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Abstract

Many alternative coordinate choices exist for the description
of the rotational motion of a rigid body. Not all the choices
are equivalent with respect to their domain of validity for
accurate attitude representation or the ease they offer in the
control design process. In this paper we present two choices of
coordinates which seem to be appropriate for two important
control problems: the stabilization of a rigid body with re-
duced control actuation and stabilization with limited sensor
information. Both coordinate sets have the common charac-
teristic of introducing a passive map from the angular veloci-
ties to the attitude coordinates.

1. Introduction

In most control problems the choice of coordinates has a pro-
found effect on the design process and the final properties of
the proposed control law. This is true even for linear sys-
tems where an insightful choice of coordinates is often the
key for successful control law design [6, 11]. For nonlinear
systems (which generically live on manifolds) the choice of
coordinates is even more crucial. This is clearly evident from
the recent advances in nonlinear control design methodologies
using geometric methods (e.g., feedback linearization) where
the search for a diffeomorphic transformation (i.e., coordinate
change) is perhaps the most difficult step the control engineer
has to face during the control design process [10]. Coordinate
neighborhoods (charts) are then used to translate operations
on manifolds to operations on the euclidean space IR™.

In this paper we address the coordinate choice problem for
a particular nonlinear system which often appears in control
applications. Namely, the rotational motion of a rigid body.
Although there is a plethora of valid attitude representations
commonly used by both scientists and engineers alike, their
effect on analysis, stabilization and control problems varies
a great deal. General statements about the relative merit
of each coordinate choice cannot be made easily, since the
ramifications of each choice depends on the particular prob-
lem at hand. We provide a preliminary discussion on certain
coordinates for the attitude kinematics which can be very use-
ful for control applications. In particular, we investigate two
coordinate sets with the following attractive properties: the
associated singularity of the coordinate set is moved as far
from the equilibrium as possible; in addition, the coordinates
introduce a passive map from the angular velocity vector in
body frame to the kinematic variables.

A number of reasons motivates our close examination of
the equations of the motion of a rotating rigid body. First, it
is probably the most widely encountered nonlinear system in
applications. Second, it has enough geometric structure which
allows for the derivation of certain elegant results. And third,

it illustrates the close connection between dynamical system
analysis and nonlinear control.

2. The Configuration Space SO(3)

The orientation of a rigid body which rotates freely in space
can be uniquely described by an orthogonal matrix R with
positive determinant. Therefore, the configuration manifold
of the motion is the special orthogonal group SO(3). The
time evolution of the matrix R on SO(3) gives rise to the
attitude kinematics of the motion

R=S(w)R (1)

where S(-) is the skew-symmetric matrix

0 w3 — w2
S(w) = | —ws 0w (2)
w2 —Ww1 0
and w := (w1, wz, wg)T is the angular velocity vector in body-

axes.

There are many parameterizations of the attitude kine-
matics. Loosely speaking, one can think of different param-
eterizations as different choices of coordinates on the rota-
tion group SO(3), that is, as different parameterizations of
the matrix R. Standard coordinates on SO(3) are the Eule-
rian angles, the Euler parameters (quaternions), the Cayley-
Rodrigues parameters, the Cayley-Klein parameters, the axis-
azimuth parameters, etc. [12, 17]. A major classification of
these parameterizations is according to their dimension. Since
SO(3) is a three-dimensional compact manifold [2], a minimal
parameterization is necessarily of third order.

3. Effect of Singularities

The Eulerian angles, the Cayley-Rodrigues parameters and
the axis-azimuth parameters are examples of three dimen-
sional parameterizations of SO(3). Three dimensional pa-
rameterizations introduce necessarily a singularity, as it is
not possible to find a globally diffeomorphic transformation
between SO(3) (which is compact) and the euclidean space
IR® (which is not). In order to appreciate the effect of the co-
ordinate singularity let us consider the problem of spin-axis
stabilization of a rotating, symmetric body (e.g., a spinning
top).

