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Abstract

In a recent paper we showed that there exist linear
controllers which globally asymptotically stabilize the
attitude motion of a rigid body using a nonredundant�
three�dimensional set of kinematic parameters� In this
paper we show� using the inherent passivity properties
of the system� that these results can be extended to
stabilizing control laws without any angular velocity
measurements� A numerical example demonstrates
the theoretical results�

�� Introduction

In a recent paper ��� we have shown that there exist
linear globally asymptotically stabilizing control laws
for the attitude motion of a rigid body using minimal�
three�dimensional parameterizations for the kinemat�
ics� In particular� in ��� we derived linear control
laws in terms of the classical Cayley�Rodrigues pa�
rameters �� ��� and the newly developed Modi�ed
Rodrigues parameters �� ��� ��� ��� ���� The ap�
proach in ��� uses a Lyapunov function which is the
sum of a quadratic term in the angular velocities and
a logarithmic term in the kinematic parameters�

In the present paper we use the inherent passiv�
ity properties of the system� as well as the structural
properties of the kinematic equations in terms of the
Rodrigues and the Modi�ed Rodrigues parameters� in
order to derive control laws which do not use angular
velocity measurements� We therefore provide a lim�
ited solution to the general output feedback problem
for the attitude motion� i�e�� when only orientation in�
formation is available� The methodology follows very
closely the one in ��� where the authors use a quater�
nion description for the kinematics in order to derive
velocity�free� globally asymptotically stabilizing con�
trol laws for the attitude motion�

Control laws which do not use angular velocity
measurements� apart of theoretical interest� can be
very important in applications as well� especially in
cases when one wants to avoid the use of angular ve�
locity sensors �e�g�� for economical reasons
 or when
such a choice is not available �e�g�� due to equipment
failure
� In aerospace applications �e�g�� spacecraft

the latter case is probably more relevant� since at�
titude orientation sensors �e�g�� sun or star sensors�
horizon scanners or gyroscopes
 are relatively bulky
and expensive as compared to angular velocity sen�
sors� In robotics� on the other hand� elimination of
tachometers is highly desirable �� 	��

�� Equations and Preliminary Results

The angular velocity for the attitude motion of a rigid
body obeys the di�erential equation

J �� � S��
J� � u� ���
 � �� ��


where � �� ���� ��� ��

T denotes the angular velocity

vector in a body��xed frame� u �� �u�� u�� u�
T is the
acting torque vector� and J is the inertia matrix� The
matrix S��
 denotes the skew�symmetric matrix

S��
 ��

�
� ��� ��
�� � ���
��� �� �

�
��


In this paper� the orientation of the body with re�
spect to the inertial frame will be described either in
terms of the Rodrigues parameters �� ���� or in terms
of the recently developed Modi�ed Rodrigues param�
eters �� ��� ��� ��� ���� The kinematic equations in
terms of the Rodrigues parameters take the form

�� � H��
�� ���
 � �� ��


where
H��
 �� �

�
�I � S��
 � ��T 
 ��


and I denotes the �� � identity matrix�
The kinematic equations in terms of the Modi�ed

Rodrigues parameters take the form

�� � G��
�� ���
 � �� ��


where

G��
 � �

�

�
�� �T�

�
I � S��
 � ��T

�
��


Although the kinematic description using the Modi�
�ed Rodrigues parameters looks similar to the classi�
cal Cayley�Rodrigues parameters� it has the distinct
advantage that it remains valid for eigenaxis rotations
up to ��� deg� whereas the Cayley�Rodrigues param�
eters cannot describe motions which correspond to
eigenaxis rotations of more than �	� deg ��� ��� ����

It can be easily shown that the matrices H��
 and
G��
 in ��
 and ��
 satisfy the following important
identities�

�H�
 �TH��
� �

�
� � �T�

�

�
�T��

�H�
 HT ��
�I � ��T 
��H��
 �

�
� � �T�

�

�
I



for all ��� �
 � IR� � IR�� and

�G�
 �TG��
� �

�
� � �T�

�

�
�T�

�G�
 GT ��
G��
 �

�
� � �T�

�

��

I

for all ��� �
 � IR� � IR�� respectively�
The equations ��
���
� equivalently ��
���
� describe

a system in cascade interconnection� Thus� if one ini�
tially considers only the subsystem ��
 with � acting
as a control variable� and then one considers the com�
plete system ��
���
 with u as the control variable�
one can show the following result�

Proposition ��� ������ �i� Consider the system ���
with � considered as a control variable� The
choice of the linear feedback control law

� � �k�� ��


with k� � �� globally exponentially stabilizes ���
at the origin with rate of decay k�

�
�

�ii� The linear control law

u � �k�� � k�� �	


with k� � � and k� � �� globally asymptotically
stabilizes the system ������� at the origin�

Proof� �i
 The positive de�nite function

U ��
 � ln�� � �T�
 ��


where ln��
 denotes the natural logarithm� is a
Lyapunov function for the closed�loop system
��
���
�

�ii
 The positive de�nite function

V ��� �
 � �

�
�TJ� � k�U ��
 ���


is a Lyapunov function for the closed�loop sys�
tem ��
� ��
��	
�

Similarly� for the Modi�ed Rodrigues parameters
we have

Proposition ��� ������ �i� Consider the system ���
with � considered as a control variable� The
choice of the linear feedback control law

� � �k�� ���


with k� � �� globally exponentially stabilizes ���
at the origin with rate of decay k�

�
�

�ii� The linear control law

u � �k�� � k�� ���


with k� � � and k� � �� globally asymptotically
stabilizes the system ������� at the origin�

Proof� �i
 The positive de�nite function

W ��
 � ln�� � �T�
 ���


is a Lyapunov function for the closed�loop sys�
tem ��
����
�

�ii
 The positive de�nite function

V ��� �
 � �

�
�T J� � k�W ��
 ���


is a Lyapunov function for the closed�loop sys�
tem ��
� ��
����
�

Remark ��� One word of caution should be men�
tioned at this point� as far as our use of the term
�global� stabilization is concerned� Strictly speak�
ing� the attitude motion of a rigid body cannot be
globally continuously stabilized since the con�gura�
tion space of the motion �the rotation group SO��


is non�contractible� Thus� by �global asymptotic sta�
bilization� we mean here that the system of the corre�
sponding kinematic parameters is globally asymptot�
ically stable� i�e�� asymptotic stability is guaranteed
for all initial orientations not corresponding to singu�
lar con�gurations� From a practical point of view this
slight abuse of the terminology should not cause any
concern� since the domain of de�nition of the kine�
matic parameters is a dense subset of the con�gura�
tion space �actually in the case of the Modi�ed Ro�
drigues parameters is the whole space minus a single�
isolated point
 ����

�� A Passivity Approach

Propositions ��� and ��� state that there exist linear
controllers which globally asymptotically stabilize the
attitude motion of a rigid body using nonredundant
sets of kinematic parameters� In this section we show
that these results can be extended to stabilizing con�
trol laws without any angular velocity measurements�
In particular� we show that the linear control laws
�	
 and ���
 can be implemented without angular ve�
locity feedback and thus� one only needs orientation
measurements�

The methodology used in this section follows very
closely the one in ��� where the authors use a quater�
nion description for the kinematics in order to derive
velocity�free� globally asymptotically stabilizing con�
trol laws for the attitude motion of a rigid body� This
approach is similar to the recent results of �� and
�� on output stabilization of Euler�Lagrange systems�
where it is shown that asymptotic stabilization for
such systems may be possible without velocity mea�
surements via the inclusion of a dynamic extension
�lead �lter
 to the system� The so�called �dirty deriva�
tive� controllers of �� provide the necessary damping
for the global stabilization of the closed�loop system�
There is an important complicationwhen dealing with
the attitude stabilization problem� however� since one
is not able to reconstruct the attitude parameters by
integrating the angular velocity measurements�

Our approach� like the one in �� takes advantage
of the inherent passivity properties of the attitude
equations and some structural properties of the kine�
matic equations� Passive systems are very appealing



in practice because of their very attractive robustness
and stability characteristics� In particular� passivity
is invariant under feedback interconnection� and the
Passivity Theorem �� states that the feedback inter�
connection of a passive and a strictly passive system
is globally asymptotically stable� The results of this
section depend in an essential way on the properties
�H�� and �G�� of the matrices H��
 and G��
 re�
spectively�

Preliminaries

According to ��� a well�de�ned system

�x � f�x� u
� x��
 � x� ���a


y � h�x� u
 ���b


with input u � IRm and output y � IRm is called
passive if there exists a constant � � ��x�
 such thatZ T

�

yTu dt� � � � ���


for all T � ��
It is called strictly passive �better� input�strictly

passive
 if there exist constants � � � and � � ��x�

such that Z T

�

yTu dt� � � �

Z T

�

kuk� dt ���


for all T � ��
The next Proposition shows that the equations

��
���
 and ��
���
 have some inherent passivity prop�
erties�

Proposition ��� �i� The system ��� with input u
and output � is passive�

�ii� The system ��� with input � and output � is
passive�

�iii� The system ��� with input � and output � is
passive�

Proof� �i
 Let the function V���
 � �

�
�T J�� Dif�

ferentiation along the trajectories of ��
 yields that
�V���
 � �Tu� thereforeZ T

�

�Tu dt � V����T 

 � V����
 ��	


and since V���
 � � for all � � IR� we have thatZ T

�

�Tu dt� V����
 � � ���


and ���
 is satis�ed with � � V����
�

�ii
 Let the function V���
 � � ln����T�
� Di�er�
entiation along the trajectories of ��
 and use of �G��

yields that �V���
 � �T�� thereforeZ T

�

�T� dt � V����T 

 � V����
 ���


and since V���
 � � for all � � IR� we have thatZ T

�

�T� dt� V����
 � � ���


and passivity is satis�ed with � � V����
�

�iii
 The proof is identical to the case �ii
� where we
now use the positive de�nite function V���
 � ln�� �
�T �
 and property �H���

The previous Proposition shows that the attitude
equations can be considered as a cascade interconnec�
tion of two passive systems� The passivity of system
��
 is a well�known fact and has been used repeatedly
in the past� The passivity of system ��
 or of the sys�
tem ��
� is neither as a well�known nor as a frequently
used result� Although we will not use the passivity of
the kinematic equations in this paper� we mentioned
this property here for completeness� It would be in�
teresting though to investigate if the passivity of ��

or ��
 can be used in some other framework�

In Proposition ��� we have shown that the linear
control law

u � �k�� � k��

globally asymptotically stabilizes the system ��
���
�
Consider now the more general control law

u � �k�� � v ���


with k� � �� where v is the new input� The following
Theorem shows that the passivity between the new
input v and the output � is preserved for the system
��
���
� see also Fig� ��

Proposition ��� The system ������������ with input
v and output � is passive�

Proof� Let the function V ��� �
 � V���
 � k�V���

where V� and V� as in Proposition ���� Di�erentia�
tion along the trajectories of ��
 yields that �V ��� �
 �
�Tu�k��

T�� Using ���
 we get that �V ��� �
 � �T v�
The rest of the proof follows as in Proposition ����

One can show a similar result for the control law

u � �k��� v ���


where k� � � and v is the new input�

Proposition ��� The system ������������ with input
v and output � is passive�

Properties �G�� and �H�� imply an �orthogonal�
ity� condition for the matrices G��
 andH��
� in par�
ticular� the inverses of these matrices can be written
as a function of their transposes� One can easily ver�
ify� for instance� that

H����
 �

�
�

� � �T �

�
�I � ��T 
��HT ��
 ���


and

G����
 �

�
�

� � �T�

��

GT ��
 ���


One can use this result to establish �orthogonal� in�
put�output transformations for the systems ��
���
�
���
 and ��
���
����
 which preserve passivity�



Proposition ��� The system ������� with input y ��
�

���T �

��
G��
v and output w � G��
� � �� is pas�

sive�

Proof� Using �G�� we have thatZ T

�

wTy dt �

Z T

�

�
�

� � �T�

��

�TGT ��
G��
v dt

�

Z T

�

�
� � �T�

�

���
�

� � �T�

��

�T v dt

�

Z T

�

�Tv dt ���


Using now Proposition ��� we establish the desired
result�

Notice that if y is the new input as de�ned by
Proposition ��� then v is given by

v � GT ��
y ���


Similarly� for the case of the Rodrigues parameters
one has that

Proposition ��	 The system ������� with input y ��
�

���T �

�
�I � ��T 
��H��
v and output w � H��
� �

�� is passive�

Proof� The proof is similar to the one of Proposi�
tion ��� and thus� omitted�

Notice that if y is the new input as de�ned by
Proposition ��� then v is given by

v � HT ��
y ��	


Main Results

Since by Propositions ��� and ��� the map from y to
w is passive� one may explore the possibility of glob�
ally asymptotically stabilizing the system by choosing
a feedback such that the map from w to y is strictly
passive �� ��� Although one can choose any strictly
passive� possibly nonlinear� map between w and y�
the easiest approach is to use a linear� time invari�
ant� strictly passive system instead� Recall that a
linear time�invariant system is strictly passive if and
only if it is strictly positive real ���� Moreover� the
Kalman�Popov�Yakubovic Lemma provides testable
conditions on the state space realization of a linear
system so that it is strictly positive real �� �� ����
Based on these preliminary observations� we are now
ready to show the main Theorem on the implemen�
tation of the linear control laws �	
 and ���
 without
angular velocity feedback� We �rst present the re�
sult in terms of the Modi�ed Rodrigues parameters�
followed by the corresponding result in terms of the
Cayley�Rodrigues parameters�

To this end� let A be any stability matrix� B any
full column rank matrix� with the pair �A�B
 control�
lable� and Q any positive de�nite matrix� Let also the
matrix P be the solution of the Lyapunov equation

ATP � PA � �Q ���


Clearly then P is positive de�nite�

Theorem ��� Consider the system ������� and let
the control law

u � �k�� � k�G
T ��
y ���


with k� � �� k� � �� and where y is the output of the
linear� time�invariant system

�x � Ax�B� ���a


y � BTPAx� BTPB� ���b


Then limt�����t
� ��t

 � �� for all initial condi�
tions ���� ��
 � IR� � IR��

Proof� Consider the positive de�nite function

V ��� �� �x
 � �

�
�TJ� � �k� ln�� � �T�
 �

k�

�
�xTP �x

���

The time derivative of V along the trajectories of the
closed�loop system is then

�V � �TJ �� � k�

�
�

� � �T�

�
�TG��
� � k� �x

TP �x

� �T ��k�� � k�G
T ��
y
 � k��

T� � k� �x
TPA �x

� k� �x
TPBG��
�

�
k�

�
�xT �PA�ATP 
 �x � �

k�

�
�xTQ �x � � ���


First observe that since V is radially unbounded�
all solutions are bounded� Consider now the set E �
f��� �� x
 � �V � �g� Trajectories in E then satisfy
�x � � and hence x�t
 � x� for all t � � and from
���a
 also ��t
 � �� for all t � �� Then �� � � and
from ��
 also ��t
 � � for all t � �� Since y � BTP �x
one has also that y � �� and using ��
 and ���
 we
have that � � �� � � and y � � implies that � � ��
The largest invariant set in E is therefore the setM �
f��� �� x
 � E � � � �� � � �� x � x�g�

By LaSalle�s Invariance Principle �� all trajecto�
ries of the system asymptotically approach M� thus
limt�����t
� ��t

 � �� as claimed�

Remark ��� The motivation for choosing the linear
system ���
 stems from the following fact� If we real�
ize ���
 as

