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Abstract

In a recent paper we showed that there exist linear
controllers which globally asymptotically stabilize the
attitude motion of a rigid body using a nonredundant,
three-dimensional set of kinematic parameters. In this
paper we show, using the inherent passivity properties
of the system, that these results can be extended to
stabilizing control laws without any angular velocity
measurements. A numerical example demonstrates
the theoretical results.

1. Introduction

In a recent paper [14] we have shown that there exist
linear globally asymptotically stabilizing control laws
for the attitude motion of a rigid body using minimal,
three-dimensional parameterizations for the kinemat-
ics. In particular, in [‘14] we derived linear control
laws in terms of the classical Cayley-Rodrigues pa-
rameters [4, 11] and the newly developed Modified
Rodrigues parameters [7, 10, 11, 13, 14]. The ap-
proach in [14] uses a Lyapunov function which is the
sum of a quadratic term in the angular velocities and
a logarithmic term in the kinematic parameters.

In the present paper we use the inherent passiv-
ity properties of the system, as well as the structural
properties of the kinematic equations in terms of the
Rodrigues and the Modified Rodrigues parameters, in
order to derive control laws which do not use angular
velocity measurements. We therefore provide a lim-
ited solution to the general output feedback problem
for the attitude motion, i.e., when only orientation in-
formation is available. The methodology follows very
closely the one in [6], where the authors use a quater-
nion description for the kinematics in order to derive
velocity-free, globally asymptotically stabilizing con-
trol laws for the attitude motion.

Control laws which do not use angular velocity
measurements, apart of theoretical interest, can be
very important in applications as well, especially in
cases when one wants to avoid the use of angular ve-
locity sensors (e.g., for economical reasons) or when
such a choice is not available (e.g., due to equipment
failure). In aerospace applications Se.g., spacecraft)
the latter case is probably more relevant, since at-
titude orientation sensors (e.g., sun or star sensors,
horizon scanners or gyroscopes) are relatively bulky
and expensive as compared to angular velocity sen-
sors. In robotics, on the other hand, elimination of
tachometers is highly desirable [1, 8].

2. Equations and Preliminary Results

The angular velocity for the attitude motion of a rigid
body obeys the differential equation

Jw = S(w)Jw + u, w(0) = wy (1)

where w 1= (w,ws,ws)? denotes the angular velocity
vector in a body-fixed frame, u := (uy, us, uz)? is the
acting torque vector, and J is the inertia matrix. The
matrix S(-) denotes the skew-symmetric matrix

0 —w3 Wo
S(w) =] ws 0 —w (2)
—W9 Wi 0

In this paper, the orientation of the body with re-
spect to the inertial frame will be described either in
terms of the Rodrigues parameters [4, 11], or in terms
of the recently developed Modified Rodrigues param-
eters [7, 10, 11, 13, 14]. The kinematic equations in
terms of the Rodrigues parameters take the form

p=H(p)w,  p(0)=po (3)
where
H(p) = 5(I = S(p) + pp") (4)

and [ denotes the 3 x 3 identity matrix.
The kinematic equations in terms of the Modified
Rodrigues parameters take the form

o= G(o)w, a(0) = g (5)

where

1—06T¢

G(o)z%( 5

Although the kinematic description using the Modi-
fied Rodrigues parameters looks similar to the classi-
cal Cayley-Rodrigues parameters, it has the distinct
advantage that it remains valid for eigenaxis rotations
up to 360 deg, whereas the Cayley-Rodrigues param-
eters cannot describe motions which correspond to
eigenaxis rotations of more than 180 deg [10, 13, 14].

It can be easily shown that the matrices H(p) and
G(o) in (4) and (6) satisfy the following important
identities:

(H1) pTH(plw = (M) plw,

I—S(c)+ aaT) (6)

2

|2 W ) = (R



for all (w, p) € R® x IR?, and

(G1) oI Glo)w = (#) oTw
(G2) GT(0)G(o) = (#)21

for all (w, o) € R® x IR?, respectively.

