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Abstract

In this paper we derive a dynamic friction force model
for road/tire interaction for ground vehicles. The model
is based on a similar dynamic friction model for contact
developed previously for contact-point friction prob-
lems, called the LuGre model [4]. We show that the
dynamic LuGre friction model is able to accurately cap-
ture velocity and road/surface dependence of the tire
friction force.

1 Introduction

The problem of traction control for ground vehicles is of
enormous importance to automotive industry. Traction
control systems reduce or eliminate excessive slipping
or sliding during vehicle acceleration and thus enhance
the controllability and maneuverability of the vehicle.
Proper traction control design will have a paramount
e�ect on safety and handling qualities for future pas-
senger vehicles. Traction control aims to achieve max-
imum torque transfer from the wheel axle to forward
acceleration. The friction force in the tire/road inter-
face is the main mechanism for converting wheel angu-
lar acceleration (due to the motor torque) to forward
acceleration (longitudinal force). Therefore, the study
of friction force characteristics at the road/tire interface
has received a great deal of attention in the automotive
literature.

A common assumption in most of tire friction models
is that the normalized tire friction �

� =
F

Fn
=

Friction force

Normal force

is a nonlinear function of the normalized relative ve-
locity between the road and the tire (slip coeÆcient s)
with a distinct maximum; see Fig. 1. It is also under-
stood that � depends also on the velocity of the vehicle
and road surface conditions, among other factors (see
[3] and [10]). The curves shown in Fig. 1 illustrate how
these factors in
uence the shape of �.
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The static model shown in Fig. 1 is derived empirically
based solely on steady-state experimental data [10, 1].
Under steady-state conditions, experimental data seem
to support the force vs. slip curves of Fig. 1. Neverthe-
less, the development of friction force at the tire/road
interface is very much a dynamic phenomenon. In other
words, the friction force does not reach its steady-state
instantaneously, but rather exhibits signi�cant tran-
sient behavior which may di�er signi�cantly from its
steady-state value. Experiments performed in commer-
cial vehicles, have shown that the tire/road forces do
not vary along the curves shown Fig. 1, but \jump"
from one value to an other when these forces are dis-
played in the �� s plane [15].

In this paper, we develop new, speed-dependent, dy-
namic friction models that can be used to describe the
tire/road interaction. These models have the advan-
tage that are developed starting from �rst principles
and are based on simple contact (punctual) dynamic
friction models [4]. Thus, the parameters entering the
models have a physical signi�cance which allows the
designer to tune the model parameters based on exper-
imental data. The models are also speed-dependent,
which agrees with experimental observations. A sim-
ple parameter in the model can also be used to capture
the road surface characteristics. Finally, our model is
shown to be well-de�ned everywhere and hence, is ap-
propriate for control law design.

2 Tire/road friction models

In this study we consider a system of the form:

m _v = F (1)

J _! = �rF + u ; (2)

where m is 1/4 of the vehicle mass and J , r are the
inertia and radius of the wheel, respectively. v is the
linear velocity, ! is the angular velocity, u is the ac-
celerating (or braking) torque, and F is the tire/road
friction force. For the sake of simplicity, only longitu-
dinal motion will be considered. The dynamics of the
braking and driving actuators are also neglected.
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Figure 1: Typical variations of the tire/road friction pro-
�les for: di�erent road surface conditions (top),
di�erent vehicle velocities (bottom). Curves ob-
tained by Harned in et al [10].

2.1 Slip/Force maps
The most common tire friction models used in the lit-
erature are those of slip/force maps. They are de�ned
as one-to-one (memory-less) maps between the friction
F , and the longitudinal slip rate s, de�ned as:

s =

(
1� r!

v if v > r!; v 6= 0 braking

1� v
r! if v < r!; ! 6= 0 driving

(3)

The slip rate results from the reduction of the e�ec-
tive circumference of the tire (consequence of the tread
deformation due to the elasticity of the tire rubber),
which implies that the ground velocity will not be equal
to v = r!. The slip rate is de�ned in the interval [0; 1].
When s = 0 there is no sliding (pure rolling), whereas
s = 1 indicates full sliding.