�x � z ���a


�z � Az �B �� ���b


y � BTPz ���c


and use the Kalman�Yakubovic�Popov Lemma ��� we
see that equations ���b
����c
 de�ne a minimal real�
ization of a strictly positive real system with input ��
and output y� From Proposition ��� the system ��
�
��
 de�ning a map from y to w � �� is passive� Some
technical assumptions aside� the asymptotic stability
of the feedback system then follows as a result of a
feedback interconnection of a passive with a strictly
passive system� By imposing the additional condition
that the linear system from �� to y is strictly proper�
we can realize the map from � to y with a proper
system as in ���
�



Similarly� for the Cayley�Rodrigues parameters one
obtains the following result�

Theorem ��� Consider the system ������� and let
the control law

u � �k�� � k�H
T ��
y ���


with k� � �� k� � �� and where y is the output of the
linear� time�invariant system

�x � Ax� B� ���a


y � BTPAx�BTPB� ���b


Then limt�����t
� ��t

 � �� for all initial condi�
tions ���� ��
 � IR� � IR��

The proof of this Theorem is similar to the one of
Theorem ��� and it will not be repeated here� Just
notice that by choosing the positive de�nite function

V ��� �� �x
 � �

�
�TJ��k� ln����

T �
�
k�

�
�xTP �x ���


we have for the closed�loop trajectories of the system
��
���
 with control law ���
 that

�V � �k��
THT ��
y � k� �x

TP �x

� �k��
THT ��
y � k� �x

TPA �x� k� �x
TPB ��

� k� �x
TPA �x � �

k�

�
�xTQ �x � � ��	


and the rest of the proof follows as in Theorem ����

�� Numerical Example

In this section we demonstrate the previous theoret�
ical results by means of a numerical simulation� In
particular� we provide an example comparing the lin�
ear control laws �	
 and ���
 with their velocity�free
implementations ���
 and ���
�

We consider a rigid body with inertia parameters

J � diag���� ���� 	��
 �kg �m�


and subject to zero initial angular velocity and initial
orientation given� in terms of the Rodrigues parame�
ters� by

���
 � �������� �������������
T

or� in terms of the Modi�ed Rodrigues parameters� by

���
 � �������� �������������
T

The following values were chosen for the gains and
the �lter parameters

k� � �� k� � �
A � ���I� B � ��I� Q � ��I� P � I ���


The simulation results for the Rodrigues parame�
ters are shown in Figures ���� The solid lines represent
the trajectories with the linear control law �	
 and
the dashed lines represent the trajectories with the
velocity�free control law ���
� Only the �rst compo�
nents of the vectors are depicted here� since the other
components exhibit similar behavior� Similarly� Fig�
ures ��� depict the results for the Modi�ed Rodrigues
parameters�

Clearly� the velocity�free controllers stabilize the
system about the zero orientation as predicted by
Theorems ��� and ����

	� Concluding Remarks

We have derived linear globally asymptotically stabi�
lizing control laws for the attitude motion of a rigid
body in terms of nonredundant kinematic parameters�
Based on the inherent passivity properties of the equa�
tions of the attitude motion� we have shown how to
implement these linear control laws when angular ve�
locity measurements are not available� The proposed
controllers use �ltered measurements of the kinematic
parameters in order to estimate the angular velocities
from attitude measurements� These results are in line
with the recent developments on the stabilization of
Euler�Lagrange mechanical systems ��� where it was
shown that� under some mild assumptions� there is
a rigorous theoretical justi�cation for the commonly
used practice of �approximate� di�erentiation using
lead �lters when velocity measurements are not avail�
able�

Finally� the results are given in terms both of the
classical Cayley�Rodrigues parameters� and the re�
cently developed Modi�ed Rodrigues parameters�
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Figure �� Passive connection with control u � k���v�
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Figure �� Angular velocity history for Rodrigues pa�
rameters�
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Figure �� Angular velocity history for Modi�ed Ro�
drigues parameters�
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Figure �� Modi�ed Rodrigues parameters history�


