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Abstract

The stability of linear time-delay systems is investigated
via the robustness analysis of several uncertain delay-
free comparison systems. Several new delay-dependent
stability criteria, which are formulated as linear ma-
trix inequalities (LMIs), are then derived. Finally, an
example problem demonstrates that these new stabil-
ity criteria may be signi�cantly less conservative than
those existing in the literature. Keywords. Time-
delay systems; stability; linear matrix inequalities.

1 Introduction

The analysis of time-delay systems has attracted much
interest over a half century, especially in the last
decade. The recent book [6] contains an extensive col-
lection of papers dealing with both delay-dependent
and delay-independent stability. Many of the stabil-
ity analyses have been formulated in the time domain
based on Lyapunov's Second Method using Lyapunov-
Krasovskii functionals or Lyapunov-Razumikhin func-
tions [9, 11, 12, 13, 16]. Frequency domain techniques
for analysis of time-delay systems have also been de-
veloped [12], such as polynomial criteria [8], matrix
pencils [3], integral quadratic constraints [7], the sin-
gular value test [18], and ��based criteria [1, 4, 14],
etc. Recently, the authors introduced a comparison
system-based approach [19] for analysis of time-delay
linear systems, and demonstrated that several existing
Lyapunov-based results are, in fact, equivalent to ro-
bust stability analysis of a comparison system via the
scaled small-gain lemma. An examination of the man-
ner in which delay elements are covered with norm-
bounded uncertainty sets in this approach, directly in-
dicates a potential source of signi�cant conservatism
and a possible remedy. In this paper, we use this insight
to develop several new, less conservative conditions for
delay-dependent stability. These conditions can be for-
mulated in terms of LMIs. A numerical example indi-
cates that these new criteria may be signi�cantly less
conservative than previous ones. Notation. Let <e :=
< [ f�1;1g; <+

e := [0;1) [ f1g; and In be n � n

uy

�

G(s)

Figure 1: A feedback system.

identity matrix. A minimum realization (A;B;C;D) of
a transfer function matrix G(s) is denoted by G(s) =�
A B

C D

�
: D(q; r) := fz 2 Cj jz � qj � rg represents

the closed disk in the complex plane with center q and
radius r, and the closed unit disk in the complex plane
is denoted by B := D(0; 1):

2 A Comparison System

Consider the linear time-delay system

_x(t) = Ax(t) +Adx(t� �) (1)

where the delay � 2 [0; �� ] is constant but unknown.
Equation (1) can be expressed in the frequency domain
as1

sX(s) = AX(s) +Ade
��sX(s): (2)

For the stability analysis tests we develop, we need the
following de�nition and preliminary results.

De�nition 1 Consider a linear, time-invariant
(�nite-dimensional) system G(s) interconnected with
an uncertain block � 2 �, as shown in Figure 1. Then
the system is said to be robustly stable if G(s) is
internally stable, the interconnection is well-posed and
it remains internally stable for all � 2 �:

The following lemma introduces a frequency-dependent
covering of the delay elements that will be used later in
the robust stability analysis of the comparison system.

1While the notation using Laplace transforms is used for con-
venience and is somewhat abusive, the results of this paper can
be proven by using characteristic equations.



Lemma 1 De�ne the following set of complex-valued
functions

E
 := f�(s)j k�k1 <1; and �(j!) 2 
(j!); 8! 2 <eg

Given the delay elements

�1(s; �) =

�
e��s�1

��s s 2 C; s 6= 0
� �

�� s = 0
;

�2(s; �) = e��s

let 
1(j!) and 
2(j!) be subsets of C such that
��1(j!; �) 2
1(j!); ��2(j!; �) 2
2(j!); 8! 2 <+

e ;

� 2 [0; �� ]; � 2 [0; 1]: Then the system (1) is asymptot-
ically stable for all � 2 [0; �� ]; if there exists a constant
matrix M 2 <n�n such that the comparison system

sX(s) = (A+MAd)X(s)
+�2(s)(In �M)AdX(s)
+�1(s)��MAdsX(s)