The equations (1)-(3), equivalently (1)-(5), describe
a system 1n cascade interconnection. Thus, 1f one ini-
tially considers only the subsystem (3) with w acting
as a control variable, and then one considers the com-
plete system (1)-(3) with u as the control variable,
one can show the following result.

Pr0p051t10n 2.1 (Jlél]d) (i) Consider the system (3)

with w considered as a control vartable. The
chotce of the linear feedback control law

w=—kip (7)

with k1 > 0, globally exponentially stabilizes (3)
at the origin with rate of decay kz—l

(ii) The linear control law
u=—kip— kow (8)

with k1 > 0 and ko > 0, globally asymptotically
stabilizes the system (1)-(3) at the origin.

Proof. (i) The positive definite function
U(p) = In(1+p"p) (9)

where In(-) denotes the natural logarithm, is a
Lyapunov function for the closed-loop system

(3)-(7).
(ii) The positive definite function
Viw,p) =

is a Lyapunov function for the closed-loop sys-

tem (1), (3)-(8).

%wTJw + k1U(p) (10)

Similarly, for the Modified Rodrigues parameters
we have

Proposition 2.2 ([14]) (i) Consider the system (5)
with w considered as a control variable. The
chotce of the linear feedback control law

w=—ko (11)

with k1 > 0, globally exponentially stabilizes (5)
at the origin with rate of decay kz—l

(ii) The linear control law
u=—kio — kow (12)

with k1 > 0 and ko > 0, globally asymptotically
stabilizes the system (1)-(5) at the origin.

Proof. (i) The positive definite function
W(o)=In(14¢"0) (13)

is a Lyapunov function for the closed-loop sys-

tem (5)-(11).
(ii) The positive definite function

Viw,p) = s Ju+ ki W(0) (14)

is a Lyapunov function for the closed-loop sys-
tem (1), (5)-(12).
]

Remark 2.1 One word of caution should be men-
tioned at this point, as far as our use of the term
“global” stabilization is concerned. Strictly speak-
ing, the attitude motion of a rigid body cannot be
globally continuously stabilized since the configura-
tion space of the motion (the rotation group SO(3))
is non-contractible. Thus, by “global asymptotic sta-
bilization” we mean here that the system of the corre-
sponding kinematic parameters is globally asymptot-
ically stable, i.e., asymptotic stability is guaranteed
for all initial orientations not corresponding to singu-
lar configurations. From a practical point of view this
slight abuse of the terminology should not cause any
concern, since the domain of definition of the kine-
matic parameters is a dense subset of the configura-
tion space (actually in the case of the Modified Ro-
drigues parameters is the whole space minus a single,
isolated point) [14].

3. A Passivity Approach

Propositions 2.1 and 2.2 state that there exist linear
controllers which globally asymptotically stabilize the
attitude motion of a rigid body using nonredundant
sets of kinematic parameters. In this section we show
that these results can be extended to stabilizing con-
trol laws without any angular velocity measurements.
In particular, we show that the linear control laws
(8) and (12) can be implemented without angular ve-
locity feedback and thus, one only needs orientation
measurements.

The methodology used in this section follows very
closely the one in [6], where the authors use a quater-
nion description for the kinematics in order to derive
velocity-free, globally asymptotically stabilizing con-
trol laws for the attitude motion of a rigid body. This
approach is similar to the recent results of [1] and
[9] on output stabilization of Euler-Lagrange systems,
where 1t 1s shown that asymptotic stabilization for
such systems may be possible without velocity mea-
surements via the inclusion of a dynamic extension
(lead filter) to the system. The so-called “dirty deriva-
tive” controllers of [9] provide the necessary damping
for the global stabilization of the closed-loop system.
There is an important complication when dealing with
the attitude stabilization problem, however, since one
is not able to reconstruct the attitude parameters by
integrating the angular velocity measurements.

