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Abstract

In this paper we consider the problem of obtaining op-
timal controllers which minimize a quadratic cost func-
tion for the rotational motion of a rigid body. We
are not concerned with the attitude of the body and
consider only the evolution of the angular velocity as
described by Euler’s equations. We obtain conditions
which guarantee the existence of linear stabilizing opti-
mal and suboptimal controllers. These controllers have
a very simple structure.

1 Introduction

Optimal control of rigid bodies has a long history stem-
ming from interest in the control of rigid spacecraft
and aircraft. The main thrust of this research has been
directed, however, towards the time-optimal attitude
control problem; see, for example, the survey paper [1]
and the book [2]. The earliest results on the optimal
regulation of angular velocity or, equivalently, angular
momentum seem to be [3, 4, 5]. Windeknecht [6] also
examined the problem of optimum regulation of the an-
gular momentum over a finite interval with a quadratic
integral penalty on the control variables and a terminal
constraint on the state; the weighting matrices in the
cost function were identity matrices. Dixon et al. [7]
considered the fuel-optimal rest-to-rest maneuver for
an axisymmetric rigid body.

In this paper we seek optimal and suboptimal solutions
to the nonlinear quadratic regulator (NLQR) problem
for a rigid body in the sense that a quadratic cost func-
tion is to be minimized.

We solve the problem of quadratic regulation for the
dynamic (angular velocity) equations of a rotating rigid
body, by deriving explicit solutions to the associated

Hamilton-Jacobi Equation (HJE) and Hamilton-Jacobi
Inequality (HJT). We give necessary and sufficient con-
ditions for the existence of quadratic functions which
satisfy the HJE and HJI. These solutions result in lin-
ear optimal and suboptimal controllers, respectively.

The paper is organized as follows. In Section 2 we
present the equations of motion of a rotating rigid body
and state the problem to be addressed. In Section 3 we
completely characterize the family of quadratic inte-
grals of the unforced system and we present some pre-
liminary results concerning the conditions under which
the system is zero-state detectable and zero-state ob-
servable. Sections 4 and 5 contain the main results of
the paper. The first theorem of the paper (Theorem 1)
contains conditions under which the NLQR problem is
solvable. Theorem 2 gives sufficient conditions for the
suboptimal NLQR problem, i.e., conditions which guar-
antee boundedness of a quadratic cost. These theorems
introduce the HJE and HJI. By restricting considera-
tion to quadratic solutions to the HJE/HIT we seek lin-
ear solutions to the HJE/HJT and we show that these
solutions can be computed by considering only the as-
sociated Algebraic Riccati Equation (ARE) and Alge-
braic Riccati Inequality (ARI), respectively. In Sec-
tion 6 we give some special cases in which the optimal
feedback NLQR controller can be shown to be linear.
We also show that some of the known results in the lit-
erature follow immediately from the results presented
here. In Section 7 we present an optimization algorithm
for computing a positive definite solution to the ARI.
We conclude with a numerical example to illustrate the
theory.



2 Problem formulation

2.1 Equations of motion
The evolution of the angular velocity, or the angular
momentum, of a rigid body is described by

w(0) = wo (1)

where w(t) = col(wi(t),ws2(t),ws(t)) with w;(t) € R
being the ¢-th component of the angular velocity of
the body relative to an inertial reference frame. These
components are taken relative to a body-fixed refer-
ence frame. The real positive definite matrix J is the
inertia matrix of the rigid body at the mass center and
expressed relative to the body fixed frame. At time ¢,
the control input is given by u(t) € IR™. We assume
that (G is a constant matrix of appropriate dimensions,
having full column rank. If we let

Jw = (Jw) x w+ Gu,

fw) =T (Jw) x w], B:=J'G (2)

the system can be described by

w = f(w) + Bu, w(0) = wq (3)
Since J is symmetric and positive definite, it has
three positive real eigenvalues Iy, I, Is with three
corresponding mutually orthogonal real eigenvectors
v1, 2, v3. These eigenvalues and eigenvectors are called
the principal moments of inertia and principal axes of
inertia, respectively, of the body about its mass center.
If two of the principal moments are equal, say I} = I,
the body is said to be azisymmetric about the axis
parallel to the eigenvector corresponding to the third
eigenvalue, i.e., v3 in this case. If [y = I, = I3, 1.e.,if J
1s a multiple of the identity matrix, the body is said to
be symmetric. In this case J is a multiple of the iden-
tity matrix and the system is linear and is described
by