The slip/force models aim at describing the shapes
shown in Fig. 1 via static maps F (s) : s 7! F . They
may also depend on the vehicle velocity v, i.e. F (s; v),
and vary when the road characteristics change.

One of the most well-known models of this type is Pace-
jka's model (see, Pacejka and Sharp [13] ), also known
as the \magic formula". This model has been shown
to suitably match experimental data, obtained under
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Figure 2: One-wheel system with: lumped friction (left),
distributed friction (right)

particular conditions of constant linear and angular ve-
locity. The Pacejka model has the form

F (s) = c1 sin(c2 arctan(c3s� c4(c3s� arctan(c3s)))) ;

where the c0is are the parameters characterizing this
model. These parameters can be identi�ed by match-
ing experimental data, as shown in Bakker et al. [1].
The parameters ci depend on the tire characteristics
(such as compound, tread type, tread depth, in
ation
pressure, temperature), on the road conditions (such as
type of surface, texture, drainage, capacity, tempera-
ture, lubricant, i.e., water or snow), and on the vehicle
operational conditions (velocity, load); see Pasterkamp
and Pacejka [12].

As an alternative to the static F (s) maps, dynamic
models based on the dynamic friction models of Dahl
[7]1, can be adapted to suitably describe the road-tire
contact friction. Dynamic models can be formulated as
a lumped or distributed models, as shown in Fig. 2.
This distinction will be discussed next.

2.2 Lumped models
A lumped friction model assumes punctual tire-road
friction contact. An example of such a model can be
derived from the LuGre model2 (see Canudas et al,
[4]), i.e.

_z = vr �
�0jvrj

g(vr)
z (4)

F = (�0z + �1 _z + �2vr)Fn (5)

with,

g(vr) = �C + (�S � �C)e
�jvr=vsj

1
2

1Dahl's models lead to a friction displacement relation that
bears much resemblance with stress-strain relations proposed in
classical solid mechanics.

2This model di�ers from the one in [4] in the way that the func-

tion g(v) is de�ned. Here we propose to use the term e�jvr=vsj
1
2

instead the term e�(vr=vs)
2
as in the LuGre model in order to

better match the pseudo-stationary characteristic of this model
(map s 7! F (s) ) with the shape of the Pacejka's model, as it will
be shown later.



where �0 is the normalized rubber longitudinal lumped
sti�ness, �1 the normalized rubber longitudinal lumped
damping, �2 the normalized viscous relative damping,
�C the normalized Coulomb friction, �S the normal-
ized Static friction,(�C � �S 2 [0; 1]), vS the Stribeck
relative velocity, Fn the normal force, vr = (r!�v) the
relative velocity, and z the internal friction state.

Dynamic friction models speci�cally for tires have been
reported in the work of Clover and Bernard [6], where
they develop a di�erential equation for the slip coeÆ-
cient, starting from a simple relationship of the rela-
tive re
ections of the tire elements in the tire contact
patch. They still use the semi-empirical static force/slip
models, however, to compute the corresponding fric-
tion force. In that respect, such models can be best
described as quasi-dynamic models.

2.3 Distributed models
Distributed models assume the existence of an area of
contact (or patch) between the tire and the road, as
shown in Fig. 2. This patch represents the projection
of the part of the tire that is in contact with the road.
The contact patch is associated to the frame Op, with
� as the axis coordinate. The patch length is L.

Distributed dynamical models, have been studied pre-
viously, for example, in the works of Bliman et al. [2].
In these kinds of models, the contact patch area is dis-
cretized to a series of elements, and the microscopic
deformation e�ects are studied in detail. In particu-
lar, Bliman at al. characterize the elastic and Coulomb
friction forces at each point of the contact patch, but
then they give the aggregate e�ect of these distributed
forces by integrating over the whole patch area. They
propose a second order rate-independent model (similar
to Dahl's model), and show that, under constant v and
!, there exist a choice of parameters that closely match
a curve similar to the one characterizing the magic for-
mula.

