
Chapter 6
The Artistic Geometry of Consensus Protocols

Panagiotis Tsiotras and Luis Ignacio Reyes Castro

Mighty is geometry; joined with art, resistless.
Euripides (480–406 BC)

6.1 The Role of Geometric Patterns in the History of Art

The use of geometric patterns in art has a long history. The geometric period of
ancient Greek art (ca. 900–700BC) is characterized by the extensive use of geometric
motifs, mainly on vase and amphorae painting. These decorative motifs (meanders,
triangles, circles, etc.) extend horizontally in multiple bands about the vase circum-
ference, and they exhibit central and translational symmetry [7, 18, 45]. Elaborate
symmetric geometric patterns also appear extensively in Islamic art, largely due to
their aniconic quality [10, 11]. Influenced by previous classical Greek, Roman, and
Sasasian works, and fueled by the intellectual contributions of Islamic mathemati-
cians, astronomers, and scientists of the time, Islamic artists created this unique new
style, which is characterized by repeated combinations and duplications of simple
geometric forms (such as circles and the squares), arranged in intricate, interlaced
geometric ornamentations whose complexity is ever increasing, offering the possi-
bility of infinite growth [15]. The exploration of infinity and symmetric growth has
also been explored bymany subsequent artists. TheDutch graphic artistM. C. Escher
(1898–1972) is most famous for his exploration of infinity and of his creations of
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Fig. 6.1 The Irish Trinity Knot (triquetra) consisting of the intersection of three trochoidal-like
curves, appears often in medieval Celtic art [38]

impossible images in graphic art [43]. His work on infinite tessellations involving
repetitive symmetric patterns on the plane has apparently been heavily influenced by
the work of mathematician George Polya (1887–1985) on plane symmetry groups.
Escher studied Polya’s 17 plane symmetry groups, which led him to develop a math-
ematical approach to expressions of symmetry, which he later incorporated in his art
works. Escher’s works primarily exploit planar symmetry groups, otherwise known
as “wallpaper designs.”

In this chapter we will be dealing with similar geometric planar patterns, which,
however, exhibit circular/point symmetry as opposed to regular horizontal/vertical
plane symmetry. The interested reader is referred to the seminal work of H. Weyl
(1885–1955) [54] for an in-depth discussion on symmetry and symmetry groups.
Reference [9] also provides a nice classification of all symmetry groups in one, two,
and three dimensions.

We will investigate the generation of highly stylized geometric patterns morphed
by repeated repetitions of trochoidal curves on flat or curved surfaces, such as those
shown in Fig. 6.2. Trochoidal curves have been in the center of study by several
scientists, and are the main focus of our work. They include cycloids, ellipses (and
circles), epitrochoids, hypotrochoids, as well as cardioids, astroids, limaçons, and all
polar coordinate roses [16]. Although ancient Greeks had discovered trochoids (for
instance, the epicycloid had been used by ancient Greeks to describing themovement
of the planets long before N. Copernicus (1473–1543) and J. Kepler (1571–1630)
established the correct view of heliocentric planet movement in the heavens), the use
of trochoids in art seems to have been limited, except in architecture. For example,
the Persian astronomer andmathematicianNasir Al-Din al-Tusi (1201–1274) studied
the two-cusped hypocycloid [34].

Trochoidal-like curves also appear in Western medieval art. The triquetra symbol
(also known as the Irish Trinity Knot), which is usually illustrated as the intersection
of three vesicae piscis shapes, appears often in Celtic artwork (Fig. 6.1). This symbol
is also prominently depicted in the U-937 runestone, which is one of the four Funbo
Runestones, and has been attributed to the 11th century runemaster Fot [41].
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Fig. 6.2 The trochoidal family of curves, which includes cycloids, epitrochoids, hypotrochoids,
cardioids, astroids, and limaçons, is the main focus of our work. Trochoids have been studied by
several scientists and artists. a Interlace of three trochoidal curves on the plane. b Interlace of three
trochoidal curves on the sphere