Typically, a 3-1-3 Eulerian angle set (¢, §,¢) is chosen for
the description of the attitude kinematics for this problem
[8, 15, 23]. This Eulerian angle choice has the advantage that
it requires only one angle (the second angle ) in order to de-
scribe the departure of the local spin-axis from its initial (e.g.,



Figure 1: Spinning top and tilt angle 6.

inertial) orientation (cf. Fig 1). The kinematic equations in
terms of ¢, 6 and ¢ are given by [23, 15, §]

(;; = (wzcost¢ +wysiny)/sinf (3a)
§ = wcos 1 — wo sin 9P (3b)
z/} = ws— (wacosy+wising)/tanf (3¢)

The equilibrium point is ¢ = # = ¢» = 0. Thus, the objective
of the control law i1s to make § = 0. Notice however, that this
3-1-3 Eulerian angle set has a singularity (i.e., the kinematic
differential equations are not defined) at § = 0. It is there-
fore clear that, although all minimal parameterizations will
introduce a singularity in the description of the kinematics,
the effect of this singularity for a particular problem can vary
a great deal. The appropriate choice of coordinates for such
systems (or for general nonlinear systems, for that matter)
cannot be overemphasized. For the previous example, the
poor choice of kinematic parameters introduced the singular-
ity exactly at the equilibrium point! The previous discussion
reveals that (at least for stabilization problems) it is desirable
to move the singularity associated with three-dimensional at-
titude parameterizations as far from the equilibrium as pos-
sible. In the sequel we introduce two nonstandard parame-
terizations which have exactly this property. The derivation
of both these representations is based on the idea of stereo-
graphic projection [1, 19].

4. Two Nonstandard Coordinate Choices

4.1. The (w, z) coordinates

The method of stereographic projection can be used to elimi-
nate the unity constraint associated with the elements of any
column (or row) of the rotation matrix R. This procedure
introduces a complex coordinate (w) in order to describe the
relative location of a given axis in the body frame. Going
back to the example of the spinning top, one can define the
unit vector v := (v1, 72, 73)T in the negative gravity direction
expressed in body coordinates. In other words, v1, 72, vs are
the direction cosines of the inertial 3-axis with respect to the
local body-fixed axes. The kinematic equations in terms of v
are given by

¥ =Sy (4)

Because of the constraint v7 ++5 +~5 = 1 the vector v lies on
the unit sphere S? in IR®. Let us consider the stereographic
projection 5% — €4 of the unit sphere S? onto the extended

complex plane Cq 2qu {o0}, defined by

. ’72—i71
= == - 5
W =w; +1ws 7 (5)

where 1 := +/—1. The kinematic equation for this coordi-
nate satisfies a complex Riccati equation and is related to the
work of Darboux in classical differential geometry [3]. Using
Eqgs. (4) and (5) one obtains [21, 22]

W:—iW3W+&+&W2 (6)
2 2

where the bar denotes complex conjugate and where w. :=
w1 + twe. This stereographic projection establishes a one-to-
one correspondence between the unit sphere and the extended
complex plane. Note that by choosing the pole of the stereo-
graphic projection to be the point (0,0, —1) we have moved —
in effect — the singularity of this coordinate choice as far from
the equilibrium point (0,0,1) as possible.

A complete coordinate set for SO(3) requires the intro-
duction of an additional coordinate to complement (w). It
can be shown [22, 20] that this coordinate (z) satisfies the
following differential equation

é:m+%@m—wﬂ) (7)

4.2. The (¢) Coordinates

Higher-dimensional parameterizations, such as the Euler pa-
rameters, are singularity-free and therefore provide a global
description; such parameterizations are, however, redundant.
Since the Euler parameter vector ¢ := (qo, ¢1, g2, qg)T obeys
the constraint g7 ¢ = 1it evolves on the four-dimensional unit
sphere S in IR*. One can therefore apply the stereographic
projection S® — IR? U {00} on the Euler parameters and in-
troduce a set of coordinates (referred to in the literature as
the Modified Rodrigues parameters [17, 14, 18, 16]) by

1+ qo

o , 1=1,2,3 (8)
These attitude coordinates allow for eigenaxis rotations of up
to 360 deg whereas the classical Rodrigues parameters are
limited to eigenaxis rotations of only up to 180 deg. There-
fore, the Rodrigues parameters necessarily introduce an in-
finite number of singular orientations, whereas the Modified
Rodrigues parameters only introduce a single singular config-
uration on SO(3); the Modified Rodrigues parameters have
a larger domain of validity when compared to other three di-
mensional parameterizations.

The kinematics in terms of the Modified Rodrigues pa-
rameter vector o := (01, 02, 0'3)T is given by

6 =d(o)w, a(0) = a0 (9)
where
Gwy:§<g—swamT—l§§35). (10)

and I is the 3 x 3 identity matrix. Direct calculation shows
that the matrix G(o) in Eq. (9) satisfies the following two

identities -
JTG(a)w = (1—1:#) oTw (11)



and

a7 (0)G(o) = (#) I (12)

for all w, o € IR®.

5. Two Control Problems

A new family of small spacecraft has been recently proposed,
which intends to reduce the overall operational cost of today’s
ultra-expensive satellites [4, 7]. These proposed satellites will
be task-specific, thus reducing the time and effort required
for their design, construction and operation. Moreover, if the
cost of these spacecraft is to be kept at a minimum, sensor
and/or actuator redundancy must be avoided.

It is therefore of prime interest the problem of stabiliza-
tion without complete actuation or without complete sensor
information. In this section we show how the two sets of co-
ordinates previously introduced can be used to solve these
two problems. We emphasize the useful property of passivity
for these choices of coordinates; that is, for these kinematic
parameters the map from the angular velocities to the ori-
entation coordinates is passive. This property — along with
the well-known passivity from the torques to the angular ve-
locities — allows for linear globally asymptotically stabilizing
control laws and for global stabilization with no angular ve-
locity feedback.

Let H and X denote two Hilbert spaces and let < -, - >
denote the inner product in H.

Definition 5.1 A system with input « € H and output y €
H is called passive (with storage function V') if there exists a
positive definite function V : X — IRy such that

/ < y(t),u(t) >y dt > V(z(T)) — V(2(0)) (13)

where © € X is the state of the system.

Definition 5.2 A system with input « € H and output y €
H is called strictly passive (with storage function V' and dis-
sipation rate x) if there exist positive definite functions V :

X — IRy and x : X — IRy such that

[ < vmu s ez Vi) vy [
(14)

Passivity is a very desirable property for a system. First, be-
cause it implies some very good robustness properties. Sec-
ond, because, under mild assumptions, feedback interconnec-
tion of a passive and a strictly passive system is globally
asymptotically stable [5].

5.1. The under-actuated body

Consider an axially-symmetric rigid body with I, and I, being
the axial and the radial moments of inertia. If there is no
available torque along the symmetry axis (say, the 3-axis) then
the angular velocity component along this axis is constant.
That is, wa(0) = wso. The equations of motion can then be
written in the form

—1 QWwaoWe + e, we(0) = weo  (15a)
—iwaoW + o= 4 &WQ,

5 5 w(0) = wo (15Db)

where o = (I, — I,)/I, and u. := w1 + 1 uz is the acting
torque. Equation (15a) will be referred to as the dynamics
and Eq. (15b) will be referred to as the kinematics of the
motion.

In the sequel |- | denotes absolute value of a complex
number and ||-|| denotes the euclidean norm in IR™. Moreover,
the inner products in € and IR"™ are defined, as usual, by
< Zeyye >o= Re(zeye) and < z,y >prr= Ty for ze,y. € C
and z,y € IR™, respectively.

The system in Egs. (15) has some nice passivity charac-
teristics.

Proposition 5.1 (i) Consider the system (15a) with in-
put u. and output w.. This system s passive with stor-

age function
(16)

(ii) Consider the system (15b) with input w. and output w.
This system is passive with storage function

Vi(we) = lwe|”

Va(w) = In(1 + wl?) an)
Proof. (i) In order to show that the dynamics subsystem
in Eq. (15a) is passive notice that the derivative of V}
in Eq. (16) along the trajectories of (15a) is

dVi

— = Re(wcu.)

7 (18)

Integrating both sides of the previous equation from 0
to T', we arrive at Eq. (13).