(3)

is robustly stable for all �1(s) 2 E
1
and �2(s) 2 E
2

:

Proof. Equation (2) can be rewritten as

sX(s) = AX(s) + (In �M)Ade
��sX(s)

+MAde
��sX(s)

= (A+MAd)X(s)
+�2(s; �)(In �M)AdX(s)
+�1(s; �)��MAdsX(s)

(4)

It follows that any solutions of (1) satisfy (4), and (4) is
a particular case of the uncertain system (3). Thus, the
robust stability of (3) implies that (1) is asymptotically
stable for all � 2 [0; �� ]:

Remark 1 The sets E
1
and E
2

are said to be
the covering sets for the delay elements �1(s; �) and
�2(s; �); respectively. In general, the sets 
1 and 
2

are frequency-dependent, that is, they may move in the
complex plane with frequency. In a special case, 
1 or

2 may become frequency-independent, that is, a �xed
set for all frequencies.

The simplest choice for 
1 and 
2 in the previous
lemma is 
1 = 
2 = B: In this case, the stability of (1)
may be directly determined via ��analysis, since the
small-� theorem applies even to the case where the un-
certainty is non-rational [17]. In particular, a su�cient
condition for stability is

sup
!2<

�� [G(j!)] < 1 (5)

where G(s) is a state space realization of the compari-
son system (3) with �1 and �2 \pulled out" to form an
uncertainty block � = fdiag[�1; �2]g [20]. To analyze
the condition of (5), a frequency sweep is typically em-
ployed. Because the calculation of � is NP-hard in gen-
eral [2], its upper bound is typically used in determin-
ing robust stability instead. Alternatively, the analysis

of robust stability may be performed without the fre-
quency sweep by solving an LMI. The following lemma
states this result.

Lemma 2 [15](Scaled Small Gain Lemma) Con-
sider a system with uncertainty as shown in Figure 1.
Let

G(s) =

�
A B

C D

�

and suppose that the uncertainty � = diagf�1In1 ,
�2In2 , � � � , �rInrg, where �i 2 EB; i = 1, 2, � � � , r.
Then the closed loop system is robustly stable if there
exist matrices X > 0 and Q = diagfQ1, Q2, � � � ,
Qrg > 0, Qi 2 <ni�ni ; i = 1, 2, � � � , r; satisfying
the following LMI:

2
4 ATX +XA XB CTQ

BTX �Q DTQ

QC QD �Q

3
5 < 0: (6)

It was shown in [19] that analysis of the comparison sys-
tem (3) using the scaled-small gain LMI condition (6)
is equivalent to the analysis of (1) using the Lyapunov-
based conditions of [18, 9, 11, 13]. Furthermore, it was
demonstrated that these results may be very conser-
vative and that the conservatism arises mainly from
choosing 
1 and 
2 as the unit ball 
1 = 
2 = B.2

Choosing other appropriate sets for 
1 or 
2 may re-
duce conservatism. Unfortunately, in this case analysis
may not be performed directly using either the tradi-
tional � approach or scaled small gain LMI. Herein,
we explore the degree to which conservatism can be
reduced with standard analysis tools and without a fre-
quency sweep. We employ loop transformations on the
comparison system to transform the set 
1 6= B into
a new set �
1 = B: Then, the transformed compari-
son system is analyzed via the scaled small-gain lemma
to derive new, less conservative delay-dependent con-
ditions. Three di�erent loop transformations are em-
ployed to obtain the new stability conditions. These
transformations are depicted in Figure 2, where

P (s) =

2
4 A+MAd

�
��MAd (In �M)Ad

�
�
In
In

�
0

3
5

3 A Comparison System with Shifted Disk

In this section, we exploit the phase information of
the delay element �1(s; �) in (4); and establish a less
conservative stability condition. De�ne the set �1 :=