W = Bu, w(0) = wq (4)
2.2 Problem definition
Consider the control-affine nonlinear system (3). In-
troducing a penalty or regulated output z(t) € IRP | we
obtain the following system description:

w = f(w)+ Bu, w(0) = wq (ba)

z = Hw+ Du (5b)

where H and D are constant matrices of appropriate

dimensions. The associated uncontrolled system or free
system 1s given by

w = flw),

z = Huw (6b)

Associated with system (5) is the following quadratic
cost function

Teniwi= [ Hswde= [P @)

where “” denotes transpose and ||z|| denotes the Eu-
clidean norm (length) of a vector z € IR” and is defined
by [|z]|*> = >°F_, z; = 2’2. By making the additional
assumption that the matrices H and D satisfy the con-
dition

D'H =0 (8)
one can eliminate the product term between w and v in
the cost function and thus, the cost (7) takes the form

T (wo;u) == /000 W (H)Quw(t) + v (t)Ru(t) dt (9)

where

Q=H'H, R=DD

Assumption (8) is quite standard in the control litera-
ture [8, 9] and can be introduced without loss of gen-
erality.

Consider system (5) subject to a memoryless state feed-
back controller &, i.e.,

u=k(w) (10)
and the resulting closed loop system 1s described by

W = f(w)+ Bk(w) (11a)
z = Hw+ Dk(w) (11b)

We are now ready to state the Nonlinear Quadratic

Regulator (NLQR) problem .

Problem (NLQR) Find a memoryless
state-feedback controller &* for system (5)
such that

(i) the resulting closed-loop system

w = flw)+ Bk*(w) (12a)
z = Hw+ Dk"(w) (12b)

1s globally asymptotically stable about
w = 0;
(ii) for each initial state wq and for every
control history w(-) which results in
lim w(t) =0
t—o0
the control history u*(-) generated by

the controller &* minimizes the cost
functional (7), i.e.,

I (woiu”) < T (wo;u)

If there exists a controller k* satisfying (i) and (ii), we
call 1t an optimal stabilizing state-feedback controller
and we say that (5) is NLQR-solvable. If, in addition,
k* is linear we say that (5) is NLQR-solvable via linear
control.



3 Some preliminary results

3.1 Observability and detectability

Before we present a solution to the NLQR problem
associated with system (5) we need to introduce the
following concepts [10, 11] for a system described by

t = F(») (13a)
z = H(x) (13Db)

where z(t) € IR" and z(t) € IR".

Definition 3.1 (Zero-state observability) System
(13) is zero-state observable if z(t) = 0 for allt > 0
implies z(¢) = 0 for all t > 0

Definition 3.2 (Zero-state detectability) System
(13) is zero-state detectable if z(¢t) = 0 for all t > 0
implies lim;_, oo () = 0.

Proposition 3.1 Consider system (5) with D full col-
umn rank and suppose that condition (8) holds. Then,
for any controller k, the closed loop system (11) is zero-
state observable (zero-state detectable) if and only if the
uncontrolled system (6) is zero-state observable (zero-
state detectable).

Proof: Notice that z = 0 in (11) if and only if
Hz =0 and Dk(z) = 0. Since D is full column rank it
follows that k(z) = 0 and the trajectories of (11) evolve
according to (6). Thus (11) is zero-state observable
(zero-state detectable) if and only if (6) is zero-state
observable (zero-state detectable). ™

The previous proposition states, in essence, that if D if
full column rank then the test of zero-state observabil-
ity for system (11) reduces to a test on the uncontrolled
system (6), i.e., it is an open-loop property. This is the
route also followed in [10, 11, 12, 13]. From now on, we
will always assume that D is full column rank. With-
out loss of generality, we can redefine the control input
so that the matrix D satisfies the condition

D'D=T (14)

It turns out that the zero-state observability property
for system (6) (or system (11) for that matter) has a
very simple characterization in terms of the matrix pair

(H,J). We have the following result.