It is the German artist of the sixteenth century Albrecht Dürer (1471–1528),
however, who is credited to be the first to have incorporated trochoids (specifically,
hypotrochoidal curves) in his art [47]. He introduced the hypocycloid curve along
with the more general family of trochoid curves, in his 1,525 four-volume geome-
try treatise The Art of Measurement with Compass and Straightedge. After Dürer,
purely trochoidal curves seem to have been absent from the artistic world up until the
invention of the spirograph by English engineer Denys Fisher (1918–2002), intro-
duced during the 1965 Nuremberg International Toy Fair. The introduction of the
spirograph has created a momentum in the use of trochoidal curves in the Pop Art,
Op Art, and Psychedelic Art movements since the 1960s, with several American and
European artists incorporating them into their works. Perhaps the first artist in this
new line of trochoid admirers is Seattle-based painter Jeffrey Simmons (1968– ),
who conceived a seven-painting collection titled Trochoid [46]. These paintings rely
on large hypotrochoids as central features, and were produced with the use of a
special-purpose device constructed by the artist himself. English artists Ian Dawson
(1969– ) and Lesley Halliwell (1965– ), also make use of trochoids, although using
a very different technique [8, 17]. In their work, they create large colorful shapeless
compositions by putting together large numbers of hypotrochoids generated using
spirographs. The same technique has also been utilized by Pittsburgh-based illustra-
tor David Pohl, who has used the spirograph as a tool to explore the recurring theme
of repetition as a means to illustrate the cyclical nature of life [37]. The American
architect Louis Kahn (1901–1974) has also used cycloids in his design of the Kimbell
Art Museum [35].
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6.2 A Brief of Consensus Protocols

In this chapter, we show how elaborate patterns that are closely related to trochoidal
curves can be generated as the paths followed by a team of interacting agents moving
on the plane. In the literature of multi-agent control systems, problems involving the
coordination of a team of agents such as flocking, swarming, etc., are referred to as
consensus problems, and the underlying control strategies enforcing team coordina-
tion are commonly referred to as consensus protocols.

Consensus problems have been extensively used for many years in the area of
distributed computing and management science. Their recent popularity in the con-
trols community stems from their utilization in formulating and solving a variety of
multi-agent, mobile network problems [32, 40]. In this chapter, we propose a gener-
alization of the standard consensus algorithm used widely in the literature [12, 27,
31], and we show how this algorithm can be utilized to generate intricate geometrical
patterns for the ensuing agent paths. Using minimal assumptions, the proposed feed-
back control is able to generate geometric patterns for the agent trajectories that go
beyond formation-type geometric models, which deal mainly with identical agents
in cycle pursuit [21, 25, 36, 49].

Our inspiration comes from gyroscopic control strategies used in the wheeled
robotics community [52] for obstacle avoidance. Since the proposed control law
introduces circulation in the underlying vector field, it cannot be derived from a
scalar potential, and hence it does not belong to the family of consensus control laws
that are gradient-based. As an added benefit of the proposed extension, it is shown
that this control law results in consensus points that lie outside the convex hull of
the initial positions of the agents. This may be useful for obstacle avoidance and/or
consensus with deception, for instance.

As a direct consequence of the proposed extended consensus protocol, in the
second part of this chapter we particularize this control law to the case of periodic
and quasi-periodic pattern generation, and show how it can be used to generate
elaborate, esthetically beautiful patterns.

6.3 Motivating Example

In order to demonstrate the main idea, we start with the simplest of cases, namely,
two agents (N = 2) in the plane. The extension to the case of an arbitrary number of
agents follows readily from this case and it is given in the next section, along with
the stability analysis of the overall system with all interacting agents. To this end,
assume a given global coordinate frame E with origin O and two agents at locations
r1 and r2, respectively. The kinematic equation for each agent is given by

ṙi = ui , i = 1, 2. (6.1)
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Fig. 6.3 Several modern artists have experimented with the use of trochoidal curves in their work.
a Warmth of the Sun (1999). Oil and alkyd on canvas by J. Simmons. (Reprinted with permission
[46]). b A80 (2000). Ink on gesso on primed board by I. Dawson. (Reprinted with permission [8])

We assume that only the relative distance r12 = r1 − r2 is known to agent no. 1
and, similarly, only the relative distance r21 = −r12 is available to agent no. 2. It can
be easily shown [27] that the control law

u1 = −γ1r12, u2 = −γ2r21, γ1 + γ2 > 0 (6.2)

achieves consensus. That is, the distance between the two agents will tend to be zero
as the time progresses. Furthermore, with the control law in (6.2), the two agents
will meet somewhere along the line segment initially connecting r1(0) and r2(0).
Our first objective is to modify (6.2) in order to allow convergence of the agents to
points that do not necessarily belong to the line segment (in general, the convex hull)
defined by the initial position vectors.

The main observation here is that the control law (6.2) does not make use of
all available geometric information to each agent. For instance, agent no. 1 knows
not only the vector r12 but also all vectors (directions) perpendicular to r12, which
can then be used in a feedback strategy. Similarly, for agent no. 2, this additional
information in the control law, inferred from—but distinct than—the relative position
vector between the agents, can lead to more flexibility for trajectory design. To this
end, let q12 and q21 be such that q12 · r12 = q21 · r21 = 0, and assume the following
control laws1

u1 = −γ1r12 + β1q12, u2 = −γ2r21 + β2q21 (6.3)

Later, it will be shown that this control law also achieves consensus for γ1 + γ2 > 0
and β1, β2 ∈ R.