2Although the sets 
1 and 
2 are not explicitly used in [19],
this choice is implicit by the analysis techniques.
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Figure 2: Loop transformations. (a) System (4). (b) With
shifted disk. (c) With �lter. (d) With both
�lter and shifted disk.
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Figure 3: Delay element value set �1 (shaded) and cov-
ering disks. (a) Unit disk B. (b) D(�0:251;
0:749), the disk with minimum radius among
all contained within B. (c) D(�0:327; 0:726),
the minimum radius covering disk.

f��1(j!; �)j! 2 <+
e ; � 2 [0; �� ]; � 2 [0; 1]g. As shown in

Figure 3, �1 is not symmetric with respect to the imag-
inary axis but, rather, most points of �1 are located in
the left half plane. We may use a disk D(q; r) to cover
this set, that is,

j��1(j!; �)� qj � r; 8! 2 <+
e ; � 2 [0; �� ]; � 2 [0; 1]:

The valid covering disks, of course, are not unique.
Three covering disks are shown in Figure 3. The stabil-
ity of (1) can now be analyzed by examining the robust
stability of (3) with 
1 = D(q; r) and 
2 = B. To this
end, we �rst employ the transformation

�̂1(s; �) =
�1(s; �) � q

r

upon (4) which, in view of (2), yields

sX(s) = (A+MAd + q��MAdA)X(s)
+�2[(In �M)Ad + q��MAdAd]X(s)

+�̂1��rMAdAX(s)

+�̂1�2��rMAdAdX(s)

Since �̂1(s; �) 2 EB and �2(s; �) 2 EB; we obtain a
comparison system which can be realized as the inter-
connection system

_x = (A+MAd + q��MAdA)x + ��rMAdu1
+[(In �M)Ad + q��MAdAd]u2

y1 = Ax+Adu2
y2 = x

u1 = �1y1
u2 = �2y2

(7)

with uncertainties �1(s) 2 EB and �2(s) 2 EB: There-
fore, applying Lemma 2 and de�ningW = XM; we ob-
tain the following delay-dependent stability condition.

Theorem 1 System (1) is asymptotically stable for
any constant time-delay � 2 [0; �� ]; if there exist ma-
trices X > 0; U > 0; V > 0 and W such that

2
664

H1 H2 H3 ATV

HT
2 �V 0 0

HT
3 0 �U AT

d V

V A 0 V Ad �V

3
775 < 0 (8)

where

H1 = ATX +XA+WAd +AT
dW

T

+��qWAdA+ ��qATAT
dW

T + U

H2 = ��rWAd

H3 = XAd �WAd + ��qWAdAd

Remark 2 It is obvious from Figure 3 that the unit
disk B = D(0; 1) is a valid covering disk, but no use-
ful phase information of �1 is used in this case. In
fact, this is the implicit choice made by the Lyapunov-
based results of [11, 9, 13]. In particular, if q = 0
and r = 1; (8) reduces to the result of [13]. Hence,
with D(�0:251; 0:749) which belongs to the unit disk
B; the condition (8) is less conservative than the result
of [13], in general. In addition, with minimum radius
disk D(�0:327; 0:726); (8) may be even less conserva-
tive. However, this is not guaranteed and the results
depend upon A and Ad since this disk does not belong
to D(�0:251; 0:749) or B.

Remark 3 For the special case when M = 0, since
W = 0, (8) reduces to the delay-independent stability
condition.



4 A Comparison System with Filter

In this section, we analyze the stability of (1) by ex-
ploiting the frequency-dependent gain information of
the delay element �1(s; �) with a �lter f(s). Using this
�lter, we derive a new stability criterion.

4.1 Filter f(s) and its realization

In the sequel, we will use a �lter f(s) to capture mag-
nitude and phase information of �1(s; �). Suppose that
f(s) is real rational, stable and has minimum phase, the
order of its denominator is greater than that of the nu-
merator by 1, and j�1(j!; �)j � jf(j��!)j ; 8! 2 <+

e ;

� 2 [0; �� ]: The �lters satisfying these conditions are ob-
viously not unique. One choice, given in [10], is

f(s) =
2s+ 7:0711

s2 + 4:5434s+ 7:0711
: (9)

Its frequency response is shown in Figure 4, where
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Figure 4: Frequency response of �lter (9) jf(j!)j (dashed)
and g(!) (solid).

g(!) = max
0�����

j�1(j!; �)j =

8>>><
>>>:

1 ! = 0

2 sin !��

2

!�� 0 < ! � �
��

2
!�� ! > �

��

De�ne F (s) = f(s)In; and suppose that a minimum

realization of F (s) is given by F (s) =

�
Af Bf

Cf 0

�
.