Lemma 3.1 The following statements are equivalent.

(a) System (6) is zero state observable.
(b) System (6} is zero state detectable.

(c)
H
rank | HJ =3 (15)
HJ?

Definition 3.3 When the rank condition (15) holds,
we say that the pair (I, .J) is observable.

Remark 3.1 From the previous discussion it should
be clear that if (H, J) is observable then the closed loop
system (11) is zero-state observable with any controller

k.

3.2 Integrals of the uncontrolled system
Here we consider quadratic integrals of the motion of
the uncontrolled system

w = f(w). (16)

where f(w) is defined in (2). Consider any scalar val-
ued function V : IR® — IR. If V is continuously differ-
entiable, we let the subscript w denote differentiation
with respect to w, 1.e.,

_ V()
T dw
The derivative of V' along any trajectory w(-) of system
(16) is given by

d

5V (@) = Ve(wt) f(w(t)) (17)

and we have the following definition.

Vo(w) : =W =[3; % o ]

w1 dwa dws

Definition 3.4 A function V : IR* — IR is an inte-
gral of the motion of (16) if it is constant along every
trajectory of (16), i.e., if

Vo(w)f(w) =0 (18)
for all w € IR?.

In particular, a quadratic function given by V(w) =
w'Pw where P € IR®*? is symmetric, is an integral of
the uncontrolled system (16) if and only if

WPflw)=0
for all w € R3.

If J is a multiple of the identity matrix, (symmetric
body), every quadratic function is an integral of the
motion. In the nonsymmetric case, it should be clear
from the identities

(Jw)flw) = W[(Jw)xw] =0

(JPw) flw) = (Jw)[(Jw)xw] = 0
that the quadratic functions
Vilw) = w'Jw
Va(w) = W' J%w = ||Jwl|?

are integrals of the motion of system (16). The first
function yields twice the system kinetic energy, whereas
the second one is the square of the magnitude of the
angular momentum. The following lemma tells us that
every quadratic integral of system (16) (non-symmetric
case) is a linear combination of the above two integrals.



Lemma 3.2 Consider the function f(-) given by (2).
A symmetric matriz P € IR®*3 satisfies

WPflw)=0
for allw € IR® if and only if
P=al+pJ* (19)

for some real scalars o and 5 when J s not a multiple
of the identity matrix.

3.3 Stabilizability via linear control

Before addressing the problem of obtaining optimal
stabilizing controllers, we first address the question of
the existence of stabilizing controllers. The following
lemma yields a sufficient condition which guarantees
the existence of linear stabilizing controllers.

Lemma 3.3 Consider system (3) and suppose that
rank [ G JG J G | =3 (20)
Then the linear controller
Bw) = ~Glu (21)

results in a closed loop system which is globally asymp-
totically stable.

Proof: The closed loop system 1s described by

w=fw) - J GG (w)

Considering the function V(w) = %w’Jw as a Lyapunov
function candidate, its time derivative along any solu-
tion of the closed loop system is given by

V(w) WIf(w) —wGGw
—||Gw||? (22)
0 (23)

IN

Hence, V(w(t)) < 0. Since V is radially unbounded,
this implies that all solutions are bounded.

We now note that V(w(t)) = 0 implies that G'w(t) = 0.
Rank condition (20) implies that the pair (G', J) is
observable; hence, using Lemma 3.1, we obtain that
G'w(t) = 0 implies w(t) = 0; hence the only solution
for which V(w(t)) = 0 is the zero solution. Global
asymptotic stability now follows directly from LaSalle’s
Theorem. ™

Definition 3.5 When the rank condition (15) holds,
we say that the pair (J, G) is controllable.