1 Owing to the freedom in choosing q12 and q21, we define a “position orientation” such that
r12 × q12 = r21 × q21.



134 P. Tsiotras and L. I. R. Castro

In preparation for the general case, let us now introduce coordinates, with respect

to a global frame E , leading to [ri ]E �= xi ∈ R
2, (i = 1, 2) and [r12]E = [r1]E −

[r2]E = x1 − x2. Let the error vector z ∈ R
2 of the relative distance between the two

agents be

z
�= x1 − x2 = d11x1 + d21x2 = (DT ⊗ I2)x, (6.4)

where D = [
1 − 1

]T and where x = [xT1 , xT2 ]T ∈ R
4. Furthermore, let [q12]E �=

p = Sz where S is the skew symmetric matrix

S =
[
0 −1
1 0

]
. (6.5)

It is clear that pTz = zT p = 0. It can then be easily seen that the control law (6.3)
can be written compactly, as follows

u = −(Γ ⊗ I2)(D ⊗ I2)z + (B ⊗ I2)(D ⊗ I2)Sz

= −(Γ D ⊗ I2)z + (B D ⊗ S)z, (6.6)

where u = [uT
1 , uT

2 ]T ∈ R
4 and Γ = diag(γ1, γ2) and B = diag(β1, β2). From

(6.4) it follows that the error equation is given by

ż = (DT ⊗ I2)ẋ = (DT ⊗ I2)u

= −(DT ⊗ I2)(Γ ⊗ I2)(D ⊗ I2)z + (DT ⊗ I2)(B ⊗ I2)(D ⊗ I2)Sz

= −
((

DTΓ D
) ⊗ I2

)
z +

((
DTB D

) ⊗ S
)

z.

Stability is determined by the eigenvalues of the matrix ACL = −(
(DTΓ D)⊗ I2

)+(
(DTB D)⊗ S

)
. A simple calculation shows that spec(ACL) = {−(γ1+γ2)± i(β1+

β2)}. Hence consensus is achieved asymptotically as long as γ1 + γ2 > 0. The
“classical” consensus control law (6.2) corresponds to the case when β1 = β2 = 0.
When B �= 0 stability is still maintained, however, the transient response is different.
Furthermore, the point where consensus is achieved can be selected to lie outside
the line segment connecting x1(0) and x2(0) by a proper choice of the gains β1 and
β2. This is demonstrated in Fig. 6.4 where the result of a simulation with the data
x1(0) = (−1, 1)T, x2(0) = (2, 3)T, Γ = diag(0.1, 1), B = diag(−0.5, 2) is shown.
For this example the two agents meet at the point with coordinates (−2, 1).

6.4 Extension to N Agents in the Plane

For the general case, consider N agents in the plane. Assume that their location
is given by the state variables xi ∈ R

2 for i = 1, . . . , N , expressed in the same,
common global frame E , satisfying the differential equations



6 The Artistic Geometry of Consensus Protocols 135

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

x
1
(0)

x
2
(0)

Fig. 6.4 Numerical example with “skew-symmetric” feedback. The skew-symmetric term creates
a vector field with circulation

ẋi = ui , i = 1, . . . , N . (6.7)

To the N agents we associate a graph G that describes the communication topology
between the agents. That is, G has N nodes and M edges (links), with each edge
denoting knowledge of the relative position between the corresponding agents. We
can define the incidence matrix D ∈ R

N×M with elements as follows [1]. We assign
di j = +1 (−1) if the i th node is the head (tail) of j th edge, and di j = 0 otherwise.
If the i th agent is a neighbor with the j th agent, then they are connected by an edge,
and we have the difference (error) variable

zk =
N∑

�=1

d�k x� =
{

xi − x j , if i is the head,

x j − xi , if j is the head,
(6.8)

where zk ∈ R
2 for k = 1, . . . , M . If the columns of D are linearly independent, that

is, if the graphdoes not contain cycles, then the vectors zk are linearly independent [1].
Note also that the graph is connected if and only if rank D = N − 1 [14, 31].

Introducing the stack vector x = [
xT1 · · · xTN

]T ∈ R
2N , the state equations (6.7) can

be written compactly as
ẋ = u, (6.9)

where u = [
uT
1 · · · uT

N

]T ∈ R
2N . Following (6.6), we propose the control law

u = −(Γ D ⊗ I2)z + (B D ⊗ S)z, (6.10)
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where z = [
zT1 · · · zTM

]T ∈ R
2M , and where Γ = diag(γ1, . . . , γN ) and B =

diag(β1, . . . , βN ). The standard consensus algorithm results as a special case of
(6.10) where B = 0.

