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Abstract— This work considers the optimal covariance steer-
ing problem for stochastic systems subject to both additive noise
and uncertain parameters which may enter multiplicatively
with the state and the control. The unknown parameters are
modeled as constant random variables sampled from distribu-
tions with known moments. The optimal covariance steering
problem is formulated so as to include dependence between
the unknown parameters and future states and is solved using
sequential convex programming. The proposed approach is
demonstrated numerically using a spacecraft control applica-
tion.

I. INTRODUCTION

While existing stochastic optimal control methods typi-
cally require detailed knowledge of the system being opti-
mized, many systems arising in practice include uncertain
parameters. In such cases, these parameters may be modeled
as constant random variables sampled from a particular
probability distribution.

In this paper, we examine the problem of steering a
stochastic linear system, in finite time, from an initial mean
and covariance to a terminal mean and covariance, when the
system is subject to parametric uncertainties (i.e., the distur-
bances enter both multiplicatively with the state and control,
as well as additively). The covariance steering problem has
previously been studied for both the infinite horizon [1]–
[3] and the finite horizon [4]–[7] cases, in the presence of
chance constraints [8]–[10], and for systems subject to purely
additive Gaussian i.i.d. disturbances.

The literature on multiplicative disturbances is much less
developed. In particular, the authors of [11], [12] inves-
tigated the covariance steering problem with parametric
uncertainties. However, whereas previous works assumed the
disturbances were independently, and identically distributed
in time, this work assumes that the disturbances are un-
known but constant, which is a more realistic assumption
for modeling uncertainty. Furthermore, the proposed formu-
lation allows for the dependence between the states and
the disturbance realization, whereas an assumption of state-
disturbance independence is critical to the approach of [11],
[12]. In particular, we make no assumptions of the underlying
distribution of the disturbances beyond that of all moments
being known (e.g., the disturbances may be sampled from a
Gaussian or uniform distribution).
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The proposed problem formulation has connections to
the literature of robust control and set-based methods, in
particular, in the case that the disturbances are assumed to be
sampled from a uniform distribution. The robust control liter-
ature primarily considers unknown, but deterministic distur-
bances which may enter the dynamics both multiplicatively
or additively, similar to the proposed problem [13]–[17].
The difference being that set-based methods upper bound
the reachable set of the state for all possible disturbance
realizations, requiring the disturbances to be drawn from
bounded sets (i.e., distributions with bounded support such
as the uniform distribution) [18]. Stochastic approaches as
used in this work, on the other hand, have the advantage of
being able to deal with disturbances having bounded or un-
bounded support by considering the likelihood of disturbance
realizations and by imposing probabilistic bounds [18], [19].

Prior works on covariance steering have utilized semidef-
inite programming (SDP) to solve the optimal covariance
steering problem [4], [8], [9], [20]–[22]. However, the prob-
lem considered in this work includes a state-disturbance
dependence which greatly complicates the moment dynamics
and prevents the use of prior techniques for the derivation of
an SDP. Instead, the proposed approach utilizes sequential
convex programming (SCP), which has been shown to have
convergence guarantees to a local optimum under mild
conditions [23], [24] (see, for example, [13], [25], [26]). It
is shown that if the proposed solution method converges to a
stationary point, then a solution of the nonconvex covariance
steering problem has been found.

Notation: A random variable drawn from a normal dis-
tribution with mean µ and covariance matrix Σ is denoted
by x ∼ N (µ,Σ), and a variable drawn from a uniform
distribution with bounds a and b is denoted by U(a, b).
E[·] denotes the expectation operator, and Pr(x) denotes
the probability of event x. In denotes the n × n identity
matrix, diag(a1, . . . , an) denotes a square diagonal matrix
with entries a1, . . . , an on the diagonal, and tr(·) denotes the
trace operation. A symmetric positive (semi)-definite matrix
is denoted by M ≻ 0 (M ⪰ 0).