Our approach, like the one in [6] takes advantage
of the inherent passivity properties of the attitude
equations and some structural properties of the kine-
matic equations. Passive systems are very appealing



in practice because of their very attractive robustness
and stability characteristics. In particular, passivity
is invariant under feedback interconnection, and the
Passivity Theorem [2] states that the feedback inter-
connection of a passive and a strictly passive system
is globally asymptotically stable. The results of this
section depend in an essential way on the properties
(H2) and (G2) of the matrices H(p) and G(o) re-
spectively.

Preliminaries

According to [2], a well-defined system
&t = flz,u), 2(0) = zg (15a)
y = h(z,u) (15Db)

with input w € IR™ and output y € IR™ is called
passive if there exists a constant 5 = B(xg) such that

T
/ y'udt+ 8 >0 (16)
0

for all 7" > 0.
It is called strictly passive (better, input-strictly

passive) if there exist constants § > 0 and 5 = ()
such that

T T
[ tudepzs [ upa
0] 0]

for all T > 0.

The next Proposition shows that the equations
(1)-(3) and (1)-(5) have some inherent passivity prop-
erties.

Proposition 3.1 (i) The system (1) with input u
and output w s passive.

(ii) The system (5) with input w and output o is
passive.

100 The system 3 U)Zth mput w and output 15
y P put p
passive.

Proof. (i) Let the function Vi(w) = %wTJw. Dif-

ferentiation along the trajectories of (1) yields that
Vi(w) = wlu, therefore

T
/ whudt = Vi(w(T)) — Vi(wo) (18)
0
and since Vi(w) > 0 for all w € IR® we have that
T
/ wludt + Vi(wg) > 0 (19)
0
and (16) is satisfied with 8 = V}(wp).
(i) Let the function V(o) = 2In(14+07¢). Differ-

entiation along the trajectories of (5) and use of (G1)
yields that Va(0) = o7 w, therefore

/0 olwdt = Va(o(T)) — Va(op) (20)

and since Va(a) > 0 for all ¢ € IR® we have that

T
/ olwdt 4+ Va(og) > 0 (21)
0

and passivity is satisfied with 5 = Va(oyp).

(iii) The proof is identical to the case (ii), where we
now use the positive definite function Va(p) = In(1 +
pT p) and property (H1). ]

The previous Proposition shows that the attitude
equations can be considered as a cascade interconnec-
tion of two passive systems. The passivity of system
(1) is a well-known fact and has been used repeatedly
in the past. The passivity of system (5) or of the sys-
tem (3), is neither as a well-known nor as a frequently
used result. Although we will not use the passivity of
the kinematic equations in this paper, we mentioned
this property here for completeness. It would be in-
teresting though to investigate if the passivity of (5)
or (3) can be used in some other framework.

In Proposition 2.2 we have shown that the linear
control law

u=—kio — kow

globally asymptotically stabilizes the system (1)-(5).
Consider now the more general control law

u=—kioc+v (22)

with k1 > 0, where v is the new input. The following
Theorem shows that the passivity between the new
input v and the output w is preserved for the system

(1)-(5); see also Fig. 1.

Proposition 3.2 The system (1),(5)-(22) with input
v and output w 15 passive.
Proof. Let the function V(w, o) = Vi(w) + k1Va(o)
where Vi and V5 as in Proposition 3.1. Di.ﬂ’erentia—
tion along the trajectories of (1) yields that V(w, o) =
wlu+kio?w. Using (22? we get that V(w, o) = wlv.
The rest of the proof follows as in Proposition 3.1.

]

One can show a similar result for the control law
u=—kip+v (23)
where k1 > 0 and v is the new input.

Proposition 3.3 The system (1),(3)-(23) with input
v and output w 15 passive.

Properties (G2) and (H2) imply an “orthogonal-
ity” condition for the matrices G(o) and H(p); in par-
ticular, the inverses of these matrices can be written
as a function of their transposes. One can easily ver-
ify, for instance, that

10 = (15

e Lae R SR
and

4 2
—1 T
= _ 2
G~ (o) (1—|—0’T0') G (o) (25)
One can use this result to establish “orthogonal” in-
put/output transformations for the systems (1),(5)-

(22) and (1),(3)-(23) which preserve passivity.