(ii) In order to show that the kinematics subsystem in Eq. (15b)

is passive notice that the derivative of V2 in Eq. (17)
along the trajectories of (15b) is

ave

i Re(ww.)

(19)
Integrating both sides we arrive at Eq. (13).
]

This proposition shows that the system in Eqgs. (15) is a
cascade interconnection of two passive systems. We now show
that the cascade interconnection of the two passive systems in
Eqs. (15a) and (15b) can be globally asymptotically stabilized
using linear feedback in terms of the subsystem outputs. This
result is a consequence of the particular choice of coordinates
which make the kinematics subsystem passive. Hence the
following lemma.

Lemma 5.1 The control law

(20)

with k1 > 0 renders the subsystem (15a) strictly passive from
ve to we with storage function Vi and dissipation rate X(wc) =
k1|wc|2

Ue = _klwc + ve

Proof. Letting Vi asin Eq. (16) and using Eqgs. (18) and (20)
we get that

% = —kufw + Re(@ore) (21)
Integrating both sides of the previous equation one obtains
T T
/ Re(weve) dt = Vi(we(T)) — Vi(we(0)) + ki we|? dt
0 0

(22)
which, according to Eq. (14) implies that the system from v,
to w. is strictly passive. |



Choosing now a negative feedback v. = —kow one obtains
a feedback interconnection of a strictly passive system and a
passive system which, using a certain observability condition
can be shown to be globally asymptotically stable [5, 9].

Theorem 5.1 Consider the cascade interconnection (15a)-
(15b). The linear control

(23)

where k1, k2 > 0 globally asymptotically stabilizes this system
at the origin.

. = —kiwe — kaw

Proof. Consider the positive definite, radially unbounded
function

V(we,w) = Vi(we) + koVa(w) = el + b In(1+|w]?) (24)

2

Taking the derivative of V' along the trajectories of Egs. (15)-
(23) one obtains

: . 2kz .
V = Re(wew. ———— Re(w
e(wewe) + TS v e(ww)
= —ki|we]’ — k2 Re(@ew) + l_i_kﬁ}%e(v*vwc + woew”)
= —kifwel’ (25)

and the system is stable. Asymptotic stability follows using
a standard LaSalle-type argument. |

5.2. The under-sensed body

In this section we address the problem of stabilization on
SO(3) with incomplete state information. In particular, we
investigate the case of no angular velocity feedback. Control
laws which do not require angular velocity feedback can be
utilized in control strategies for small satellites for the rea-
sons stated earlier. In addition, even for traditional space-
craft, angular velocity information is usually provided by rate
gyros which are prone to failure; thus, implementation of feed-
back control schemes without angular velocity information is
clearly desirable.

Consider again the axi-symmetric body described by Egs.
(15) where now it is assumed that the sensors provide only
attitude orientation signals as measured by the coordinate
(w). The passivity properties of this system can be utilized
for velocity-free stabilizing control laws. Lemma 5.1 shows
that the feedback control law w. = —kiw. + v. makes the
system (15a) strictly passive from v. to w.. Consider now
instead the control law

(26)

e = —kow + v.

Lemma 5.2 Let the system (15) and the control law in Eq. (26).

This system with mput v, and output w. 18 passive.

Proof. Let the function V(we, w) = Vi(w.) + k2V2(w) where
Vi and V3 as in Egs. (16) and (17), respectively. Differen-
tiation along the trajectories of (15) yields that V(wc,w) =
Re(weve)+koRe(ww.). Using Eq. (26) we get that V(wc, w) =
Re(wve). Integrating both sides we arrive at Eq. (13). u

It should be clear from the previous proof that the system
in Egs. (15) with the control law in Eq. (26) is passive with
storage function V(w., w) = %|wc|2 + k2In(1+ |W|2).

For the axi-symmetric body with no control along the
symmetry axis we have shown that ws (t) = wap 1S constant.
Let us further assume that wsg = 0 (e.g., as In a rest-to-rest
maneuver).

Proposition 5.2 Consider the system (15) with wso = 0 and
the control law in Eq. (26). This system with input

2

= m(’l}c — W 175) (27)

Ye

and output
w w .
wc:76+76w2zw (28)
18 passive.

Proof. For input y. and output w., one obtains

T 1 T
Re(wey.)dt = 7/ Re wcvc—wcf)c|w|4 dt
| retw | el )

T
/ Re(weve)dt
0

and the result follows from lemma 5.2. |

(29)

Notice that if y. is the new input as defined by proposi-
tion 5.2 then v. is given by

Since the map from y. to w, is passive we can explore the
possibility of a feedback interconnection between w. and y.
with a strictly passive system. This motivates the control law
in the following theorem.

Theorem 5.2 Consider the system in Eqs. (15) and let the

control law
k_1

: (31)

with k1 > 0,k2 > 0, and where y. is the output of the linear,
teme-invariant system

Ue = —koW — — (Yo + Gew’)

(32a)
(32b)

Te = —ATe+wW

Yo = —GT.+W

where ¢ > 0. Then im;_.o(we(t), w(t)) = 0, for all initial
conditions (weo, wo) € € x €).

Proof. Consider the function

. k1.
Viwe, w, i) = glwel” + ko In(1+ [w[*) + Slicl*  (33)
Taking the derivative of V' along the closed-loop trajectories,
one obtains

2kz

Vo= Re(ucwc)+mRe(wWHklRe(fcfc)

= _é(yca;c + gjcw2azc) + k1 Re(&cxc)

= —]“2—1(550@5 + 7w @) + ki Re(F.ag.)

+l€2—1Re(icw + icazw2)

= —kialé.]? (34)

Since V < 0 and V is radially unbounded, all solutions are
bounded. Consider the set £ = {(we, w,z.): V = 0}. Notice
that V = 0 if and only if . = 0, which implies that y. = 0.
Moreover, #. = 0 implies that w = 0 and from Eq. (15b)
that w. = 0. Equation (15a) then implies that u. = 0 and
therefore from Eq. (31) that w = 0. In short, we have shown



that V = 0 if and only if we = w = 0. That is, the largest
invariant set in &, is the set M. = {(w.,w,5.) € . 1 we =
w = 0}. By LaSalle’s Invariance Principle [13], all trajectories
of the closed-loop system asymptotically approach M., thus
Hmy oo (we(t), w(t)) = 0. u

Remark 5.1 The transfer function from w to y. is strictly
positive real. The system in Eqgs. (32) is (non-strictly) proper,
and (non-strictly) positive real. It is, in essence, a lead filter
of the orientation parameter (w) which provides derivative
information to be used in the control law.

The case of a general, non-symmetric case can be treated
similarly. First, one can show that passivity properties similar
to the ones of the (w) coordinate also hold for the (o) coor-
dinates. To this end, recall that the equations for a general
rigid body are

Jo = =Sw)Jw+u, w(0) = wo (35a)
6 = Gow, a(0) = a0 (35b)
where J is the inertia matrix, u := (w1, u2,ua2)7 is the input

torque in body-axes and G(o) as in Eq. (9).

Proposition 5.3 (i) The system (85a) with input u and
output w 18 passive.

(ii) The system (35b) with input w and output o is passive.

Proof. (i) Let the function Vi(w) = %wTJw. Differentiation

along the trajectories of Eq. (35a) yields that Vl(w) =wlu,
therefore

/ wludt = Vi(w(T)) — Vi(wo) (36)

(i) Let the function V2(o) = 21n(1—|—chcr). Differentiation
along the trajectories of Eq. (35b) and use of Eq. (12) yields
that V(o) = oTw, therefore

/ olwdt = V2 (o(T)) — Va(oo) (37)

Consider now the more general control law

u=—koo+v (38)
with k1 > 0, where v is the new input. The following lemma
shows that the passivity between the new input v and the
output w is preserved for the system in Egs. (35).

Lemma 5.3 Let the system (35) and the control law (38).
This system with input v and output w is passive.