II. PROBLEM FORMULATION

Consider the system

xk+1 = Axk +Buk +Dwk, (1)

where xk ∈ Rnx , uk ∈ Rnu , and wk ∈ Rnw , where
E[wk] = 0, E[(wk − E[wk])(wk − E[wk])

⊤] = Inw
, and

E[wk1w
⊤
k2
] = E[wk1 ]E[w⊤

k2
] = 0, ∀ k1 ̸= k2. Let the

initial conditions be given as E[x0] = µ0 and E[(x0 −
E[x0])(x0 − E[x0])⊤] = Σ0, where Σ0 ⪰ 0. Additionally,



the system matrices are comprised of a known component
and a time-invariant stochastic component, which depends
on a set of constant, but unknown parameters {p1, . . . , pnp},
given by A = Ā +

∑np

j=1 Ãjpj , B = B̄ +
∑np

j=1 B̃jpj ,
D = D̄ +

∑np

j=1 D̃jpj , where, for all j = 1, . . . , np,
pj : Ω → R is a random variable with corresponding
probability triple (Ω,F , P ) and E[pj ] = 0. The zero-mean
assumption is not restrictive because the mean can always
be accounted for by adding an appropriate offset to Ā, B̄,
and/or D̄ accordingly. Additionally, we assume that x0, wk,
and pj are all mutually independent for all k = 0, . . . , N−1
and j = 1, . . . , np, yielding E[pj1pj2 ] = E[pj1 ]E[pj2 ] =
0, ∀ j1 ̸= j2, E[wkpj ] = E[wk]E[pj ] = 0, and

E[x0pj1 . . . pjℓ ] = µ0E[pj1 . . . pjℓ ], (2a)
Σ̄[x0pjℓ , x0piι ]

= (Σ0 + µ0µ
⊤
0 )E[pjℓ , piι ]− µ0µ

⊤
0 E[pjℓ ]E[piι ], (2b)

Σ̄[x0pjℓ , piι ] = µ0E[pjℓ , piι ]− µ0E[pjℓ ]E[piι ], (2c)

where ℓ = 1, 2, . . . and ι = 1, 2, . . . , and where, for brevity,
we write p̄jℓ = pj1pj2 . . . pjℓ , Σ̃[xp̄jℓ ] = (xp̄jℓ) − E[xp̄jℓ ],
and Σ̄[xp̄jℓ , yp̄iι ] = E[σ[xp̄jℓ ]σ[yp̄iι ]⊤]. Finally, we assume
that all moments of pj are known (e.g., as is the case if
pj is Gaussian distributed with known variance or uniformly
distributed with known bounds).

Contrary to most works on stochastic control of linear sys-
tems (e.g., [11], [12]), we can no longer make the assumption
that the state and disturbance realization at a given time-step
are independent. That is, E[xkpj ] ̸= E[xk]E[pj ] = 0, for
k = 0, 1, . . . , N − 1 and j = 1, . . . , np. We will derive an
expression for E[xkpj ] in Section III.

The state and control inputs in (1) are subject to a
collection of linear chance constraints given by

Pr(α⊤
x,ixxk ≤ βx,ix) ≥ 1− δx,ix , ix = 1, . . . , Nx, (3a)

Pr(α⊤
u,iuuk ≤ βu,iu) ≥ 1− δu,iu , iu = 1, . . . , Nu, (3b)

for all k = 0, 1, . . . , N − 1, where αx,ix ∈ Rnx and
αu,iu ∈ Rnu are constant vectors, βx,ix ≥ 0 and βu,iu ≥ 0
are constant scalars, and δx,ix , δu,iu > 0 are given maximal
probabilities of constraint violation. We impose a chance
constraint on the control action uk given by (3b) because, as
will be seen in Section III, we consider the control action to
be a function of the state xk, making uk a random variable
as well.

We wish to steer (1) to a given final mean µF and covari-
ance ΣF ≻ 0 at time N , such that E[xN ] = µF , E[(xN −
E[xN ])(xN − E[xN ])⊤] = ΣF , while minimizing the cost
function J(µ0,Σ0;u0, . . . , uN−1) = E

[∑N−1
k=0 ℓ(xk, uk)

]
.

In particular, we will investigate the case where ℓ(·, ·) has
the form ℓ(x, u) = x⊤Qx + u⊤Ru, where Q ∈ Rnx×nx ,
R ∈ Rnu×nu , Q ⪰ 0, and R ≻ 0. The problem may thus
be summarized as follows: given µ0,Σ0, µF ,ΣF , determine
the control sequence u = {u0, . . . , uN−1} which solves the
following finite-time, optimal covariance steering problem

min
u

J(µ0,Σ0;u) = E

[
N−1∑
k=0

x⊤k Qxk + u⊤k Ruk

]
, (4a)

subject to
E[x0] = µ0, (4b)

E[(x0 − E[x0])(x0 − E[x0])⊤] = Σ0, (4c)

xk+1 = (Ā+

np∑
j=1

Ãjpj)xk + (B̄ +

np∑
j=1

B̃jpj)uk

+ (D̄ +

np∑
j=1

D̃jpj)wk, (4d)

Pr(α⊤
x,ixxk ≤ βx,ix) ≥ 1− δx,ix , ix = 1, . . . , Nx, (4e)

Pr(α⊤
u,iuuk ≤ βu,iu) ≥ 1− δu,iu , iu = 1, . . . , Nu, (4f)

E[xN ] = µF , (4g)

E[(xN − E[xN ])(xN − E[xN ])⊤] = ΣF , (4h)

for k = 0, . . . , N − 1.