Similar results can be obtained by using a model based
in the �rst-order LuGre friction model, i.e.

d Æz

dt
(�; t) = vr �

�0jvrj

g(vr)
Æz (6)

F =

Z L

0

ÆF (�; t) d� ; (7)

with g(vr) de�ned as before and

ÆF = (�0 Æz + �1 Æ _z + �2vr) ÆFn ;

where, ÆF is the di�erential friction force, ÆFn = Fn=L
the di�erential normal force, vr = (r! � v) the relative
velocity, and Æz the di�erential internal friction state.
This model assumes that:

� the normal force is uniformly distributed, and

� the contact velocity of each di�erential state ele-
ment is equal to vr.

Nevertheless, it is also possible to include di�erent nor-
mal force distribution if necessary, i.e. ÆFn = f(�).

Note that Eq. (6) describes a partial di�erential equa-
tion (PDE), i.e.

d Æz

dt
(�; t) =

@ Æz

@�
(�; t) r! +

@ Æz

@t
(�; t) = vr �

�0jvrj

g(vr)
Æz

(8)
that should be solved in both: time and space.

2.4 Relation between distributed model and the
magic formula
The linear motion of the di�erential ÆF in the patch
frame Op is _� = r!, for positive !, and _� = �r!, for
negative ! (the frame origin changes location when the

wheel velocity reverses). Hence _� = rj!j. We can thus
rewrite (6) in the � coordinates as:

d Æz

d�
= �

�0jsj

g(vr)
Æz + jsj sgn(r! � v) (9)

where s = vr=!r = 1 � v=!r. Assuming that v, and
! are constant (hence also vr, and s), the above equa-
tion describes a linear space-invariant system having
the sign of the relative velocity as its input.

The solution of the above equation over the space
interval [�(t0); �(t1)], or equivalent over [�0; �1], with
Æz(�0) = �0 = 0 is

Æz(�) = sgn(vr)
g(vr)

�0

�
1� e

�
�0jsj

g(vr)
�

�

Introducing this solution together with Eq. (9) in Eq.
(7), and integrating, we obtainZ L

0

Æz(�) d� = sgn(vr)
g(vr)

�0
L

�
1 +

g(vr)

�0Ljsj
(e�

�0Ljsj

g(vr ) � 1)

�
(10)

and using (8) we obtainZ L

0

Æ _z(�) d� = �vr
g(vr)

�0jsj
(e�

�0Ljsj

g(vr) � 1) (11)

Finally, we have that F (s), is given as

F (s) = sgn(vr)Fng(s)

�
1 + 


g(s)

�0Ljsj
(e�

�0Ljsj

g(s) � 1)

�
+ Fn�2r!s (12)

with 
 = 1� �1jvrj=g(s) and

g(s) = �C + (�S � �C) e
�jr!s=vsj

1
2

for some constant !, and s 2 [0; 1].

Uncertainty in the knowledge of the function g(vr), can
be modeled by introducing the parameter �, as

~g(vr) = �g(vr) ;

where g(vr) is the nominal known function. Computa-
tion of the function F (s; �), from Eq. (12) as a function



Parameter Value Units
�0 40 [1/m]
�1 4.9487 [s/m]
�2 0.0018 [s/m]
�C 0.5 [-]
�S 0.9 [-]
vs 12.5 [m/s]

Table 1: Data used for the plot shown in Fig. 3

of �, gives the curves shown in Fig. 3. These curves
match reasonably well the experimental data shown in
Fig. 1-(a), for di�erent coeÆcient of road adhesion us-
ing the parameters shown in Table 1. Hence, the pa-
rameter �, suitably describes the changes in the road
characteristics.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Static view of the distributed LuGre friction model 
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Figure 3: Static view of the distributed LuGre model, un-
der di�erent values for 1=�. Braking case, with
v = 20m=s = 72Km=h. These curves show the
normalized friction � = F (s)=Fn, as a function
of the slip rate s.