Proof. Let the function V(w,o) = Vi(w) + k2V2(o) where
Vi and V2 as in proposition 5.3. Differentiation along the
trajectories of Eq. (35a) yields that V(w,0) = wlu + kol w.
Using Eq. (38) we get that V(w,0) = w'v. The rest of the
proof follows as in Proposition 5.3. |

Property (12) implies an “orthogonality” condition for the
matrix G(o); in particular, the matrix G(o) times its trans-
pose yields the identity matrix times a non-vanishing, time-
varying function. Similarly to proposition 5.2 one can use this
result to establish “orthogonal” input/output transformations
for Egs. (35)-(38) which preserve passivity.

Proposition 5.4 The system in Eqs. (35) with input y =
<1+§TU)2 G(o)v and output w = G(o)w = & is passive.

Proof. Using Eq. (12) we have that
o ! 4 o
/0 w’ ydt /0 (m) w G (0)G(o)vdt

T
/ wlvdt
0

Using now lemma 5.3 we establish the desired result. u

(39)

Notice that if y is the new input as defined by proposi-

tion 5.4 then v is given by

v = GT(J)y (40)
Since the map from y to w 1s passive, one may explore the
possibility of globally asymptotically stabilizing the system by
choosing a feedback such that the map from w to y is strictly
passive [9]).

Let A be any stability matrix, B any full column rank
matrix, with the pair (A, B) controllable, and @ any positive
definite matrix. Let also the matrix P be the solution of the
Lyapunov equation

ATP4+PA=-Q (41)

Clearly then P is positive definite. We are now ready to state
the main result for asymptotic stabilization in the large of
the general rigid body in Eqgs. (35) without angular velocity
feedback.

Theorem 5.3 Consider the system (35) and let the control
law

= —koo — k1 GT(J)y (42)
with k1 > 0, ko > 0, and where y is the output of the linear,
teme-invariant system
Az + Bo
B"PAz + B" PBo

T =

(43a)
y = (43b)

Then lim;_.o(w(t),o(t)) = 0, for all initial conditions
(w0,0'o) (S ]I{S X ]I{S.

Proof. Consider the function

Viw,0,8) = %wTJw—l—Zthl(l—l—aTa)—l— kz—l'TPab (44)

The time derivative of V' along the trajectories of the closed-
loop system is then

4

v =
1+07a

Wl Jo+ ko ( ) JTG(a)w
+ki3T Pi

wT(—k2cr — leT(cr)y)

kool w4 koi” PAE + k13" PBG(0)w

= kz—%T(PA + AP =

—kz_%Tng <0 (45)

First observe that since V is radially unbounded, all so-
lutions are bounded. Consider now the set £ = {(w, 0, 2) :
V = 0}. Trajectories in & then satisfy £ = 0 and hence
z(t) = zo for all ¢ > 0 and from (43a) also o(t) = oo for
all ¢t > 0. Then & = 0 and from (9) also w(t) = 0 for all



t > 0. Since y = BT P4 one has also that y = 0, and using
(35a) and (42) we have that w = @ = 0 and y = 0 implies
that o = 0. The largest invariant set in £ is therefore the set
M= {(w,0,2) €EE:w=0,0 =0,z =u1x0}. By LaSalle’s In-
variance Principle [13] all trajectories of the system asymptot-
ically approach M, thus lim; .. (w(t), 5(t)) = 0, as claimed.

]

Remark 5.2 Similarly, to the results of section 5.1, and us-
ing again the passivity characteristics of the o coordinates,
it should not be very difficult for the reader to verify that in
case of angular velocity feedback, the linear control law

u=—kiw— koo (46)
where k1 > 0,k2 > 0, globally asymptotically stabilizes the
system in Eqgs. (35); see also [18].

6. Conclusions

We have addressed the issue of “good” coordinate choices
for control problems on SO(3). We have shown that for
three-dimensional parameterizations the associated singulari-
ties have a great impact on the stabilization problem. In fact,
it is always advisable to choose coordinates such that the sin-
gularity is as far from the equilibrium as possible. Moreover,
parameterizations having certain passivity properties can be
used for global asymptotic stabilization using linear control
laws and for stabilization without angular velocity feedback.
We have presented two special, nonstandard parameteriza-
tions which appear to be useful for axially-symmetric and
non-symmetric rigid bodies, respectively. We hope that the
results of this work will contribute to our current understand-
ing on the impact of appropriate coordinate choices for prob-

lems on SO(3).
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