III. COVARIANCE STEERING CONTROLLER DESIGN

A. Moment Formulation

We introduce the state-feedback control policy uk =
Lkxk + vk, where Lk ∈ Rnu×nx is the feedback gain and
vk ∈ Rnu is the open-loop control action at time-step k.
Consequently, notice that the system (1) can be written as

xk+1 = (Ā+ B̄Lk)xk + B̄vk + D̄wk

+

np∑
j=1

(
(Ãj + B̃jLk)xk + B̃jvk + D̃jwk

)
pj . (5)

From (5), straightforward calculations show that the ex-
pected state at time k = 0, . . . , N − 1, may be succinctly
described by the difference equation

E[xk+1−ℓp̄jℓ ]

= f({E[xk−ℓp̄jη ],E[p̄jη ]}ℓ+1
η=ℓ, Lk−ℓ, vk−ℓ)

= (Ā+ B̄Lk−ℓ)E[xk−ℓp̄jℓ ] + B̄vk−ℓE[p̄jℓ ]

+

np∑
jℓ+1=1

(Ãjℓ+1
+ B̃jℓ+1

Lk−ℓ)E[xk−ℓp̄jℓ+1
]

+ B̃jℓ+1
vk−ℓE[p̄jℓ+1

], (6)

where E[x0p̄jℓ ] = µ0E[p̄jℓ ], where ℓ = 0, . . . , k and j =
1, . . . , np. The derivation of (6) is given in Appendix A.
Note that (6) depends on the moments of increasing order
of pj and the previous state. Therefore, (6) can be evaluated
using (2a).

Likewise, the state covariance can be described by a
similar (albeit more extensive) set of difference equations.
We can compute

Σ̄[xk+1−κp̄iι , xk+1−κp̄jℓ ]

= g({Σ̄[xk−κp̄iυ , xk−κp̄jη ], Σ̄[xk−κp̄iυ , p̄jη ],

Σ̄[p̄iυ , p̄jη ],E[p̄iυ , p̄jη ]}
ι+1,ℓ+1
υ=ι,η=ℓ, Lk−κ, vk−κ), (7)

where Σ̄[xk−κp̄iι , p̄jℓ ]

= h({Σ̄[xk−κp̄iυ , p̄jℓ ], Σ̄[p̄iυ , p̄jℓ ]}ι+1
υ=ι, vk−κ), (8)



and where k = 0, . . . , N − 1, (ι, ℓ) = 0, . . . k, κ = max[ι, ℓ]
and i, j = 0, . . . , np. Σ̄[x0p̄jℓ , x0p̄iι ] and Σ̄[x0p̄jℓ , p̄iι ] are
given by (2b) and (2c), respectively, and g(·) and h(·)
are given in Appendix B. Note that g(·) and h(·) depend
on the previous covariances and increasing moments of pj
and therefore can be evaluated using (2b) and (2c) as the
initialization.

In conclusion, the mean and covariance of the state at
time k can be succinctly described in terms of the control
parameters v = {v0, . . . , vN−1} and L = {L0, . . . , LN−1},
the initial conditions (2a)-(2c), and by the three difference
equations (6), (7), and (8). Therefore, we may reformulate
Problem (4) as the deterministic optimization problem

min
v,L

J(µ0,Σ0;v,L) =

N−1∑
k=0

E[xk]⊤QE[xk]

+ (vk + LkE[xk])⊤R(vk + LkE[xk])
+ tr(Σ̄[xk, xk]Q) + tr(LkΣ̄[xk, xk]L

⊤
k R), (9a)

subject to
E[x0p̄jℓ ] = µ0E[p̄jℓ ], (9b)
Σ̄[x0p̄jℓ , x0p̄iι ]

= (Σ0 + µ0µ
⊤
0 )E[p̄jℓ , p̄iι ]− µ0µ

⊤
0 E[p̄jℓ ]E[p̄iι ], (9c)

E[xk+1−ℓp̄jℓ ]

= f({E[xk−ℓp̄jη ],E[p̄jη ]}ℓ+1
η=ℓ, Lk−ℓ, vk−ℓ), (9d)