Convergence Analysis

From (6.8) it can be easily shown that the error vector z can be written compactly as
follows

z = (DT ⊗ I2)x . (6.11)

From (6.10) the differential equation for x is then given by

ẋ = −(Γ D ⊗ I2)(DT ⊗ I2)x + (B D ⊗ S)(DT ⊗ I2)x

= −(
(Γ DDT) ⊗ I2 − (B DDT) ⊗ S

)
x

= −(
(Γ L) ⊗ I2 − (BL) ⊗ S

)
x, (6.12)

where L
�= DDT ∈ R

N×N is the graph Laplacian [27]. Let 1N
�= (1, 1, . . . , 1)T ∈

R
N denote the N -dimensional column vector of ones, and recall that L1N = 0 [14,

27]. For any ν ∈ R
2 we have that

(
(Γ L)⊗ I2−(BL)⊗S

)
(1N ⊗ν) = (Γ L1N )⊗ν−

(BL1N )⊗(Sν) = 0. It follows that the vector1N ⊗ν spans the null space of thematrix
in (6.12). The equilibrium point x̄∞ of the linear differential equation (6.12) therefore

satisfies the condition x̄∞
�= limt→∞ x(t) = 1N ⊗ x∞ for some x∞ ∈ R

2, from
which it follows that limt→∞ x1(t) = limt→∞ x2(t) = · · · = limt→∞ xN (t) = x∞,
thus achieving consensus.

Let the coordinates of the final consensus point be x∞ = [x∞ y∞]T ∈ R
2. We

have the following proposition.

Proposition 1 [51]. Let v1, v2 ∈ R
2N be such that span{v1, v2} = R⊥(

(Γ L) ⊗
I2 − (BL) ⊗ S

)
. The final rendezvous point is given by

x∞ =
[
x∞
y∞

]
=

[
vT1 (1N ⊗ I2)

vT2 (1N ⊗ I2)

]−1 [
vT1 x(0)

vT2 x(0)

]

. (6.13)

If Γ = 0 there is not “rendezvous” point. Instead, the agents follow closed
trajectories centered around the point given by equation (6.13).
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6.5 Periodic and Quasi-Periodic Trajectories

Given an interconnection topology, the particular choices of the gain matrices Γ and
B can be used to generate specific trajectory patterns for the ensuing agent paths.
Since we are mainly interested in periodic or quasi-periodic trajectories, next we
restrict the discussion to the case Γ = 0. By letting Γ = 0 in (6.10) the control law
becomes

u = (B D ⊗ S)z, (6.14)

and the closed-loop system reduces to

ẋ = ((BL) ⊗ S) x . (6.15)

The shape and frequencies of the resulting paths are therefore determined by the
eigenvalues and eigenvectors of the matrix (BL) ⊗ S. Recall from the properties of
the Kronecker product [6] that the eigenvalues of the matrix (BL) ⊗ S are of the
form λμ, where λ ∈ spec(BL) and μ ∈ spec S. Additionally, the corresponding
eigenvectors are of the form v ⊗ u where v ∈ C

3 is the eigenvector of the matrix
BL associated with λ and u ∈ C

2 is the eigenvector of the matrix S associated with
μ. Since det(λIN − BL) = det(λIN − B DDT) = det(λIM − DTB D) it follows
that the nonzero eigenvalues of the matrix BL coincide with the nonzero eigenvalues
of DTB D. Because the latter matrix is symmetric, all eigenvalues of BL are real.
Consequently, all eigenvalues of (BL)⊗S lie on the imaginary axis. It follows that the
solutions of (6.15) consist, in general, of a superposition of sine and cosine functions,
perhaps multiplied by polynomials in t (in the case of multiple eigenvalues).

Let BL = V J V −1 be the spectral decomposition of the matrix BL . It can be
easily shown that

e((BL)⊗S)t = (V ⊗ I2) e
(J⊗S)t (V −1 ⊗ I2). (6.16)

The spectral decomposition of thematrix BL thus provides all information needed
to investigate the nature of the solutions of (6.15). In fact, additional information can
be gathered owing to the special structure of the state matrix in (6.15).