4 Sufficient conditions for optimality and
suboptimality

4.1 Sufficient conditions for solution of the
NLQR problem

The following theorem gives sufficient conditions under
which the NLQR problem for system (5) has a solution.
The main condition requires the existence of a positive
definite function satisfying the Hamilton-Jacobi equa-
tion associated with the minimization of (7) subject
to the nonlinear dynamics (5). Recall that a function
vV IR® — IR, is called positive definite if

(a) V(0)=0
(b) V(w)>0forw #0
(¢) lim V(w) =0

w— 00

We are now ready to give sufficient conditions under

which the NLQR problem is solvable.

Theorem 1 Consider system (5) with (H,J) observ-
able. Suppose that there exist a continuously differen-
tiable positive definite function V : IR® — IRy which
satisfies the Hamilton-Jacobi equation (HJE)

1
Vo(w)flw) — ZVw(w)BB/Vuﬁ(w) +w H'Ho =0, (24)
for allw € IR®. Then the feedback controller
1
K (w) = —§B'Vw(w) (25)

renders the closed-loop system globally asymptotically
stable about the origin and minimizes the cost func-
tional (7). Moreover, for each wg, the optimal control
history is unique and the minimum value of the cost is

V((.do).

Proof: First we show that under the hypotheses
of the theorem the feedback controller (25) is globally
asymptotically stabilizing. With the controller (25) the
closed loop system is

. 1

W= flw)— §BB'Vw(w) (26)
Since the solution V to the HJE is a positive definite
function it can be used as a Lyapunov function candi-
date. Taking the time derivative of V" along the trajec-
tories of (26), and using the HJE one obtains

V) = V@)) ~ 5V@)BBV/()
= (o [ @)
S (21)
<0 (28)

Hence, V(w(t)) < 0 and V(w(t)) = 0 if and only
if z(t) = 0. By remark 3.1 we must have w(t) =



0. Since V is radially unbounded, all solutions are
bounded. Asymptotic stability now follows directly
from LaSalle’s Theorem.

In order to show optimality, consider any initial state
wg and consider any control history u(-) which results
n

lim w(t) =0 (29)

t—o0

An easy calculation shows that

%V@UDI—/®40+HMW—%WM0NQ(%)

where V satisfies (24) and where z(-) is the response
of the system subject to the control history wu(-). Inte-
grating both sides of (30) we get

A SOt dt = Viw(0) - V(w(T))
+LAHMU—WWGMFﬁ(M)

Taking the limit as T — oo and using (29) we get
limy_ oo V(w(T)) = 0; hence

/Ooo Z()z(t)dt = V(wo) + /Ooo [|u(t) — k*(w ()| dt

(32)
Clearly,

|00z v (33)

and the lower bound V(wg) is achieved if and only if
u(t) = k*(w(?)). This completes the proof. ™

In general, the cornerstone for deriving stabilizing op-
timal feedback controllers for nonlinear systems is the
existence of positive definite solutions to the HJE. For
linear time-invariant systems, the above requirement
reduces to the well-known requirement for the existence
of positive definite (or positive semi-definite) solutions
to a matrix Riccati equation, which is the counterpart
of the HJE for the linear case. Therefore, the charac-
terization of positive definite solutions to the HJE is
fundamental to solving the nonlinear optimal feedback
control problem. However, apart from the linear case,
to date there does not exist a systematic procedure for
obtaining such solutions. One is often compelled to
search for solutions of the HJE using series expansions

[14, 15, 16, 17].

4.2 Suboptimal controllers

In practice it may be very difficult to establish the ex-
istence of a positive definite function satisfying (24) for
all w € IR?. In such cases, one may restrict oneself to
the design of controllers which, although not optimal,
are stabilizing and guarantee a bounded value of the
cost. This is the result of the next theorem.

Theorem 2 Consider system (5) with (H,J) observ-
able. Let V R® — IRy be a positive definite

continuously differentiable function which satisfies the
Hamilton-Jacobi Inequality (HJI)

1
Vo(w)flw) — ZVw(w)BB/Vuﬁ(w) +w H'Hw <0, (34)
for allw € IR®. Then the feedback controller
1
K (w) = —§B'Vw(w) (35)

globally asymptotically stabilizes (5) about the origin
and yields a bounded value for the cost (7). In partic-
ular, the cost is bounded above by V(wp).

