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Abstract

In this paper we consider the problem of obtaining op�
timal controllers which minimize a quadratic cost func�
tion for the rotational motion of a rigid body� We
are not concerned with the attitude of the body and
consider only the evolution of the angular velocity as
described by Euler�s equations� We obtain conditions
which guarantee the existence of linear stabilizing opti�
mal and suboptimal controllers� These controllers have
a very simple structure�

� Introduction

Optimal control of rigid bodies has a long history stem�
ming from interest in the control of rigid spacecraft
and aircraft� The main thrust of this research has been
directed� however� towards the time�optimal attitude
control problem� see� for example� the survey paper ���
and the book ���� The earliest results on the optimal
regulation of angular velocity or� equivalently� angular
momentum seem to be �	� 
� ��� Windeknecht ��� also
examined the problem of optimum regulation of the an�
gular momentum over a nite interval with a quadratic
integral penalty on the control variables and a terminal
constraint on the state� the weighting matrices in the
cost function were identity matrices� Dixon et al� ���
considered the fuel�optimal rest�to�rest maneuver for
an axisymmetric rigid body�

In this paper we seek optimal and suboptimal solutions
to the nonlinear quadratic regulator �NLQR� problem
for a rigid body in the sense that a quadratic cost func�
tion is to be minimized�

We solve the problem of quadratic regulation for the
dynamic �angular velocity� equations of a rotating rigid
body� by deriving explicit solutions to the associated

Hamilton�Jacobi Equation �HJE� and Hamilton�Jacobi
Inequality �HJI�� We give necessary and su�cient con�
ditions for the existence of quadratic functions which
satisfy the HJE and HJI� These solutions result in lin�
ear optimal and suboptimal controllers� respectively�

The paper is organized as follows� In Section � we
present the equations of motion of a rotating rigid body
and state the problem to be addressed� In Section 	 we
completely characterize the family of quadratic inte�
grals of the unforced system and we present some pre�
liminary results concerning the conditions under which
the system is zero�state detectable and zero�state ob�
servable� Sections 
 and � contain the main results of
the paper� The rst theorem of the paper �Theorem ��
contains conditions under which the NLQR problem is
solvable� Theorem � gives su�cient conditions for the
suboptimal NLQR problem� i�e�� conditions which guar�
antee boundedness of a quadratic cost� These theorems
introduce the HJE and HJI� By restricting considera�
tion to quadratic solutions to the HJE�HJI we seek lin�
ear solutions to the HJE�HJI and we show that these
solutions can be computed by considering only the as�
sociated Algebraic Riccati Equation �ARE� and Alge�
braic Riccati Inequality �ARI�� respectively� In Sec�
tion � we give some special cases in which the optimal
feedback NLQR controller can be shown to be linear�
We also show that some of the known results in the lit�
erature follow immediately from the results presented
here� In Section � we present an optimization algorithm
for computing a positive denite solution to the ARI�
We conclude with a numerical example to illustrate the
theory�



� Problem formulation

��� Equations of motion
The evolution of the angular velocity� or the angular
momentum� of a rigid body is described by

J �� � �J�� � � � Gu � ���� � �� ���

where ��t� �� col����t�� ���t�� ���t�� with �i�t� � IR
being the i�th component of the angular velocity of
the body relative to an inertial reference frame� These
components are taken relative to a body�xed refer�
ence frame� The real positive denite matrix J is the
inertia matrix of the rigid body at the mass center and
expressed relative to the body xed frame� At time t�
the control input is given by u�t� � IRm� We assume
that G is a constant matrix of appropriate dimensions�
having full column rank� If we let

f��� �� J����J��� ��� B �� J��G ���

the system can be described by

�� � f��� � Bu� ���� � �� �	�

Since J is symmetric and positive denite� it has
three positive real eigenvalues I�� I�� I� with three
corresponding mutually orthogonal real eigenvectors
v�� v�� v�� These eigenvalues and eigenvectors are called
the principal moments of inertia and principal axes of
inertia� respectively� of the body about its mass center�
If two of the principal moments are equal� say I� � I��
the body is said to be axisymmetric about the axis
parallel to the eigenvector corresponding to the third
eigenvalue� i�e�� v� in this case� If I� � I� � I�� i�e�� if J
is a multiple of the identity matrix� the body is said to
be symmetric� In this case J is a multiple of the iden�
tity matrix and the system is linear and is described
by