Lemma 1. Let A be an n × n square matrix and let S be the 2× 2 skew-symmetric
matrix given in (6.5). Then

eA⊗S = cos A ⊗ I2 + sin A ⊗ S. (6.17)

Proof. Notice that S2k = (−1)k I2 and S2k+1 = (−1)k S, k = 0, 1, 2, . . . and recall
that

eA⊗S =
∞∑

k=0

1

k!
(

A ⊗ S
)k

.
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The right-hand side of the previous equation can be expanded as follows

∞∑

k=0

1

(2k)!
(

A ⊗ S
)2k +

∞∑

k=0

1

(2k + 1)!
(

A ⊗ S
)2k+1

=
∞∑

k=0

1

(2k)!
(

A2k ⊗ S2k) +
∞∑

k=0

1

(2k + 1)!
(

A2k+1 ⊗ S2k+1)

= ( ∞∑

k=0

(−1)k

(2k)! A2k) ⊗ I2 + ( ∞∑

k=0

(−1)k

(2k + 1)! A2k+1) ⊗ S.

Making use of the fact that for a square matrix A,

cos A =
∞∑

k=0

(−1)k

(2k)! A2k, sin A =
∞∑

k=0

(−1)k

(2k + 1)! A2k+1,

the result of the lemma follows immediately.

We therefore have the following proposition.

Proposition 2 The solution of (6.15) is given by

x(t) = (
cos(BLt) ⊗ I2 + sin(BLt) ⊗ S

)
x(0), (6.18)

= (V ⊗ I2)
(
cos(J t) ⊗ I2 + sin(J t) ⊗ S

)
(V −1 ⊗ I2)x(0),

for all t ≥ 0 and all x(0) ∈ R
2N .

The structure of the state matrix in (6.15) (e.g., its eigenvalues and eigenvectors)
thus can provide a great deal of information regarding the paths followed by the
agents in the Cartesian coordinate frame, as well as the relative location of the agents
on these paths (i.e., their relative phasing). For instance, one can ensure that the
agent trajectories either form closed paths with given phasing, or they form a dense
set of trajectories, ensuring that almost every point in a given region will be visited
at least once by one or more agents. Such orbits could be desirable, for instance, in
surveillance or area coverage applications (see Fig. 6.8). Moreover, as shown in the
next section, these orbits are also esthetically appealing. In that respect, geometric
beauty serves as a functional element for the solution of meaningful engineering
problems.
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Fig. 6.5 Representative examples of epitrochoids and hypotrochoid curves. a Epitrochoid curves
The blue curve has d < r , while the second one has d > r . Both epitrochoids have R = 4, r = 2
(hence k = 2). b Hypotrochoid curves The blue curve has d > r , while the second one has d < r .
Both epitrochoids have R = 6, r = 1.5 (hence k = 4)

6.6 Orbit Pattern Generation

In this section, we show that the solutions of (6.15) result in elaborate geometric
trochoidal patterns. As is seen by (6.18), the solutions depend on the gain matrix B,
the Laplacian matrix L that encodes the connectivity, as well as the initial conditions
x(0).

6.6.1 A Family of Achievable Paths

The solutions in (6.18) fall in the general class of trochoidal curves. An epitrochoid
curve is generated by a point P attached at a radial distance d from the center of
a circle of radius r , which is rolling without slipping around a circular track of
radius R; see Fig. 6.5a. The distance d can be smaller, equal, or greater than the
radius r of the rolling circle. The ratio of the circular two tracks k = R/r indicates
the number of points at which the agent is closest to the center of the circular track.
These are referred to as crests. In the special case when r = d, the curve becomes
an epicycloid with k cusps; at these points, the curve is not differentiable. Note that
ellipsoidal paths correspond to the case when k = 0. A hypotrochoid is generated
by a point P attached at a distance d from the center of a circle of radius r , which
rolls inside a circle of radius R; see Fig. 6.5b. Again, the distance d can be smaller,
equal, or greater than the radius r of the rolling circle; this radius, however, cannot
exceed that of the circle R.

As mentioned in the introduction, the trochoidal family of curves is very rich
and includes many of the well-known curves such as ellipses and circles, (epi/hypo)
cycloids, cardioids, limaçons, etc. The most well-known example of a trochoid curve
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is the cycloid—the “courbe merveilleuse” of M. Chasles (1793–1880). The cycloid
often appears as the solution tomany problems inmathematics, physics. For instance,
Bernoulli’s brachystochrone problem in the Calculus of Variations, and the paths
followed by charged particles in crossed electric and magnetic fields turn out to be
cycloids. Because of its recurring appearance as the solution of many problems the
cycloid has been the center of investigation by several mathematicians, and its study
has not escaped controversy. It fact, owing to the many disputes it provoked between
mathematicians over the centuries it has been called the “Helen of geometers” [5], in
reference to the beautiful Helen of Troy who caused many quarrels among men, and
whose abduction by Paris, the son of Priam King of Troy, caused the Trojan War.