Proof:  The proof follows very closely the proof of
Theorem 1 and will not be repeated here. n

In most cases it is not an easy task to show that either
the Hamilton-Jacobi Equation or Inequality holds for
the whole state space. Alternatively, one may dispense
altogether with such global results and seek solutions
to the HIJE/HJT only in a positively invariant subset of
the whole state space. This is the route followed in [18].
In the present paper we follow an indirect approach
and seek linear controllers solving the NLQR, problem;
equivalently, we seek quadratic solutions to the HJE
(24) and the HJT (34). In particular, we establish the
following fact: The system (5) is NLQR-solvable via
linear control if the matrix Riccati equation for the
linearized system admits a positive definite solution of
a certain structure.

5 Linear optimal and suboptimal controllers

Our motivation here is based on the observation that
the nonlinear system (1) has linear, globally asymptot-
tcally stabilizing controllers. Therefore, we search over
this class of controllers for the one that gives the mini-
mum cost. One has to be careful however by following
this approach, since — in contrast to the linear systems
— asymptotic stability of a nonlinear system does not
imply, in general, exponential stability, and it may even
happen that all linear stabilizing controllers give rise to
unbounded cost, i.e.; the NLQR problem may not be
solvable when one restricts oneself to linear controllers
(although it may still be solvable via a nonlinear con-
trol).

5.1 Linear optimal controllers

In this section we obtain linear optimal controllers by
looking for quadratic solutions to the HJE (24). If a
quadratic function, given by

V(w) =w'Puw,

is a positive definite solution to the HJE, then the cor-
responding optimal stabilizing controller (recall (25))



is linear and is given by
k*(w) = —B'Pw (36)

It can readily be seen that V satisfies the HJE if and
only if

V welR?
(37)

We are now ready to state the main result for the so-
lution of the NLQR problem via a linear controller.

20'Pf(w)+w H Hv—w PBB'Pw =0

Theorem 3 Consider system (5) with (H,J) observ-
able. A quadratic function, given by V(w) = w'Puw,
satisfies the conditions of Theorem 1 if and only if the
matriz P is a positive definite solution to the Algebraic

Riccati Equation (ARE)
H'H— PBB'P =0 (38)

and

P=al+pJ* (39)

for some scalars o, 3 when J not a multiple of the iden-
tity matriz.

When these conditions are satisfied, the system is
NLQR-solvable via the linear controller (36) and the

mintmum value of the cosl is wyPwy.

Proof: (Sufficiency). Since V(w) = w’'Pw with P
a positive definite matrix, the function V is positive
definite. If J is not a multiple of the identity matrix,
P = aJ 4+ 3J? and it follows from Lemma 3.2 that
w'Pf(w) = 0. ARE (38) now guarantees satisfaction
of (37); hence HIE (24) holds. The optimal stabilizing

controller is linear and given by equation (36).

(Necessity). Suppose that there exists a quadratic func-
tion given by V(w) = w’ Pw, which satisfies the condi-
tions of Theorem 1. Since V satisfies the HJE, condi-
tion (37) must hold. The first term in (37) is a cubic
polynomial in w (recall that f(w) is quadratic in w)
and the last two terms are quadratic polynomialsin w.
Therefore the left-hand side of equation (37) is the sum
of two homogeneous polynomials; one cubic in w and
the other quadratic in w. Since their sum is zero for all
w € IR?, each polynomial must vanish identically for
all w € IR3. In other words, (37) holds for all w € IR?
if and only if

WPflw)y=0 and W H Hw—wPBB Pw=0 (40)

for all w € IR®. By Lemma 3.2 the first condition is
satisfied if and only if P is of the form P = aJ 4+ 3J?
when J is not a multiple of the identity. The second
condition in (40) is satisfied if and only if P satisfies the
algebraic Riccati equation (38). Since V is a positive
definite function, the matrix P is positive definite. m

Remark 5.1 Note that (38) is the ARE for the linear
quadratic regulator (LQR) problem associated with the
linearized system

Ww = Bu, w(0) = wy (41a)
2z = Hw+ Du (41Db)