Proposition 3.4 The system (1)-(5) with input y =
2

(1+§TU) G(o)v and output w = G(o)w = 7 is pas-

stve.

Proof. Using (G2) we have that

T
/ wlydt
0

2

/OT (ﬁ) TG ()G v dt

= [ (7)) oo

—Jo 4 1+o7s) "
T

= /wTvdt (26)
0

Using now Proposition 3.2 we establish the desired
result. ]

Notice that if y 1s the new input as defined by
Proposition 3.4 then v is given by

v= Gl o)y (27)

Similarly, for the case of the Rodrigues parameters
one has that

Proposition 3.5 The system (1)-(3) with input y =

(‘1+—fm) (I+pp") " H(p)v and output w= H(p)w =
p 15 passive.

Proof. The proof is similar to the one of Proposi-
tion 3.4 and thus, omitted. [

Notice that if y 1s the new input as defined by
Proposition 3.5 then v is given by

v=1"(p)y (28)

Main Results

Since by Propositions 3.4 and 3.5 the map from y to
w 1s passive, one may explore the possibility of glob-
ally asymptotically stabilizing the system by choosing
a feedback such that the map from w to y is strictly
passive [2, 3]. Although one can choose any strictly
passive, possibly nonlinear, map between w and y,
the easiest approach is to use a linear, time invari-
ant, strictly passive system instead. Recall that a
linear time-invariant system is strictly passive if and
only if it is strictly positive real [12]. Moreover, the
Kalman-Popov-Yakubovic Lemma provides testable
conditions on the state space realization of a linear
system so that it is strictly positive real [2, 5, 12].
Based on these preliminary observations, we are now
ready to show the main Theorem on the implemen-
tation of the linear control laws (8) and (12) without
angular velocity feedback. We first present the re-
sult in terms of the Modified Rodrigues parameters,
followed by the corresponding result in terms of the
Cayley-Rodrigues parameters.

To this end, let A be any stability matrix, B any
full column rank matrix, with the pair (A4, B) control-
lable, and () any positive definite matrix. Let also the
matrix P be the solution of the Lyapunov equation

ATP+PA=—Q (29)
Clearly then P is positive definite.

Theorem 3.1 Consider the system (1)-(5) and let
the control law

u=—kio —kGT (0)y (30)

with k1 >0, ko > 0, and where y s the output of the
linear, time-tnvariant system

¢ = Ax+ Bo (31a)

y = BTPAx+ B'PBo (31b)

Then limy oo (w(t), o (t)) = 0, for all initial condi-
tions (wg, 09) € R3 x IR3.

Proof. Consider the positive definite function

k
V(w,o,8) = %wTJw + 2k In(14+ 7o) + ;i‘TPi‘
(32)

The time derivative of V' along the trajectories of the
closed-loop system is then

V

Wl J6 4 by ( ) o’ G(o)w + ko3 Pi

14+06T0
= Wwi(—kio — ksGT(0)y) + k1ot w 4 koiT PAZ
+ koi” PBG(0)w

k k
= 7zg'gT(PA + AT P)i = _725@%25@ <0 (33)

First observe that since V is radially unbounded,
all solutions are bounded. Consider now the set £ =
{(w,o,2) : V = 0}. Trajectories in & then satisfy
# = 0 and hence x(t) = zo for all ¢ > 0 and from
(31a) also o(t) = ¢ for all ¢t > 0. Then ¢ = 0 and
from (5) also w(t) = 0 for all t > 0. Since y = BT Pz
one has also that y = 0, and using 31) and (30) we
have that w = w = 0 and y = 0 implies that ¢ = 0.
The largest invariant set in £ is therefore the set M =
{w,o,2) €€ :w=0,0=0,2=u0}.

By LaSalle’s Invariance Principle [5] all trajecto-
ries of the system asymptotically approach M, thus
lim; oo (w(t), o(t)) = 0, as claimed. ]

Remark 3.1 The motivation for choosing the linear
system (31) stems from the following fact. If we real-

ize (31) as

r = z (34a)
= Az+Bos (34b)
y = BTP: (34c)

and use the Kalman-Yakubovic-Popov Lemma [5], we
see that equations (34b)-(34¢) define a minimal real-
ization of a strictly positive real system with input ¢
and output y. From Proposition 3.4 the system (1)-
(5) defining a map from y to w = ¢ is passive. Some
technical assumptions aside, the asymptotic stability
of the feedback system then follows as a result of a
feedback interconnection of a passive with a strictly
passive system. By imposing the additional condition
that the linear system from ¢ to y is strictly proper,
we can realize the map from o to y with a proper
system as in (31).



Similarly, for the Cayley-Rodrigues parameters one
obtains the following result.

Theorem 3.2 Consider the system (1)-(3) and let
the control law

u=—kip—koaH" (p)y (35)
with k1 >0, ks > 0, and where y s the output of the
linear, time-tnvariant system

£ = Az+ Bp (36a)
y = BTPAx+BTPBp (36b)

Then limy_co(w(t), p(t)) = 0, for all initial condi-
tions (wg, po) € R3 x IR3.
The proof of this Theorem is similar to the one of

Theorem 3.1 and it will not be repeated here. Just
notice that by choosing the positive definite function

k
Viw,p, &) = %wTJw—I—kl In(1+p% p)+ ;i‘TPi‘ (37)

we have for the closed-loop trajectories of the system

(1)-(3) with control law (35) that

Vo= —kwT H  (p)y + kodT Pi
= —kowT HY(p)y + ko T PAZ + ko2T PBp

k
= k" PA < —725@%25@ <0 (38)

and the rest of the proof follows as in Theorem 3.1.

4. Numerical Example

In this section we demonstrate the previous theoret-
ical results by means of a numerical simulation. In
particular, we provide an example comparing the lin-
ear control laws (8) and (12) with their velocity-free
implementations (35) and (30).

We consider a rigid body with inertia parameters

J = diag(10,6.3,8.5) (kg -m?)

and subject to zero initial angular velocity and initial
orientation given, in terms of the Rodrigues parame-
ters, by

p(0) = (0.7625,0.3165,1.3207)"
or, in terms of the Modified Rodrigues parameters, by

(0) = (0.2675,0.1110,0.4633)"

The following values were chosen for the gains and
the filter parameters

k1 =2, ko=1
A=-10I, B=10I, @=20I, P=1 (39)

The simulation results for the Rodrigues parame-
ters are shown in Figures 2-3. The solid lines represent
the trajectories with the linear control law (8) and
the dashed lines represent the trajectories with the
velocity-free control law (35). Only the first compo-
nents of the vectors are depicted here, since the other
components exhibit similar behavior. Similarly, Fig-
ures 4-5 depict the results for the Modified Rodrigues
parameters.

Clearly, the velocity-free controllers stabilize the
system about the zero orientation as predicted by
Theorems 3.1 and 3.2.

5. Concluding Remarks

We have derived linear globally asymptotically stabi-
lizing control laws for the attitude motion of a rigid
body in terms of nonredundant kinematic parameters.
Based on the inherent passivity properties of the equa-
tions of the attitude motion, we have shown how to
implement these linear control laws when angular ve-
locity measurements are not available. The proposed
controllers use filtered measurements of the kinematic
parameters in order to estimate the angular velocities
from attitude measurements. These results are in line
with the recent developments on the stabilization of
FEuler-Lagrange mechanical systems [9], where it was
shown that, under some mild assumptions, there is
a rigorous theoretical justification for the commonly
used practice of “approximate” differentiation using
lead filters when velocity measurements are not avail-
able.

Finally, the results are given in terms both of the
classical Cayley-Rodrigues parameters, and the re-
cently developed Modified Rodrigues parameters.
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Figure 1: Passive connection with control u = kjo+wv.
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Figure 2: Angular velocity history for Rodrigues pa-
rameters.
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Figure 3: Rodrigues parameters history.
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Figure 4: Angular velocity history for Modified Ro-
drigues parameters.
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Figure 5: Modified Rodrigues parameters history.