In the next section, we investigate a few interesting cases of trochoids resulting
from the solution of (6.18).

6.6.2 Illustrative Example: Three Agents

In this section, we investigate in greater detail the simple nontrivial case, namely,
three agents in the plane (N = 3), connected either in a path graph (M = 2) or a
complete graph (M = 3). For a path graph interconnection the incidence matrix is
given by

D =
⎡

⎣
−1 0
1 −1
0 1

⎤

⎦ . (6.19)

A straightforward calculation shows that the twononzero eigenvalues of thematrix
BL for this case are given by

β1

2
+ β2 + β3

2
±

√
β2
1 − 2β1β3 + 4β2

2 + β2
3

2
.

For the complete graph the incidence matrix is given by

D =
⎡

⎣
−1 0 1
1 −1 0
0 1 −1

⎤

⎦ . (6.20)

The nonzero eigenvalues of the matrix BL for this case are given by

β1 + β2 + β3 ±
√

β2
1 + β2

2 + β2
3 − β1β2 − β2β3 − β3β1.

The ratio of the two nonzero eigenvalues is equal to k + 1 for an epitrochoid or
k − 1 for a hypotrochoid. Note that if k turns out to be an irrational number, then the
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Fig. 6.6 Orbits with three agents using the extended consensus protocol; path graph. a B =
diag(1, 2.0034,−1). b B = diag(−1, 2,−1). c and d B = diag(0, 1,−6.5933)

number of crests is infinite, which means that the curve is not closed; instead, the
trajectories form a dense subset of the space [19]. See Figs. 6.6 and 6.7.

An orbit redesign can yield periodic orbits of a particular shape that can be used
for coordinated, distributed surveillance, and perimeter monitoring applications; see,
for instance, Fig. 6.8. Such an orbit redesign may require a complete interconnection
topology [51].

An interesting case occurs when the closed-loop system has two zero eigenvalues
at the origin. In this case the trajectories exhibit secular motion. Figure6.9a shows
the trajectories when B = diag(0.5,−1,−1). It can be easily verified that in this
case the relative orbits for the three agents are all circles; see Fig. 6.9b.

There is of course a plethora of possibilities to explore, and one can only imagine
the different ways to use the flexibility offered by this serendipitous marriage of
art, geometry, and multi-agent control system for solving meaningful, real-world
engineering problems.
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Fig. 6.7 Orbits with three agents using the extended consensus protocol; path graph. a and b
B = diag(1,−2.9054, 0.5). c B = diag(1,−1,−0.5). d B = diag(−0.75, 1.67259,−2)

6.7 A Gallery of Orbits

Using the extended consensus protocols one can clearly generate amyriadof beautiful
geometric patterns, by changing the gain matrix B and by choosing a suitable graph
Laplacian L in (6.15). Figures6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 provide a glimpse
on the plethora and variety of geometric patterns generated using the consensus
control law in (6.15) for the case of three and four agents on the plane. We urge the
reader to try his/her own skills at generating visually pleasing curves using Eq. (6.15).

In addition to monitoring and surveillance applications already mentioned, these
and similar geometric patterns, can also be used in all cases where the resulting
motion of a group of agents is to be determined distributively, solely by inter-agent
interactions. For instance, they could serve as periodic motion primitives for exe-
cuting elaborate choreographic patterns for human dancers or small autonomous
robotic vehicles, as it is done, for example in the work of Schoelling et al. [44] and
Leonard et al. [22] elsewhere in this book. Indeed, one can envision situations where
swarm dance patterns—accompanied perhaps by music—can evolve to agents paths
resembling those shown in Figs. 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, and 6.12. One needs
only to impose the correct communication topology in the underlying graph and the
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Fig. 6.8 Trochoidal paths that could be used by three agents to patrol a pentagon-shaped area.
Satellite image courtesy of USGS [39]
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Fig. 6.9 B = diag(0.5,−1,−1) and initial conditions x1(0) = (6, 8), x2(0) = (−7, 5), x3(0) =
(5,−10) (path graph interconnection). The figure on the right shows the relative orbits

correct gain weights. Although such an idea may seem intuitive and appealing, we
should offer a word of caution: in all our developments so far we have not taken into
consideration the case when two agents happen to be at the same location at the same
time. That is, collision avoidance is not built-in a priori into (6.15) and, depending on
the size of the agents with respect to the size of these orbits, may indeed be a problem
during implementation. Along these lines, a much needed future research direction
is the design of such geometric patterns for dance or flock formation (or other more
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engineering oriented applications such as patrolling or surveillance) while—at the
same time—incorporating collision avoidance guarantees.

6.8 Extensions to Pattern Generation on Curved Surfaces

The previous methodology can be easily extended to generate similar intricate tro-
choidal paths on any two-dimensional manifold. Although the classical consensus
protocol has been extended to the case of agents moving on a sphere [30] or a
general manifold [42, 50], in this work we will follow an alternative—more direct
approach—to generate trochoidal curves on a sphere, by taking advantage of the
fact that a two-dimensional manifold is a surface that “locally” looks like a two-
dimensional plane. Given therefore a two-dimensional manifold M (in this case, a
sphere, M = S

2) we can define local coordinates y1 = φ1(q) and y2 = φ2(q),

where q ∈ M, and where φ
�= (φ1, φ2) : M 
→ R

2 is a homeomorphism between
an open subset of M and an open subset of R2.

Using the spherical coordinates φ ∈ [−π, π ] (azimuth) and θ ∈ [−π/2, π/2]
(elevation), the equations of any point of the orbit on the unit sphere is given by

x = cos θ cosφ, y = cos θ sin φ, z = sin θ. (6.21)

Assume now that the equations of motion of each agent on the sphere obey the
equations (6.7), where xi = (φi , θi ) are the coordinates for each agent, for i =
1, . . . , N . We again assume that the agents implement the control law

u = (B D ⊗ I2)p = (B D ⊗ S)z, (6.22)

where p = (IM ⊗ S)z. Results from implementing this control law for various
values of the matrices B and D are shown in Fig. 6.13. Figure 6.13 shows examples
of trochoidal patterns on a two-dimensional unit sphere using the formulas (6.21).

Still another alternative approach to generate paths on the sphere is to use the
(inverse) stereographic or geodesic projections onto the two-dimensional sphere of a
pattern generated by the proposed extended consensus protocol on the plane. Recall
that the stereographic projection πs : S2\{(0, 0, 1)} 
→ R

2 is defined via the expres-
sions

x = x
1 − z

, y = y
1 − z

, (6.23)

for (x, y, z) ∈ S
2, that is, x2 + y2 + z2 = 1. Alternatively, the geodesic projection

πg : S2\S1 
→ R
2 is defined via the expressions

x = x
z
, y = y

z
, (6.24)
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Fig. 6.10 A menagerie of orbits with three agents using the extended consensus protocol; com-
plete graph. a B = diag(−1, 1, 3), b and c B = diag(0.5, 2, 0.5), d B = diag(−1,−0.1936, 1),
e B = diag(4,−4,−4), f B = diag(−5, 3, 2), g and h B = diag(−2.4736, 3, 2)
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Fig. 6.11 Sample orbits with four agents using the extended consensus protocol; path graph.
a and b B = diag(2, 0.1826,−0.6126, 2), c B = diag(2, 1.7141,−0.8257, 2), d B =
diag(2, 3.622, 2.336,−1), e B = diag(−1,−1.145, 1.297,−1), f B = diag(0.15,−1, 0.15,−1),
g B = diag(0.15,−1, 0.15, 1), h B = diag(5,−2,−2, 5)
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Fig. 6.12 Sample orbits with four agents using the extended consensus protocol; complete graph.
a–c B = diag(−1,−1,+1,−1), d and e B = diag(−2,−2,−2, 2), f B = diag(5,−2,−2, 5), g
B = diag(5,−0.866,−3.208, 5), h B = diag(3.229,−2,−1.515, 5)
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where S
1 = {(x, y) ∈ R

2 : x2 + y2 = 1} is the equator. The geodesic projection
creates larger distortions of distances near the equator.

Figure6.14 shows the results by applying the geodesic projection on a surface
of revolution. The “vase” shown in this figure was generated using the parametric
equations

x = (2 + cos u) sin v, y = (2 + cos u) cos v, z = u, (6.25)

where u and v are the local coordinates on the two-dimensional vase manifold.
Although not as elaborate or elegant as the vases of the Greek geometric period
shown in Fig. 6.14, one nonetheless cannot help but admire the richness of the
geometric patterns shown in Fig. 6.14, generated by the simple control law (6.10).