From standard LQR theory, the linearized problem
considered here has a solution if and only if the pair
(0, B) is controllable and the pair (H,0) is observable,
i.e., rtankB =rankH = 3. In this case, the optimal
controller is given by (36) where P is the positive defi-
nite solution to the ARE. Actually, in this case one can
show that P is explicitly given by

P=H'(HBB'H')"*H (42)

Using the results of [19] we know that an optimal stabi-
lizing controller for the linearized problem will solve the
NLQR problem, at least locally for system (5). Theo-
rem 3 states that if the positive definite solution P to
the ARE has the special structure P = aJ 4+ 3J?, when
J 1s not a multiple of the identity matrix, then the op-
timal stabilizing controller for the linearized problem is
also the (global) optimal stabilizing controller for the
nonlinear problem.

Based on the previous theorem, one can obtain a simple
characterization of all state weighting matrices in the
cost (7) which guarantee that the sufficient conditions
of Theorem 1 are satisfied in the nonsymmetric case
and (5) is NLQR-solvable via linear control.

Corollary 5.1 Consider system (5) with J not a mul-
tiple of the identity matriz and (H,J) observable. Sup-
pose the state weighting matriz Q = H'H in (7) can be
written in the form

Q = *GG' 4+ aB(JGG' + GG'J) + B2IGG' T (43)
for some scalars o, 5 such that
al + 57 >0

Then this system 1s NLQR-solvable via the linear con-
troller

k(W) = —G (o] + B )w (44)

For the symmetric case, 1.e., when J is a multiple of
the 1dentity matrix, P is not required to have any spe-
cial structure. In this case the system is linear and is
given by the linearized system (41). Hence we have the
following result.

Lemma 5.1 Consider system (5) with J a multiple of
the identity matriz. Then this system is NLQR-solvable
via linear control if and only if rankH =rankB = 3. If



this condition is satisfied then the system is NLQR-
solvable via the linear controller

k*(z) = —B'Pw (45)

with P given by (42} and the minimum value of the
cost is wjPwy.

5.2 Suboptimal Linear Controllers

As with the case of the HJE we restrict our attention
to quadratic solutions of the HJT (34). The following
theorem gives necessary and sufficient conditions for
the existence of a quadratic V solving the HJI.

Theorem 4 Consider system (5) with (H,J) observ-
able. A quadratic function, given by V(w) = w'Puw,
satisfies the conditions of Theorem 2 if and only if the
matriz P is a positive definite solution to the Algebraic

Riccati Inequality (ARI)
H'H - PBB'P <0 (46)

and

P=al+pJ* (47)

for some scalars o, 3 when J not a multiple of the iden-
tity matriz.

When these conditions are satisfied, the controller given
by

k*(w) = —B'Pw (48)
renders the closed-loop system globally asymptotically
stable about the origin and the cost is bounded above by
whPwo.

Proof: (Sufficiency). One can readily show that if a
positive definite P satisfies (46)-(47), then the function
V(w) = w’ Pw satisfies the conditions of Theorem 2.

(Necessity). Suppose that there exists a quadratic func-
tion, given by V(w) = w’'Pw, which satisfies the condi-
tions of Theorem 2. Then

YwelR?

(49)
Let ha(w) := w'H'Hw — wPBB'Pw and hs(w) =
2w' P f(w). Clearly, hs is a homogeneous polynomial
of degree 2 and hg is a homogeneous polynomial of de-
gree 3. The left-hand side of inequality (49) is the sum
of two homogeneous polynomials one of degree 2 and
the other of degree 3.

We claim that if hg(w) + ha(w) < 0 for all w € R3
then necessarily hz(w) = 0 for all w € IR® and hence,
ha(w) < 0 for all w € R?. To show this, first notice
that by the homogeneity of hs and hs we have that
hs(Aw) = A3hs(w) and ha(Aw) = A?ha(w) for all w €
IR? and all A € IR. Suppose now that the claim is false.
Then there exist @ € IR? such that hz(@) # 0. By the
homogeneity of hz(w) and ha(w)

20'Pf(w)+w H Ho —wPBB' Pw <0,

Nha(@) +A%he(@) <0, ¥V AER (50)

or by dividing by A% # 0 that

Mis(@) 4+ ha(@) <0, ¥ AelR (51
Let A > |ho(w)|/hs(w) if hs(w) > 0 or A <
|ha(@)|/hs(w) if k(@) < 0 to arrive to a contradiction.