�� � Bu � ���� � �� �
�

��� Problem de�nition
Consider the control�a�ne nonlinear system �	�� In�
troducing a penalty or regulated output z�t� � IRp� we
obtain the following system description�

�� � f��� � Bu� ���� � �� ��a�

z � H� �Du ��b�

where H and D are constant matrices of appropriate
dimensions� The associated uncontrolled system or free
system is given by

�� � f���� ���� � �� ��a�

z � H� ��b�

Associated with system ��� is the following quadratic
cost function

J ����u� ��

Z
�

�

z��t�z�t� dt �

Z
�

�

jjz�t�jj� dt ���

where ��� denotes transpose and jjzjj denotes the Eu�
clidean norm �length� of a vector z � IRp and is dened
by jjzjj� �

Pp

i	� zi � z�z� By making the additional
assumption that the matrices H and D satisfy the con�
dition

D�H � � ���

one can eliminate the product term between � and u in
the cost function and thus� the cost ��� takes the form

J ����u� ��

Z
�

�

���t�Q��t� � u��t�Ru�t� dt ���

where

Q � H�H � R � D�D

Assumption ��� is quite standard in the control litera�
ture ��� �� and can be introduced without loss of gen�
erality�

Consider system ��� subject to a memoryless state feed�
back controller k� i�e��

u � k��� ����

and the resulting closed loop system is described by

�� � f��� � Bk��� ���a�

z � H� �Dk��� ���b�

We are now ready to state the Nonlinear Quadratic
Regulator �NLQR� problem �

Problem �NLQR� Find a memoryless
state�feedback controller k� for system ���
such that

�i� the resulting closed�loop system

�� � f��� � Bk���� ���a�

z � H� �Dk���� ���b�

is globally asymptotically stable about
� � ��

�ii� for each initial state �� and for every
control history u��� which results in

lim
t��

��t� � �

the control history u���� generated by
the controller k� minimizes the cost
functional ���� i�e��

J ����u
�� � J ����u�

If there exists a controller k� satisfying �i� and �ii�� we
call it an optimal stabilizing state�feedback controller
and we say that ��� is NLQR�solvable� If� in addition�
k� is linear we say that ��� is NLQR�solvable via linear
control�



� Some preliminary results

��� Observability and detectability
Before we present a solution to the NLQR problem
associated with system ��� we need to introduce the
following concepts ���� ��� for a system described by

�x � F �x� ��	a�

z � H�x� ��	b�

where x�t� � IRn and z�t� � IRp�

De�nition ��� �Zero�state observability� System
��	� is zero�state observable if z�t� � � for all t � �
implies x�t� � � for all t � �

De�nition ��� �Zero�state detectability� System
��	� is zero�state detectable if z�t� � � for all t � �
implies limt�� x�t� � ��

Proposition ��� Consider system ��� with D full col�
umn rank and suppose that condition ��� holds� Then�
for any controller k� the closed loop system ���� is zero�
state observable �zero�state detectable� if and only if the
uncontrolled system ��� is zero�state observable �zero�
state detectable��

Proof� Notice that z � � in ���� if and only if
Hx � � and Dk�x� � �� Since D is full column rank it
follows that k�x� � � and the trajectories of ���� evolve
according to ���� Thus ���� is zero�state observable
�zero�state detectable� if and only if ��� is zero�state
observable �zero�state detectable��

The previous proposition states� in essence� that if D if
full column rank then the test of zero�state observabil�
ity for system ���� reduces to a test on the uncontrolled
system ���� i�e�� it is an open�loop property� This is the
route also followed in ���� ��� ��� �	�� From now on� we
will always assume that D is full column rank� With�
out loss of generality� we can redene the control input
so that the matrix D satises the condition