6.9 Discussion: The Mathematics of Aesthetics

An often repeated dictum of common wisdom is that “beauty is in the eye of the
beholder.” But is it? Although it is clear that perception of appeal or beauty is mainly
an objective process (no ontological esthetic feeling is known), it is also equally clear
that there exist esthetically attractive visual stimuli that transcend personal taste and
seem to invoke the same feelings of acceptance or pleasure (equivalently, distasteful-
ness or displeasure) among the majority of human observers. Several psychological
studies seem to indicate that the human visual perception system is wired to be
drawn to (overt or covert) symmetric, orderly patterns [4, 23, 24]. Plato (427–347
BC) was the first to state that “balanced things are always beautiful.” Besides, isn’t
true that the creative artistic process, in general, produces order from disorder? If
symmetry and order is the embodiment of harmony and beauty, and their lack is the

manifestation of the opposite2 (the constant struggle between and
in ancient Greek culture) shouldn’t perhaps be possible to describe certain esthetics
using formal methods?

In his influential essay Inquiry into the Origin of Our Ideas of Beauty and Virtues
the British philosopher Francis Hutcheson (1694–1746) attempted to answer this
question, by showing how beauty depends on formal qualities. He suggested that
beauty is “uniformity amidst variety.” Thus, according to Hutcheson, richly varied
compositions that are organized in accordance with some underlying unifying prin-
ciple are beautiful [28]. The contemporary theory of the psychology of esthetics
actually replaces the prominence of classical symmetry with the somewhat similar,
albeit vague, notion of “organic unity” [33].

2 Not everyone is in agreement, of course, with the classical notion of beauty and symmetry. One
can easily argue that nonsymmetric patterns may also be esthetically pleasing as long as they do not
result in chaos [26]. Recent psychological studies of works of modern art actually claim that it is
the cognitive processes themselves that are involved in understanding, classifying, and evaluating
a work of art which determine positive, self-rewarding esthetic experiences [20]. Even so, good
gestalts tend to give preference to symmetry over nonsymmetry [13].
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.13 Sample orbits on a spherewith three [(a)–(d)] and four [(e)–(f)] agents using the extended
consensus protocol; path graph. a and c B = diag(0, 1,−6.5933), b B = diag(−2.4736, 3, 2), d
B = diag(1,−2.9054, 0.5), e B = diag(1, 2, 2.0034,−1), f B = diag(2, 0.1826, 0.6126, 2)
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.14 Sample orbits on a vase with three agents using the extended consensus protocol; path
graph. a B = diag(−2.4736, 3, 2), b B = diag(4,−4, 4), c B = diag(0, 1,−6.5933), d B =
diag(−1, 2,−1), e B = diag(1,−8.7289, 1), f B = diag(1,−1,−0.5),
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Motivated by such observations, the Americanmathematician G. Birkhoff (1884–
1944) introduced the concept of an esthetic measure, a single number that describes
the esthetic appeal of an object [3]. Since then, several versions and modifications
of Birkhoff’s original esthetic measure have been proposed, all of which defining
the esthetic measure—in one form or another—as the ratio of order over disorder,
equivalently, symmetry over complexity.

More formally, Birkhoff’s esthetic measure M is defined by

M = O

C
, (6.26)

where O is the order or harmony of the observedwork, andC is the object’s complex-
ity. As also Birkhoff himself recognized, formalizing these concepts, which depend
on the context, biases of the observer, and so on, is difficult. Whereas there is a
consensus among researchers that O is essentially a measure of the object’s symme-
tries, there seems to be less of an agreement on how one measures its complexity.
One proposal that has come forth is that C is related to the redundant informa-
tion conveyed [2, 29]. This has given rise to several information-theoretic measures
(“informational aesthetics measures”) based on Kolmogorov complexity, Shannon’s
information theory and physical entropy [41]. The field of computational esthetics
has evolved around these ideas in an effort to define and quantify artistic creativity
using mathematical algorithms [48].

What does the field of computational esthetics have to do with control theory? In
this work we have shown that control algorithms can be used to generate geometric
patterns in a naturalmanner. Is not difficult for one to envision generalizations leading
to more complicated art forms. Most importantly, recall that a large part of control
theory deals with the maximization of a given payoff. In this context, it would be
intriguing to investigate control algorithms that attempt to maximize the esthetic
measure within a given class.

6.10 Conclusions

We have presented an extension of the classical consensus algorithm for multi-agent
systems to achieve consensus outside the convex hull of the initial conditions of
the agents. As a by-product of this idea, we have shown how to generate agent
trajectories leading to intricate geometric patterns in the plane using only relative,
local information. Future work will concentrate on developing a general theory for
orbit design for an arbitrary number of agents in two, and three dimensions. Apart
from their inherent esthetical appeal, these orbits can have immediate applications
in the area of coordinated, persistent surveillance and monitoring using a team of
agents interacting using local information. An interesting lingering question that still
remains to be answered, is whether one can classify these curves according to their
esthetic appeal using a properly defined esthetic measure.
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