Using this result, we get that (49) is satisfied for some
P if and only if w'Pf(w) = 0 for all w € IR? and
WH'Ho — wPBB'Pw < 0 for all w € IR®. Equiva-
lently, from Lemma 3.2 equation (49) is satisfied for
some P if and only if P = aJ + 3J? when P is not a
multiple of the identity matrix and P satisfies the Alge-
braic Riccati Inequality H'H — PBB’P < 0. Moreover,
since V(w) = w'Pw is positive definite, P is a positive
definite solution of (46). m

Theorem 4 along with Theorem 3 allow us, without
any loss of generality, to dispense with the search of
positive definite quadratic solutions to the HJE and
HJI and work with the corresponding ARE and ARI
instead.

Similarly to Corollary 5.1 we have the following result
which characterizes all state weighting matrices for the
suboptimal problem.

Corollary 5.2 Consider system (5) with J not a mul-
tiple of the identity matriz and (H,J) observable. Sup-
pose the state weighting matriz Q@ = H'H in (7) satis-
fies

Q < ’GG + aB(JGG' + GG ) + BIGG T (52)
for some scalars o, 5 such that
al + 57 >0
Then the controller
B (w) = =G'(ad + BJ)w (53)

renders the closed-loop system globally asymptotically
stable about the origin and the cost is bounded above by
whPuwyg.

The structural condition (39) for the solution of (38)
1s, obviously, very restrictive. It is, nevertheless, as
Theorem 3 states, a necessary and sufficient condition
for the existence of a quadratic V which solves the HJE.
If (38)-(39) fails, one may still desire to use a linear
controller in attacking the minimization problem (5)
subject to (7). Clearly, by restricting over the class of
linear controllers the best one can expect is to get an
upper bound for the cost (7). Thus from the question
of minimizing the cost (7) subject to the dynamics (5)
one turns to the question of minimizing an upper bound
for this cost using linear controllers via Theorem 4.



6 Special cases

In this section we present some special cases, when the
linear controller is indeed the optimal one. In other
words, the ARE (38) admits a positive definite solution
of the form (39).

Case I: Consider system (1) with

G=1, H=1I/r, r>0

=[]

Then the problem is that of minimizing

and

/ W' (w(t) + r2 o (t)u(t) dt (54)
0
subject to the dynamics

Jw=(Jw) xw+u (55)

It can be readily shown that in this case P = J/r solves
the the ARE (38). Therefore the optimal stabilizing
controller in this case is simply given by

Fw)=-2 (56)

This case has been treated repeatedly in the literature
[3, 5, 17] and was the only known solution to the rigid
body NLQR problem thus far.

Case II: Suppose that G and H are orthogonal matri-
ces, l.e., G =GG"' =1 and H'H = HH' = I. This
occurs when the input torques are about mutually per-
pendicular axes and the components of the output vec-
tor y = Hw are angular velocity components about mu-
tually perpendicular axes. Clearly, in this case P = J
is a positive definite solution to ARE (38) and again
the optimal controller is linear; it is given by

k*(w) = —B'Pw = -G'w (57)

Case III: Suppose that H = G’. This corresponds
to collocated rate sensors and torque actuators. Again
the ARE (38) is solvable with P = J. Therefore, the

optimal feedback controller is

k*(w) = —G'w = —Hw (58)

7 An optimization algorithm

A necessary condition for the existence of a posi-
tive definite matrix P which solves ARI (46) is that
rankH’ <rankB. In general, the search for a solution
to the ARI involves a numerical search algorithm. Since
P must have the special structure (47), the search al-
gorithm reduces to a numerical search over the two

parameter space («, 7). Unfortunately, the problem is
not convex in terms of v, 3. On the other hand, the fact
that we have only two parameters makes the problem
more tractable.

