �����
This system with input vc and output �c is passive�

Proof� Let the function V ��c�w� � V���c� � k�V��w� where
V� and V� as in Eqs� ��� and ���� respectively� Di	eren�

tiation along the trajectories of ��� yields that �V ��c�w� �
Re���cvc��k�Re��w�c�� Using Eq� ���� we get that �V ��c�w� �
Re���cvc�� Integrating both sides we arrive at Eq� ����

It should be clear from the previous proof that the system
in Eqs� ��� with the control law in Eq� ���� is passive with
storage function V ��c�w� � �

�
j�cj� � k� ln� � jwj���

For the axi�symmetric body with no control along the
symmetry axis we have shown that ���t� � ��� is constant�
Let us further assume that ��� � � �e�g�� as in a rest�to�rest
maneuver��

Proposition 	�� Consider the system ���� with ��� � � and
the control law in Eq� ����� This system with input

yc �
�

� jwj� �vc � w��vc� ����

and output

wc �
�c
�

�
��c
�
w� � �w ����

is passive�

Proof� For input yc and output wc� one obtainsZ
T

�

Re� �wcyc�dt �


� jwj�
Z

T

�

Re���cvc � �c�vcjwj��dt

�

Z
T

�

Re���cvc�dt ����

and the result follows from lemma ����

Notice that if yc is the new input as de
ned by proposi�
tion ��� then vc is given by

vc �
yc
�

�
�yc
�
w� ����

Since the map from yc to wc is passive we can explore the
possibility of a feedback interconnection between wc and yc
with a strictly passive system� This motivates the control law
in the following theorem�

Theorem 	�� Consider the system in Eqs� ���� and let the
control law

uc � �k�w� k�
�
�yc � �ycw

�� ���

with k� 
 �� k� 
 �	 and where yc is the output of the linear	
time�invariant system

�xc � �a xc �w ���a�

yc � �a xc �w ���b�

where a 
 �� Then limt����c�t��w�t�� � �	 for all initial
conditions ��c��w�� � C�C��

Proof� Consider the function

V ��c� w� �xc� �
�

�
j�cj� � k� ln� � jwj�� � k�

�
j �xcj� ����

Taking the derivative of V along the closed�loop trajectories�
one obtains

�V � Re�uc��c� �
�k�

 � jwj�Re� �w�w� � k�Re��xc ��xc�

� �k�
�
�yc��c � �ycw

���c� � k�Re��xc ��xc�

� �k�
�
� �xc��c � ��xcw

� ��c� � k�Re� ��xca �xc�

�
k�
�
Re� ��xc� � ��xc��w

��

� �k�aj �xcj� ����

Since �V � � and V is radially unbounded� all solutions are
bounded� Consider the set Ec � f��c�w� xc� � �V � �g� Notice

that �V 	 � if and only if �xc 	 �� which implies that yc � ��
Moreover� �xc 	 � implies that �w � � and from Eq� ��b�
that �c � �� Equation ��a� then implies that uc � � and
therefore from Eq� ��� that w � �� In short� we have shown



that �V 	 � if and only if �c � w � �� That is� the largest
invariant set in Ec is the set Mc � f��c�w� xc� � Ec � �c �
w � �g� By LaSalle�s Invariance Principle ���� all trajectories
of the closed�loop system asymptotically approach Mc� thus
limt����c�t��w�t�� � ��

Remark 	�� The transfer function from �w to yc is strictly
positive real� The system in Eqs� ���� is �non�strictly� proper�
and �non�strictly� positive real� It is� in essence� a lead 
lter
of the orientation parameter �w� which provides derivative
information to be used in the control law�

The case of a general� non�symmetric case can be treated
similarly� First� one can show that passivity properties similar
to the ones of the �w� coordinate also hold for the ��� coor�
dinates� To this end� recall that the equations for a general
rigid body are

J �� � �S���J� � u� ���� � �� ���a�

�� � G����� ���� � �� ���b�

where J is the inertia matrix� u �� �u�� u�� u��
T is the input

torque in body�axes and G��� as in Eq� ����

Proposition 	�� �i� The system �
�a� with input u and
output � is passive�

�ii� The system �
�b� with input � and output � is passive�

Proof� �i� Let the function V���� � �

�
�TJ�� Di	erentiation

along the trajectories of Eq� ���a� yields that �V���� � �T u�
therefore Z

T

�

�Tu dt � V����T �� � V����� ����

�ii� Let the function V���� � � ln���T��� Di	erentiation
along the trajectories of Eq� ���b� and use of Eq� ��� yields

that �V���� � �T�� thereforeZ
T

�

�T� dt � V����T ��� V����� ����

Consider now the more general control law

u � �k�� � v ����

with k� 
 �� where v is the new input� The following lemma
shows that the passivity between the new input v and the
output � is preserved for the system in Eqs� �����

Lemma 	�� Let the system �
�� and the control law �
���
This system with input v and output � is passive�

Proof� Let the function V ��� �� � V���� � k�V���� where
V� and V� as in proposition ���� Di	erentiation along the
trajectories of Eq� ���a� yields that �V ��� �� � �T u� k��

T��

Using Eq� ���� we get that �V ��� �� � �T v� The rest of the
proof follows as in Proposition ����

Property ��� implies an �orthogonality condition for the
matrix G���� in particular� the matrix G��� times its trans�
pose yields the identity matrix times a non�vanishing� time�
varying function� Similarly to proposition ��� one can use this
result to establish �orthogonal input�output transformations
for Eqs� ��������� which preserve passivity�

Proposition 	�� The system in Eqs� �
�� with input y ��
�

���T �

��
G���v and output w � G���� � �� is passive�

Proof� Using Eq� ��� we have thatZ
T

�

wT y dt �

Z
T

�

�
�

 � �T�

��
�TGT ���G���v dt

�

Z
T

�

�T v dt ����

Using now lemma ��� we establish the desired result�

Notice that if y is the new input as de
ned by proposi�
tion ��� then v is given by

v � GT ���y ����

Since the map from y to w is passive� one may explore the
possibility of globally asymptotically stabilizing the system by
choosing a feedback such that the map from w to y is strictly
passive �����

Let A be any stability matrix� B any full column rank
matrix� with the pair �A�B� controllable� and Q any positive
de
nite matrix� Let also the matrix P be the solution of the
Lyapunov equation

ATP � PA � �Q ���

Clearly then P is positive de
nite� We are now ready to state
the main result for asymptotic stabilization in the large of
the general rigid body in Eqs� ���� without angular velocity
feedback�

Theorem 	�� Consider the system �
�� and let the control
law

u � �k�� � k�G
T ���y ����

with k� 
 �	 k� 
 �	 and where y is the output of the linear	
time�invariant system

�x � Ax�B� ���a�

y � BTPAx� BTPB� ���b�

Then limt�����t�� ��t�� � �	 for all initial conditions
���� ��� � IR� � IR��

Proof� Consider the function

V ��� �� �x� � �

�
�T J�� �k� ln� � �T �� �

k�
�

�xTP �x ����

The time derivative of V along the trajectories of the closed�
loop system is then

�V � �T J ��� k�

�
�

 � �T �

�
�TG����

�k� �x
TP �x

� �T ��k�� � k�G
T ���y�

�k��
T� � k� �x

TPA �x� k� �x
TPBG����

�
k�
�

�xT �PA�ATP � �x � �k�
�

�xTQ �x � � ����

First observe that since V is radially unbounded� all so�
lutions are bounded� Consider now the set E � f��� �� x� �
�V � �g� Trajectories in E then satisfy �x � � and hence
x�t� � x� for all t � � and from ���a� also ��t� � �� for
all t � �� Then �� � � and from ��� also ��t� � � for all



t � �� Since y � BTP �x one has also that y � �� and using
���a� and ���� we have that � � �� � � and y � � implies
that � � �� The largest invariant set in E is therefore the set
M � f��� �� x� � E � � � �� � � �� x � x�g� By LaSalle�s In�
variance Principle ��� all trajectories of the system asymptot�
ically approach M� thus limt�����t�� ��t�� � �� as claimed�

Remark 	�� Similarly� to the results of section ��� and us�
ing again the passivity characteristics of the � coordinates�
it should not be very di�cult for the reader to verify that in
case of angular velocity feedback� the linear control law

u � �k��� k�� ����

where k� 
 �� k� 
 �� globally asymptotically stabilizes the
system in Eqs� ����� see also ����

�� Conclusions

We have addressed the issue of �good coordinate choices
for control problems on SO���� We have shown that for
three�dimensional parameterizations the associated singulari�
ties have a great impact on the stabilization problem� In fact�
it is always advisable to choose coordinates such that the sin�
gularity is as far from the equilibrium as possible� Moreover�
parameterizations having certain passivity properties can be
used for global asymptotic stabilization using linear control
laws and for stabilization without angular velocity feedback�
We have presented two special� nonstandard parameteriza�
tions which appear to be useful for axially�symmetric and
non�symmetric rigid bodies� respectively� We hope that the
results of this work will contribute to our current understand�
ing on the impact of appropriate coordinate choices for prob�
lems on SO����
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