D�D � I ��
�

It turns out that the zero�state observability property
for system ��� �or system ���� for that matter� has a
very simple characterization in terms of the matrix pair
�H� J�� We have the following result�

Lemma ��� The following statements are equivalent�

�a� System ��� is zero state observable�

�b� System ��� is zero state detectable�

�c�

rank

�
� H

HJ
HJ�

�
� � 	 ����

De�nition ��� When the rank condition ���� holds�
we say that the pair �H� J� is observable�

Remark ��� From the previous discussion it should
be clear that if �H� J� is observable then the closed loop
system ���� is zero�state observable with any controller
k�

��� Integrals of the uncontrolled system
Here we consider quadratic integrals of the motion of
the uncontrolled system

�� � f���� ����

where f��� is dened in ���� Consider any scalar val�
ued function V � IR� � IR� If V is continuously di�er�
entiable� we let the subscript � denote di�erentiation
with respect to �� i�e��

V���� ��
�V ���

��
� rV ���� �

�
�V
���

�V
���

�V
���

�

The derivative of V along any trajectory ���� of system
���� is given by

d

dt
V ���t�� � V����t��f���t�� ����

and we have the following denition�

De�nition ��	 A function V � IR� � IR is an inte�
gral of the motion of ���� if it is constant along every
trajectory of ����� i�e�� if

V����f��� � � ����

for all � � IR��

In particular� a quadratic function given by V ��� �
��P� where P � IR��� is symmetric� is an integral of
the uncontrolled system ���� if and only if

��Pf��� � �

for all � � IR��

If J is a multiple of the identity matrix� �symmetric
body�� every quadratic function is an integral of the
motion� In the nonsymmetric case� it should be clear
from the identities

�J���f��� � ����J��� �� � �
�J����f��� � �J�����J�� � �� � �

that the quadratic functions

V���� � ��J�
V���� � ��J�� � kJ�k�

are integrals of the motion of system ����� The rst
function yields twice the system kinetic energy� whereas
the second one is the square of the magnitude of the
angular momentum� The following lemma tells us that
every quadratic integral of system ���� �non�symmetric
case� is a linear combination of the above two integrals�



Lemma ��� Consider the function f��� given by �	��
A symmetric matrix P � IR��� satis
es

��Pf��� � �

for all � � IR� if and only if

P � �J � �J� ����

for some real scalars � and � when J is not a multiple
of the identity matrix�

��� Stabilizability via linear control
Before addressing the problem of obtaining optimal
stabilizing controllers� we rst address the question of
the existence of stabilizing controllers� The following
lemma yields a su�cient condition which guarantees
the existence of linear stabilizing controllers�

Lemma ��� Consider system ��� and suppose that

rank
�
G JG J�G

�
� 	 ����

Then the linear controller

k��� � �G�� ����

results in a closed loop system which is globally asymp�
totically stable�

Proof� The closed loop system is described by

�� � f��� � J��GG����

Considering the function V ��� � �
�
��J� as a Lyapunov

function candidate� its time derivative along any solu�
tion of the closed loop system is given by

�V ��� � ��Jf��� � ��GG��

� �jjG�jj� ����

� � ��	�

Hence� �V ���t�� � �� Since V is radially unbounded�
this implies that all solutions are bounded�

We now note that �V ���t�� � � implies that G���t� � ��
Rank condition ���� implies that the pair �G�� J� is
observable� hence� using Lemma 	��� we obtain that
G���t� � � implies ��t� � �� hence the only solution
for which �V ���t�� � � is the zero solution� Global
asymptotic stability now follows directly from LaSalle�s
Theorem�

De�nition ��
 When the rank condition ���� holds�
we say that the pair �J�G� is controllable�

	 Su�cient conditions for optimality and
suboptimality

	�� Su�cient conditions for solution of the
NLQR problem
The following theorem gives su�cient conditions under
which the NLQR problem for system ��� has a solution�
The main condition requires the existence of a positive
denite function satisfying the Hamilton�Jacobi equa�
tion associated with the minimization of ��� subject
to the nonlinear dynamics ���� Recall that a function
V � IR� � IR
 is called positive de
nite if

�a� V ��� � �

�b� V ��� � � for � 	� �

�c� lim
���

V ��� �


We are now ready to give su�cient conditions under
which the NLQR problem is solvable�

Theorem � Consider system ��� with �H� J� observ�
able� Suppose that there exist a continuously di�eren�
tiable positive de
nite function V � IR� � IR
 which
satis
es the Hamilton�Jacobi equation �HJE�

V����f��� �
�



V����BB

�V ����� � ��H �H� � �� ��
�

for all � � IR�� Then the feedback controller

k���� � �
�

�
B�V���� ����

renders the closed�loop system globally asymptotically
stable about the origin and minimizes the cost func�
tional ��� Moreover� for each ��� the optimal control
history is unique and the minimum value of the cost is
V �����

Proof� First we show that under the hypotheses
of the theorem the feedback controller ���� is globally
asymptotically stabilizing� With the controller ���� the
closed loop system is

�� � f��� �
�

�
BB�V���� ����

Since the solution V to the HJE is a positive denite
function it can be used as a Lyapunov function candi�
date� Taking the time derivative of V along the trajec�
tories of ����� and using the HJE one obtains

�V ��� � V����f��� �
�

�
V����BBV

�

� ���

� �jjH�jj�� jjk����jj�

� �jjzjj� ����

� � ����

Hence� �V ���t�� � � and �V ���t�� � � if and only
if z�t� � �� By remark 	�� we must have ��t� �



�� Since V is radially unbounded� all solutions are
bounded� Asymptotic stability now follows directly
from LaSalle�s Theorem�

In order to show optimality� consider any initial state
�� and consider any control history u��� which results
in

lim
t��

��t� � � ����

An easy calculation shows that

d

dt
V ���t�� � �z��t�z�t� � jju�t��� k����t��jj� �	��

where V satises ��
� and where z��� is the response
of the system subject to the control history u���� Inte�
grating both sides of �	�� we get

Z T

�

z��t�z�t� dt � V ������ � V ���T ��

�

Z T

�

jju�t�� k����t��jj� dt �	��

Taking the limit as T � 
 and using ���� we get
limT�� V ���T �� � �� hence

Z
�

�

z��t�z�t� dt � V ���� �

Z
�

�

jju�t�� k����t��jj� dt

�	��
Clearly� Z

�

�

z��t�z�t� dt � V ���� �		�

and the lower bound V ���� is achieved if and only if
u�t� � k����t��� This completes the proof�

In general� the cornerstone for deriving stabilizing op�
timal feedback controllers for nonlinear systems is the
existence of positive denite solutions to the HJE� For
linear time�invariant systems� the above requirement
reduces to the well�known requirement for the existence
of positive denite �or positive semi�denite� solutions
to a matrix Riccati equation� which is the counterpart
of the HJE for the linear case� Therefore� the charac�
terization of positive denite solutions to the HJE is
fundamental to solving the nonlinear optimal feedback
control problem� However� apart from the linear case�
to date there does not exist a systematic procedure for
obtaining such solutions� One is often compelled to
search for solutions of the HJE using series expansions
��
� ��� ��� ����

	�� Suboptimal controllers
In practice it may be very di�cult to establish the ex�
istence of a positive denite function satisfying ��
� for
all � � IR�� In such cases� one may restrict oneself to
the design of controllers which� although not optimal�
are stabilizing and guarantee a bounded value of the
cost� This is the result of the next theorem�

Theorem � Consider system ��� with �H� J� observ�
able� Let V � IR� � IR
 be a positive de
nite
continuously di�erentiable function which satis
es the
Hamilton�Jacobi Inequality �HJI�

V����f��� �
�



V����BB

�V ����� � ��H �H� � �� �	
�

for all � � IR�� Then the feedback controller

k���� � �
�

�
B�V���� �	��

globally asymptotically stabilizes ��� about the origin
and yields a bounded value for the cost ��� In partic�
ular� the cost is bounded above by V �����

Proof� The proof follows very closely the proof of
Theorem � and will not be repeated here�

In most cases it is not an easy task to show that either
the Hamilton�Jacobi Equation or Inequality holds for
the whole state space� Alternatively� one may dispense
altogether with such global results and seek solutions
to the HJE�HJI only in a positively invariant subset of
the whole state space� This is the route followed in �����
In the present paper we follow an indirect approach
and seek linear controllers solving the NLQR problem�
equivalently� we seek quadratic solutions to the HJE
��
� and the HJI �	
�� In particular� we establish the
following fact� The system ��� is NLQR�solvable via
linear control if the matrix Riccati equation for the
linearized system admits a positive denite solution of
a certain structure�


 Linear optimal and suboptimal controllers

Our motivation here is based on the observation that
the nonlinear system ��� has linear� globally asymptot�
ically stabilizing controllers� Therefore� we search over
this class of controllers for the one that gives the mini�
mum cost� One has to be careful however by following
this approach� since � in contrast to the linear systems
� asymptotic stability of a nonlinear system does not
imply� in general� exponential stability� and it may even
happen that all linear stabilizing controllers give rise to
unbounded cost� i�e�� the NLQR problem may not be
solvable when one restricts oneself to linear controllers
�although it may still be solvable via a nonlinear con�
trol��


�� Linear optimal controllers
In this section we obtain linear optimal controllers by
looking for quadratic solutions to the HJE ��
�� If a
quadratic function� given by

V ��� � ��P� �

is a positive denite solution to the HJE� then the cor�
responding optimal stabilizing controller �recall �����



is linear and is given by

k���� � �B�P� �	��

It can readily be seen that V satises the HJE if and
only if

���Pf������H�H����PBB�P� � � � � � IR�

�	��

We are now ready to state the main result for the so�
lution of the NLQR problem via a linear controller�

Theorem � Consider system ��� with �H� J� observ�
able� A quadratic function� given by V ��� � ��P��
satis
es the conditions of Theorem � if and only if the
matrix P is a positive de
nite solution to the Algebraic
Riccati Equation �ARE�

H�H � PBB�P � � �	��

and
P � �J � �J� �	��

for some scalars �� � when J not a multiple of the iden�
tity matrix�

When these conditions are satis
ed� the system is
NLQR�solvable via the linear controller ���� and the
minimum value of the cost is ���P���

Proof� �Su�ciency�� Since V ��� � ��P� with P
a positive denite matrix� the function V is positive
denite� If J is not a multiple of the identity matrix�
P � �J � �J� and it follows from Lemma 	�� that
��Pf��� � �� ARE �	�� now guarantees satisfaction
of �	��� hence HJE ��
� holds� The optimal stabilizing
controller is linear and given by equation �	���

�Necessity�� Suppose that there exists a quadratic func�
tion given by V ��� � ��P�� which satises the condi�
tions of Theorem �� Since V satises the HJE� condi�
tion �	�� must hold� The rst term in �	�� is a cubic
polynomial in � �recall that f��� is quadratic in ��
and the last two terms are quadratic polynomials in ��
Therefore the left�hand side of equation �	�� is the sum
of two homogeneous polynomials� one cubic in � and
the other quadratic in �� Since their sum is zero for all
� � IR�� each polynomial must vanish identically for
all � � IR�� In other words� �	�� holds for all � � IR�

if and only if

��Pf��� � � and ��H�H� � �PBB�P� � � �
��

for all � � IR�� By Lemma 	�� the rst condition is
satised if and only if P is of the form P � �J � �J�

when J is not a multiple of the identity� The second
condition in �
�� is satised if and only if P satises the
algebraic Riccati equation �	��� Since V is a positive
denite function� the matrix P is positive denite�

Remark 
�� Note that �	�� is the ARE for the linear
quadratic regulator �LQR� problem associated with the
linearized system

�� � Bu� ���� � �� �
�a�

z � H� �Du �
�b�

From standard LQR theory� the linearized problem
considered here has a solution if and only if the pair
��� B� is controllable and the pair �H� �� is observable�
i�e�� rankB �rankH � 	� In this case� the optimal
controller is given by �	�� where P is the positive de�
nite solution to the ARE� Actually� in this case one can
show that P is explicitly given by

P � H��HBB�H���
�

�H �
��

Using the results of ���� we know that an optimal stabi�
lizing controller for the linearized problemwill solve the
NLQR problem� at least locally for system ���� Theo�
rem 	 states that if the positive denite solution P to
the ARE has the special structure P � �J��J�� when
J is not a multiple of the identity matrix� then the op�
timal stabilizing controller for the linearized problem is
also the �global� optimal stabilizing controller for the
nonlinear problem�

Based on the previous theorem� one can obtain a simple
characterization of all state weighting matrices in the
cost ��� which guarantee that the su�cient conditions
of Theorem � are satised in the nonsymmetric case
and ��� is NLQR�solvable via linear control�

Corollary 
�� Consider system ��� with J not a mul�
tiple of the identity matrix and �H� J� observable� Sup�
pose the state weighting matrix Q � H�H in �� can be
written in the form

Q � ��GG� � ���JGG� �GG�J� � ��JGG�J �
	�

for some scalars �� � such that

�I � �J � �

Then this system is NLQR�solvable via the linear con�
troller

k���� � �G���I � �J�� �

�

For the symmetric case� i�e�� when J is a multiple of
the identity matrix� P is not required to have any spe�
cial structure� In this case the system is linear and is
given by the linearized system �
��� Hence we have the
following result�

Lemma 
�� Consider system ��� with J a multiple of
the identity matrix� Then this system is NLQR�solvable
via linear control if and only if rankH �rankB � 	� If



this condition is satis
ed then the system is NLQR�
solvable via the linear controller

k��x� � �B�P� �
��

with P given by ��	� and the minimum value of the
cost is ���P���


�� Suboptimal Linear Controllers
As with the case of the HJE we restrict our attention
to quadratic solutions of the HJI �	
�� The following
theorem gives necessary and su�cient conditions for
the existence of a quadratic V solving the HJI�

Theorem 	 Consider system ��� with �H� J� observ�
able� A quadratic function� given by V ��� � ��P��
satis
es the conditions of Theorem 	 if and only if the
matrix P is a positive de
nite solution to the Algebraic
Riccati Inequality �ARI�

H�H � PBB�P � � �
��

and
P � �J � �J� �
��

for some scalars �� � when J not a multiple of the iden�
tity matrix�

When these conditions are satis
ed� the controller given
by

k���� � �B�P� �
��

renders the closed�loop system globally asymptotically
stable about the origin and the cost is bounded above by
���P���

Proof� �Su�ciency�� One can readily show that if a
positive denite P satises �
����
��� then the function
V ��� � ��P� satises the conditions of Theorem ��

�Necessity�� Suppose that there exists a quadratic func�
tion� given by V ��� � ��P�� which satises the condi�
tions of Theorem �� Then

���Pf��� � ��H�H� � �PBB�P� � �� � � � IR�

�
��
Let h���� �� ��H �H� � �PBB�P� and h���� ��
���Pf���� Clearly� h� is a homogeneous polynomial
of degree � and h� is a homogeneous polynomial of de�
gree 	� The left�hand side of inequality �
�� is the sum
of two homogeneous polynomials one of degree � and
the other of degree 	�

We claim that if h���� � h���� � � for all � � IR�

then necessarily h���� � � for all � � IR� and hence�
h���� � � for all � � IR�� To show this� rst notice
that by the homogeneity of h� and h� we have that
h����� � ��h���� and h����� � ��h���� for all � �
IR� and all � � IR� Suppose now that the claim is false�
Then there exist �� � IR� such that h����� 	� �� By the
homogeneity of h���� and h����

��h����� � ��h����� � �� � � � IR ����

or by dividing by �� 	� � that

�h����� � h����� � �� � � � IR ����

Let � � jh�����j�h����� if h����� � � or � 	
jh�����j�h����� if h����� 	 � to arrive to a contradiction�

Using this result� we get that �
�� is satised for some
P if and only if ��Pf��� � � for all � � IR� and
��H�H� � �PBB�P� � � for all � � IR�� Equiva�
lently� from Lemma 	�� equation �
�� is satised for
some P if and only if P � �J � �J� when P is not a
multiple of the identity matrix and P satises the Alge�
braic Riccati InequalityH�H�PBB�P � �� Moreover�
since V ��� � ��P� is positive denite� P is a positive
denite solution of �
���

Theorem 
 along with Theorem 	 allow us� without
any loss of generality� to dispense with the search of
positive denite quadratic solutions to the HJE and
HJI and work with the corresponding ARE and ARI
instead�

Similarly to Corollary ��� we have the following result
which characterizes all state weighting matrices for the
suboptimal problem�

Corollary 
�� Consider system ��� with J not a mul�
tiple of the identity matrix and �H� J� observable� Sup�
pose the state weighting matrix Q � H�H in �� satis�

es

Q � ��GG� � ���JGG� �GG�J� � ��JGG�J ����

for some scalars �� � such that

�I � �J � �

Then the controller

k���� � �G���I � �J�� ��	�

renders the closed�loop system globally asymptotically
stable about the origin and the cost is bounded above by
���P���

The structural condition �	�� for the solution of �	��
is� obviously� very restrictive� It is� nevertheless� as
Theorem 	 states� a necessary and su�cient condition
for the existence of a quadratic V which solves the HJE�
If �	����	�� fails� one may still desire to use a linear
controller in attacking the minimization problem ���
subject to ���� Clearly� by restricting over the class of
linear controllers the best one can expect is to get an
upper bound for the cost ���� Thus from the question
of minimizing the cost ��� subject to the dynamics ���
one turns to the question of minimizing an upper bound
for this cost using linear controllers via Theorem 
�



� Special cases

In this section we present some special cases� when the
linear controller is indeed the optimal one� In other
words� the ARE �	�� admits a positive denite solution
of the form �	���

Case I� Consider system ��� with

G � I� H � I�r � r � �

and

z �

�
H�
u

�

Then the problem is that of minimizing

Z
�

�

���t���t� � r� u��t�u�t� dt ��
�

subject to the dynamics

J �� � �J�� � � � u ����

It can be readily shown that in this case P � J�r solves
the the ARE �	��� Therefore the optimal stabilizing
controller in this case is simply given by

k���� � �
�

r
����

This case has been treated repeatedly in the literature
�	� �� ��� and was the only known solution to the rigid
body NLQR problem thus far�

Case II� Suppose that G and H are orthogonal matri�
ces� i�e�� G�G � GG� � I and H�H � HH� � I� This
occurs when the input torques are about mutually per�
pendicular axes and the components of the output vec�
tor y � H� are angular velocity components about mu�
tually perpendicular axes� Clearly� in this case P � J
is a positive denite solution to ARE �	�� and again
the optimal controller is linear� it is given by

k���� � �B�P� � �G�� ����

Case III� Suppose that H � G�� This corresponds
to collocated rate sensors and torque actuators� Again
the ARE �	�� is solvable with P � J � Therefore� the
optimal feedback controller is

k���� � �G�� � �H� ����

 An optimization algorithm

A necessary condition for the existence of a posi�
tive denite matrix P which solves ARI �
�� is that
rankH� �rankB� In general� the search for a solution
to the ARI involves a numerical search algorithm� Since
P must have the special structure �
��� the search al�
gorithm reduces to a numerical search over the two

parameter space ��� ��� Unfortunately� the problem is
not convex in terms of �� �� On the other hand� the fact
that we have only two parameters makes the problem
more tractable�

Since an upper bound on the cost is given by ���P��
for all �� � IR�� we consider the following optimization
problem�

min
���

trace�P � ����

subject to

P � �J � �J�� P � �� and H�H � PBB�P � �
����

If �
�� is satised with equality� then this P solves the
�ARE� and yields an optimal controller�

The next example illustrates that although there may
not exist a solution of the form �
�� which solves the
ARE� there may exist a solution of this form solving
the ARI�

Example � Consider system ��� with
J � diag��� 	� 
� and

B �

�
� � �� �

� � �
� � �

�
� � H �

�
� � � �

� � �
� �� �

�
�

and z �

�
H�
u

�
�

Since rankB �rankH � 	 the unique positive denite
solution of the ARE can be computed by �
�� to be

P �

�
� ������ �����	� ������

�����	� ������ �������
������
 ������� ���	�


�
� ����

This matrix is positive denite with eigenvalues at
�����
�� �������������� but it is not of the form �
��
for any �� � � IR� However if we choose �� � such as to
minimize trace�P � subject to the constraints ����� we
obtain the values

�� � ��
��� and �� � ������ ����

The positive denite matrix P � ��J � ��J� �
diag������
� ������� ���	��� satises the ARI� The
eigenvalues of the matrixH�H�PBB�P for this choice
of P are ������������������	��

� A numerical example

Consider the system in Example � and suppose that
there is only one torque available and only one rate
gyro for angular velocity measurements� both along the
axis

�e � ����	��� �����������	��� ��	�



and therefore�

G � H� �

�
� ���	��

������
����	�

�
� ��
�

According to Case III in section ���� the matrix P �
J � diag��� 	� 
� solves the ARE �	�� and the optimal
stabilizing controller is given by the output feedback
control law

k�y� � �y ����

where y � H� is the only angular velocity measure�
ment�

Figure � contains the results of numerical sim�
ulations subject to the initial condition �� �
�������� ��� rad�sec� As expected� the angular velocity
tends to zero asymptotically�

The running value of the cost

Z T

�

fy��t�y�t� � u��t�u�t�g dt � �

Z T

�

���t�H�H��t� dt

����
is shown in Figure �� The minimum value of the cost
is

���J�� � ����

which corresponds to the dashed horizontal line in
Fig� ��
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Figure �� Angular velocity history�

� Summary and conclusions

We have derived conditions for the solution of the opti�
mal and suboptimal quadratic regulation of the nonlin�
ear system which describes the dynamical motion of a
rotating rigid body� This is an important example of a
nonlinear system whose linearization is� in general� nei�
ther detectable nor stabilizable� One thus has to deal
with the true nonlinear equations of the problem� This
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Figure �� Running cost�

system has the property� of admitting globally asymp�
totically stabilizing controllers which are linear� Mo�
tivated by this observation� we search over the class
of linear controllers for the one that achieves the best
performance�

Under some mild assumptions the rigid body equa�
tions admit a wide class of globally asymptotically sta�
bilizing linear controllers which give rise to a nite
quadratic cost� Moreover� the proof of the asymp�
totic stability of the closed�loop system can be estab�
lished using quadratic Lyapunov functions� Since there
is no systematic procedure for solving the Hamilton�
Jacobi Equation�Inequality for general nonlinear sys�
tems� we rst use the structural properties of the un�
controlled nonlinear dynamics to derive necessary and
su�cient conditions for the existence of quadratic solu�
tions to the HJE�HJI� This allows us to construct ex�
plicit quadratic solutions to the Hamilton�Jacobi Equa�
tion �optimal case� and the Hamilton�Jacobi Inequality
�suboptimal case�� These quadratic solutions give rise
to linear feedback controllers which solve the NLQR
problem�

Future research should address more general �non�
quadratic� solutions to the HJE and HJI which could be
used to derive �possibly� nonlinear controllers achiev�
ing better performance�
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