Since an upper bound on the cost is given by w{Pwq
for all wy € IR®, we consider the following optimization
problem:

miﬁn trace(P) (59)

subject to

P=aJ+3J% P>0, and H'H—-PBBP<0

(60)
If (46) is satisfied with equality, then this P solves the
(ARE) and yields an optimal controller.

The next example illustrates that although there may
not exist a solution of the form (47) which solves the
ARE, there may exist a solution of this form solving

the ARI.

Example 1 Consider system (1) with
J = diag(2,3,4) and
1 -1 2 2 0 1
B=|2 22|, H=|1 21
0 0 1 0 -1 1
and z = [ Ao ]
u

Since rank B =rankH = 3 the unique positive definite
solution of the ARE can be computed by (42) to be

0.9268 —0.0130 —0.0164
P=1 -0.0130 0.6766 —0.1707 (61)
—-0.0164 —-0.1707  2.0374

This matrix is positive definite with eigenvalues at
(0.6547,0.9275,2.0586) but it is not of the form (47)
for any «, 8 € IR. However if we choose «, 3 such as to
minimize trace(P) subject to the constraints (60), we
obtain the values

o* = 0.4915 and 3 =0.0109 (62)
The positive definite matrix P = o*J 4+ #*J? =
diag(1.0264,1.5721,2.1396) satisfies the ARI. The
eigenvalues of the matrix H'H — P BB’ P for this choice
of P are (0,—0.7067, —26.8513).

8 A numerical example

Consider the system in Example 1 and suppose that
there is only one torque available and only one rate
gyro for angular velocity measurements, both along the
axis

é = (0.5321,0.2512,0.6538)’ (63)



and therefore,

0.5321
G=H =] 02512 (64)
0.6538

According to Case III in section (6), the matrix P =
J = diag(2,3,4) solves the ARE (38) and the optimal
stabilizing controller is given by the output feedback
control law

k(y) =~y (65)

where y = Hw is the only angular velocity measure-
ment.

Figure 1 contains the results of numerical sim-
ulations subject to the initial condition wg =
(1,=0.5,1) rad/sec. Asexpected, the angular velocity
tends to zero asymptotically.

The running value of the cost

T T
/ {y (@)yt) + o' ()u(t)} dt = 2/ W () H Hw(t) dt
0 0
(66)
is shown in Figure 2. The minimum value of the cost
1s

whJwg = 6.75

which corresponds to the dashed horizontal line in
Fig. 2.
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Figure 1: Angular velocity history.

9 Summary and conclusions

We have derived conditions for the solution of the opti-
mal and suboptimal quadratic regulation of the nonlin-
ear system which describes the dynamical motion of a
rotating rigid body. This is an important example of a
nonlinear system whose linearization is, in general, nei-
ther detectable nor stabilizable. One thus has to deal
with the true nonlinear equations of the problem. This

RUNNING COST
8 T T

0 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

TIME (sec)

Figure 2: Running cost.

system has the property, of admitting globally asymp-
totically stabilizing controllers which are linear. Mo-
tivated by this observation, we search over the class
of linear controllers for the one that achieves the best
performance.

Under some mild assumptions the rigid body equa-
tions admit a wide class of globally asymptotically sta-
bilizing linear controllers which give rise to a finite
quadratic cost. Moreover, the proof of the asymp-
totic stability of the closed-loop system can be estab-
lished using quadratic Lyapunov functions. Since there
is no systematic procedure for solving the Hamilton-
Jacobi Equation/Inequality for general nonlinear sys-
tems, we first use the structural properties of the un-
controlled nonlinear dynamics to derive necessary and
sufficient conditions for the existence of quadratic solu-
tions to the HJE/HJI. This allows us to construct ex-
plicit quadratic solutions to the Hamilton-Jacobi Equa-
tion (optimal case) and the Hamilton-Jacobi Inequality
(suboptimal case). These quadratic solutions give rise
to linear feedback controllers which solve the NLQR
problem.

Future research should address more general (non-
quadratic) solutions to the HJE and HJT which could be
used to derive (possibly) nonlinear controllers achiev-
ing better performance.
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