Note that the steady-state representation of Eq. (12)
can be used to identify the model parameters by feeding
this model to experimental data. These parameters can
also be used in the simpler lumped model, which can be
shown to suitably approximate the solution of the PDE
described by Eqs. (6) and (7). This approximation is
discussed next.

2.5 From distributed to lumped models
Under the assumptions given in subsection 2.3 we can
approximate the PDE in Eqs. (6)-(7) by a set of n
ordinary di�erential equations via a spatial discretiza-
tion. To this end, let's divide the contact patch into
N equally spaced discrete points, to each we associate
the \discrete" average displacement Æzi, i.e. Æzi =
Æz(iL=N; t); 8i = 0; 1; : : :N �1: The space/time scalar
Æz(�; t) is thus approximated by the N -dimensional
time vector, Æz = [Æz0; Æz1; : : : ; ÆzN�1]

T where, for the
sake of simplicity of the notation, we have written

Æzi(t) = Æzi. Similarly, we have that

d Æz

d�
= [

d Æz0
d�

;
d Æz1
d�

; : : :
d ÆzN�1

d�
]T (13)

where each of the d Æzi
d� can be approximated using for-

ward di�erences, as:

d Æzi
d�

=

�
Æzi+1�Æzi

L=N i = 0; 1; : : :N � 2

0 i = N � 1

Hence, for each i-th equation we have

Æ _zi = �
Æzi+1 � Æzi

L=N
r! + vr � �0

jvrj

g(vr)
Æzi (14)

Similarly,with �Fn;i = Fn=L; 8 i, and �� = L=N , F
can be approximated as:

F =

N�1X
i=0

�Fi =

N�1X
i=0

(�0 Æzi + �1 Æ _zi)�Fn;i��+�2vrFn

which simpli�es to:

F = Fn
1

N

N�1X
i=0

(�0 Æzi + �1 Æ _zi) + �2vrFn

Introducing �z, as the mean value of all the Æzi, i.e.

�z =
1

N

N�1X
i=0

Æzi

we have, from Eq. (14), that

_�z = �
1

L

N�1X
i=0

(Æzi+1 � Æzi) r! + vr � �0
jvrj

g(vr)
Æ�z (15)

Noticing that
PN�1

i=0 (Æzi+1 � Æzi) = Æz0, and taking
Æz0 = 0, we have that

_�z = vr �
�0jvrj

g(vr)
�z (16)

F = (�0�z + �1 _�z + �2vr)Fn (17)

These equations describe the approximate behaviour of
the PDE, in terms of the mean variable �z. When com-
pared to Eqs. (4)-(5), they indicate that the lumped
model can be used as a suitable approximation of the
distributed one. Therefore, parameters identi�ed from
the stationary behaviour shown in Fig. 3, can be used
in the lumped model (4)-(5).

3 Traction Control

We consider the one-wheel model with the tire/road
friction described in Eqs. (1)-(2). Using the pseudo-
static (or steady-state) force friction point of view, the
friction force is given as an algebraic (static) function of



the slip coeÆcient. Typical friction force vs. slip coeÆ-
cient curves are shown in Fig. 1. This �gure suggests a
simple way to achieve maximum traction between the
road and the wheel tire. Namely, to operate at the max-
imum point of the friction/slip curve. This \extremum
seeking" control strategy requires the a priori knowl-
edge of the optimal target slip. With the exception
of [8], where the authors present a control algorithm
which does not require the a priori knowledge of the
optimal slip, current literature does not seem to have
adequately dealt with this problem. Nonetheless, slip
and friction estimation algorithms have been proposed
and veri�ed experimentally in [12].