Then it is straightforward to verify that

F (��s) =

�
���1Af ���1Bf

Cf 0

�
; (10)

where Af ; Bf and Cf are constant matrices and inde-
pendent of �� :

4.2 Stability Analysis

Using the above �lter, the stability of (1) can be an-
alyzed by choosing 
1(j!) = fz 2 Cj jzj � jf(j��!)jg
and 
2 = B and applying Lemma 1. Here, we consider

the simplest case3 whereM = In: Employing the trans-

formation ��1(s; �) =
�1(s;�)
f(��s) upon (4) and using (2), we

have

sX(s) = (A+Ad)X(s)
+��1Ads��f(��s)X(s)

with ��1(s; �) 2 EB. De�ning Yf (s) = F (��s)X(s); then
from (10), we have the following realization of this �lter

_z = ���1Af z + ���1Bfx

yf = Cfz

Therefore,

s��f(��s)X(s) = s��Yf (s)
= s��CfZ(s)
= Cf [AfZ(s) +BfX(s)]

yielding the comparison system

sX(s) = (A+Ad)X(s)
+�1(s)AdCf [AfZ(s) +BfX(s)]

sZ(s) = ���1AfZ(s) + ���1BfX(s)
(11)

with �1(s) 2 EB: (11) can be realized as

_x = (A+Ad)x+Adu1
_z = ���1Bfx+ ���1Afz

y1 = CfBfx+ CfAfz

u1 = �1y1

(12)

where only a single uncertainty block appears. Hence
applying Lemma 2 we obtain the following delay-
dependent criterion.

Theorem 2 The system (1) is asymptotically stable
for any constant time-delay � 2 [0; �� ]; if there exist ma-
trices X > 0 and Q > 0; Q 2 <n�n such that

2
4 ÂTX +XÂ XB̂ ĈTQ

B̂TX �Q 0

QĈ 0 �Q

3
5 < 0 (13)

where Â =

�
A+Ad 0
���1Bf ���1Af

�
; B̂ =

�
Ad

0

�
; and

Ĉ =
�
CfBf CfAf

�
:

The idea of using frequency �ltering for time-delay sys-
tems can also be found in [7]. However, the above result
is not equivalent to that of [7], which was based upon
an integral quadratic constraint (IQC). As a matter of
fact, it turns out that4, when the same �lter is used, the
result of [7] is essentially the scaled small gain condition
for a comparison system which involves two n�n diag-
onal perturbation blocks as the result of introducing an

3The general case is presented in the full version of this paper
at http://www.people.virginia.edu/~crk4y.

4See the full version of this paper for details.
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Figure 5: Delay element value set and covering disk.
(a) Set ��1 (shaded) with �lter (9) and cov-
ering disk D(�0:51; 0:637) (dashed). (b) Set
��1 (shaded) with �lter (14) and covering disk
D(�0:496; 0:504) (dashed).

additional delay element into the comparison system.
In (12), however, only a single such diagonal perturba-
tion block is used. By increasing the total number of
uncertainty blocks, additional conservatism may be in-
troduced. Therefore, we expect that the condition (13)
is less conservative than the condition of [7] in general.
This conjecture has been con�rmed in all numerical ex-
amples tried by the authors.

5 A Comparison System with Both Filter and

Shifted Disk

In this section, we demonstrate that the conservatism
of the stability analysis tests may be further reduced
by better capturing the gain and phase information of
�1(s; �) via the use of both a �lter and shifted disk. To

this end, let ��1(s; �) = �1(s;�)
f(��s) and de�ne a value set

��1 as ��1 := f���1(j!; �)j! 2 <+
e ; � 2 [0; �� ]; � 2 [0; 1]g.