A simple traction control law using this idea, and based
on sliding mode techniques, is given in [9]. For the
simpli�ed one-wheel friction model of Eqs. (1)-(2) this
control law is given by

u =

�
J

rm(1� sd)
+ r

�
F � k sgn(S) (18)

where sd is the desired slip coeÆcient, S is given by
S = (s� sd) r! and

k =
J

(1� sd)r
�; � > 0 (19)

Indeed, simple calculation shows that

_S = (1� sd) r _! � _V (20)

Substituting Eq. (18) into Eq. (20) and using Eqs. (1)-
(2), one obtains

_S = �� sgn(S) (21)

This implies that S ! 0 after S(0)=� seconds. The
major drawback of the control law in Eq. (18) is that
is highly oscillatory due to the zero order sliding mode
S = 0. One can reduce the chattering by smoothing
the discontinuity of sgn(�) via low-pass �ltering. In the
smoothed implementation of the previous control law,
the term k sgn(S) is replaced by the term �k sat(S=�),
where �k = �� and where sat(�) is the saturation func-
tion. For more details on the previous control law, the
interested reader is referred to [9].

4 Numerical example

In this section we use the traction control law of the pre-
vious section on two di�erent friction models. In par-
ticular, we are interested in di�erences between static
and dynamic friction models. We consider the one-
wheel model with the values shown in Table 1, and:
m = 500Kg, J = 0:2344Kgm2, r = 0:25m, Fn = mg.
The �rst simulation was performed using the steady-
state LuGre model from Eq. (12). The relevant param-
eters of the LuGre friction model are shown in Table 1.
The maximum traction is achieved for sd = 0:15. The
results of the simulations, using the smoothed version
of the traction control law presented in the previous
section, are shown in Fig. 4. The second simulation
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Figure 4: Static friction model.

was performed using the dynamic friction model given
in Eqs. (4)-(5) with the values shown in Table 1. The
results of the simulation are shown in Fig. 5. In both
cases, the initial applied torque for both static and dy-
namic cases was u = 10000Nm. The history pro�les of
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Figure 5: Dynamic friction model.

the applied torque and the slip coeÆcient are very sim-
ilar. The most serious discrepancy between Figs. 4 and
5 is the actual friction force developed between the tire
and the ground for the two cases. These �gures show
clearly that the maximum friction force predicted us-
ing the dynamic friction model is more than three times
the maximum of the friction force predicted using the
static friction model during the initial transient. The
steady-state value of the friction force for both cases is
almost the same. Since the main mechanism for trans-
ferring the axle torque to forward movement is friction
force, these results suggest that new traction control
algorithms using dynamic friction models may have an



advantage over traditional control laws based on track-
ing the optimal slip coeÆcient. Finally, Fig. 6 shows
the distances traveled by the wheel for each case, along
with the path of a point at the circumference of the
wheel. A complete circle indicates complete slipping
(the wheel spins without moving forward) whereas a
cycloid indicates that the relative velocity of the con-
tact point is zero. Because of the higher friction force
developed in the dynamic friction model, the wheel has
traveled a longer distance than for the static friction
case.
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(a) Wheel trajectory with static friction model.
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Figure 6: Comparison of wheel trajectories using static
and dynamic tire friction models (note di�erent
stopping points).

5 Conclusion

In this paper, we have derived a new dynamic, speed-
and surface-dependent tire friction model for use in ve-
hicle traction control design. This model captures very
accurately most of the main characteristics that have
been discovered via experimental data. It was also
shown that distributed models can collapse to a lumped
model, which is rich enough to capture the main dy-
namic characteristics. Since the main mechanism for
transferring the axle torque to forward movement is
friction force, these results suggest that new traction
control algorithms using dynamic friction models may
have an advantage over traditional control laws based
on simple, static friction models. Although for the sake
of brevity the discussion has been restricted to traction
control, the results of the paper have an immediate ap-
plication to the design of ABS systems.
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