Consider a covering disk D(q; r) for ��1; given by�����1(j!; �)� q
�� � r; 8! 2 <+

e ; � 2 [0; �� ]; � 2 [0; 1]:

Two examples which satisfy the above property (see
Figure 5) are the �lter (9) with the covering disk
D(�0:51; 0:637); and the �lter

f(s) =
2s+ 7:0711

s2 + 3:15s+ 7:0711
(14)

along with the covering disk D(�0:496; 0:504): The
stability condition of (1) can be obtained by choos-
ing 
1(j!) = f z 2 Cj jz � qf(j��!)j � rjf(j��!)jg and

2 = B; and applying Lemma 1. Consider the case
where M = In: With the transformation ~�1(s; �) =
1
r

�
��1(s; �) � q

�
; the procedure similar to that of the

previous section leads to the following theorem.

Theorem 3 System (1) is asymptotically stable for
any constant time-delay � 2 [0; �� ]; if there exist ma-
trices X > 0 and Q > 0; Q 2 <n�n such that

2
4

~ATX +X ~A X ~B ~CTQ
~BTX �Q 0

Q ~C 0 �Q

3
5 < 0

where ~A =

�
A+Ad + qAdCfBf qAdCfAf

���1Bf ���1Af

�
; ~B =�

rAd

0

�
; and ~C =

�
CfBf CfAf

�
:

Remark 4 If q = 0 and r = 1; the above theorem re-
duces to Theorem 2.

6 Numerical Example

In this section we compare the stability tests derived
in this paper with similar ones published elsewhere
[13, 9, 11, 18, 7] through an example motivated by the
dynamics of machining chatter. The matrices A and
Ad are given by

A =

2
664

0 0 1 0
0 0 0 1

�(10:0 +K) 10:0 0 0
5:0 �15:0 0 �:25

3
775

Ad = [ 0 0 K 0 ]T [ 1 0 0 0 ]:

For this case, the generalized Nyquist criterion [5] can
be used to obtain the exact stability delay margin. The
maximal guaranteed delay margins based on several cri-
teria are shown in Figure 6 as a function of K. We can
see that Theorem 3 provides a delay margin quite close
to the exact value from Nyquist Criterion. Also, choos-
ing di�erent �lters and shifted disks will a�ect the re-
sult as shown in the �gure. For this example, the results
from Theorem 1, and Theorems 2 and 3 are much better
than the previous results forK > K� when the stability
of the system is delay-dependent. In addition, Theorem
1 is less conservative than the result of [13], because, as
pointed out earlier, the latter is a special case of the
former. They both indicate that for K < K�; the sys-
tem is stable independent of delay. This is the result of
introducing the free matrix M in the comparison sys-
tem (7). However, when K < K�, Theorems 2 and 3
and the results of [11, 9] can only provide �nite delay
margins although the correct margin is in�nite.

7 Conclusions

Several new conditions, formulated in terms of LMIs,
are derived for the stability analysis of linear, time-
delay systems. These conditions are based on the ro-
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Figure 6: Maximum delay margin vs. K: (1) Actual value
from Nyquist Criterion. (2) Theorem 3 with
�lter (14) and covering disk D(�0:496; 0:504).
(3) Theorem 3 with �lter (9) and covering disk
D(�0:51; 0:637). (4) Theorem 1 with covering
disk D(�0:327; 0:726). (5) Result of [13]. (6)
Theorem 2 with �lter (9). (7) Result of [9].
(8) Result of [11]. (9) Delay-independent result
[18].

bust stability analysis of uncertain delay-free compari-
son systems via the scaled small-gain lemma. The com-
parison systems are obtained by embedding the non-
rational delay elements within norm bounded uncer-
tainty sets and employing loop transformations to re-
duce conservatism. An example shows that these re-
sults can be signi�cantly less conservative than exist-
ing criteria in the literature. Finally, we point out that
the proposed approach can be easily extended to the
robust stability or H1 performance analysis of linear
time-delay systems with dynamic or parametric uncer-
tainty.
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