Σ̄[xk+1−κp̄iι , xk+1−κp̄jℓ ] = g({Σ̄[xk−κp̄iυ , xk−κp̄jη ],

Σ̄[xk−κp̄iυ , p̄jη ], Σ̄[p̄iυ , p̄jη ],E[p̄iυ , p̄jη ]}
ι+1,ℓ+1
υ=ι,η=ℓ,

Lk−κ, vk−κ), (9e)
Σ̄[xk+1−κp̄iι , p̄jℓ ] = h({Σ̄[xk−κp̄iυ , p̄jℓ ],

Σ̄[p̄iυ , p̄jℓ ]}ι+1
υ=ι, Lk−κ, vk−κ), (9f)√

α⊤
x,ix

Σ̄[xk, xk]αx,ix

√
1− δx,ix
δx,ix

+ α⊤
x,ixE[xk]− βx,ix ≤ 0, (9g)√

α⊤
u,iu

LkΣ̄[xk, xk]L⊤
k αu,iu

√
1− δu,iu
δu,iu

+ α⊤
u,iu(vk + LkE[xk])− βu,iu ≤ 0, (9h)

E[xN ] = µF , (9i)
Σ̄[xN , xN ] = ΣF , (9j)

where (jn, in) = 1, . . . , np, (ℓ, ι) = 0, . . . , N − 1 and where
we have applied Cantelli’s inequality [27] to the chance
constraints (3).

B. Solution Methodology

Problem (9) is nonconvex owing to the multiplication
between Lk and E[xk] in (6), and similar bilinearities in
(7) and (8). Previous work has overcome these issues by
proposing an alternative control policy (e.g., uk = Lk(xk −
E[xk]) + vk or uk =

∑k
t=0Ktwt + vk) in order to ensure

that only the additive term vk appears in the mean dynamics
and overcome the bilinearities in the covariance constraint
by utilizing symmetry and performing a change of variables

to create a semidefinite program (SDP) [9], [11], [21]. How-
ever, due to the state-dependent nature of the multiplicative
disturbances, it is not possible to remove the feedback policy
from (6) because the state mean is not independent of the
disturbances. Moreover, the structure of (7) and (8) does
not admit a straightforward conversion to a SDP. Instead,
we solve Problem (9) using sequential convex programming
(SCP) [23]–[25].

We define a convex approximation of (9) by

min
v,L

ψ(µ0,Σ0,v,L, χ̂, ϵ̂, v̂, L̂), (10a)

subject to

0 = ϕ(µ0,Σ0,v,L, χ̂, ϵ̂, v̂, L̂) (10b)

where χ̂ = {µ̂[xkp̄jℓ ]}
N−1,np,N−k
k=0,j=1,ℓ=0 , ξ̂ = {Σ̂[xk],

Σ̂[xkpi1 , pj1 ], . . . , Σ̂[xkpi1 . . . piι , pj1 . . . pjℓ ], Σ̂[xkpi1 , xkpj1 ],

. . . , Σ̂[xkpi1 . . . piι , xkpj1 . . . pjℓ ]}
N−1,np,N−k,np,N−k
k=0,i=1,ι=0,j=1,ℓ=0 ,

L̂ = {L̂k}N−1
k=0 , and v̂ = {v̂k}N−1

k=0 , and where L̂k,
µ̂[xk−ℓp̄jℓ ], v̂k, Σ̂[xk−κp̄iι , p̄jℓ ], and Σ̂[xk−κp̄iι , xk−κp̄jℓ ]
are the linearization points about the decision
variables Lk−ℓ, E[xk−ℓp̄jℓ ], vk−κ, Σ̄[xk−κp̄iι , p̄jℓ ], and
Σ[xk−κp̄iι , xk−κp̄jℓ ], respectively. The definitions of ψ(·)
and ϕ(·) are given in [28]. Note that, in practice, (10) can
be computed automatically using automatic differentiation
software to linearize the nonconvex terms in the cost
function and constraints.

The sequential convex programming algorithm used to
solve Problem (9) using Problem (10) is given by Algo-
rithm 1. Let v∗,L∗ be the solution returned by Algorithm 1

Algorithm 1 Sequential Convex Programming
Require: Initial moments: µ0,Σ0

Require: Initial control guesses: v̂, L̂
Require: Convergence tolerance: ϵ
1: loop
2: χ̂← Evaluate (6) using {µ0, v̂, L̂}
3: ξ̂ ← Evaluate (7) and (8) using {Σ0, v̂, L̂}
4: {v,L} ← Solve Problem (10) using {χ̂, ξ̂, v̂, L̂}
5: if

∑N−1
k=0 ∥vk − v̂k∥2+∥vec(Lk − L̂k)∥2< ϵ then

6: return {v,L}
7: end if
8: v̂← v, L̂← L
9: end loop

with corresponding moments χ∗, ξ∗, where χ∗ is the result
of evaluating (6) using µ0, v∗, and L∗, and where ξ∗ is
the result of evaluating (7) and (8) using Σ0, v∗, and L∗.
Note that v∗,L∗ is therefore a solution of Problem (10) for
a particular linearization point, which we denote by v̂∗, L̂∗.
We introduce the following theorem regarding the validity
of this solution, which is found using the convex local
approximation (10), in relation to the original covariance
steering problem (4).

Theorem 1: If v̂∗, L̂∗ is a stationary point of Problem (10)
(that is, v∗ = v̂∗ and L∗ = L̂∗) then v∗,L∗ is a stationary
point of Problem (9), and, furthermore, v∗,L∗ is a feasible
solution of Problem (4).



Proof: Note that when v∗ = v̂∗ and L∗ = L̂∗, Problem
(10) collapses to Problem (9), since the convex approxima-
tion is exact at the linearization points. Therefore, if v̂∗, L̂∗

is a stationary point of Problem (10), it is also a stationary
point of Problem (9). For the second statement, Problem (9)
is equivalent to Problem (4) except for the chance constraints
(9g)-(9h), which are conservative approximations of (4e)-(4f)
due to the use of Cantelli’s inequality in (9g)-(9h). Therefore,
a solution satisfying (9b)-(9j) is guaranteed to also satisfy
(4b)-(4h).
Therefore, if Algorithm 1 converges, it yields a feasible
solution to the original covariance steering problem (4). For
guarantees on the rate of convergence of SCP algorithms, see,
for example, [23], in which it is shown that SCP converges
linearly under mild assumptions, in particular, given an initial
guess for v̂, L̂ which is sufficiently close to a stationary point.

IV. NUMERICAL RESULTS

A. Spacecraft Control Example

The proposed approach is verified on a spacecraft control
task using Monte Carlo simulations, and the results are com-
pared to a naı̈ve solution of a stochastic problem formulation
which assumes that the noise realizations are time-varying
and i.i.d and a robust problem formulation that assumes the
realizations belong to an ellipsoidal set. The spacecraft is
considered to move in a plane and is shown in Fig. 1(a).
The equations of motion are given by

Ẋ = νx cosΨ− νy sinΨ, (11a)

Ẏ = νx sinΨ + νy cosΨ, (11b)
ν̇x = τx/m, ν̇y = τy/m, (11c)

where X and Y are the positions of the spacecraft in an
inertial Cartesian frame, νx and νy are the longitudinal and
lateral velocity of the spacecraft in the spacecraft body frame,
τx and τy are the longitudinal and lateral forces, respectively,
applied by the spacecraft’s thrusters in the body frame, m
is the mass of the spacecraft, and Ψ is the heading angle
of the spacecraft body with respect to the inertial X axis.
Additionally, we assume the forces are given by τx = τ̄x+τ̃x
and τy = τ̄y+ τ̃y and consist of controlled components τ̄x, τ̄y
and uncontrolled stochastic components τ̃x, τ̃y , representing
actuation error. Assuming the spacecraft is stabilized around
Ψ ≈ 0, Ψ becomes an uncertain parameter of the system,
and a small angle approximation may be used to write the
system as
νxk+1

νyk+1

Xk+1

Yk+1

 =


1 0 0 0
0 1 0 0
∆t 0 1 0
0 ∆t 0 1



νxk

νyk

Xk

Yk

+


∆t
m 0
0 ∆t

m
0 0
0 0

[
τ̄x
τ̄y

]

+


0 0 0 0
0 0 0 0
0 −θx∆t 0 0

θx∆t 0 0 0



νxk

νyk

Xk

Yk

Ψ+


θw∆t
m 0

0 θw∆t
m

0 0
0 0

[
τ̃x
τ̃y,

]
(12)

where ∆t = 0.2s is the time-step, and θx, θw ≥ 0 ∈
R are the noise intensities. The initial condition is given
by µ0 = [1.0,−1.0, 1.5, 1.5]⊤, Σ0 = 0.001I4, and the
terminal constraints are given as µF = [0, 0, 0, 0]⊤, ΣF =
diag(1.2, 1.0, 0.12, 0.12). The trajectory is planned over
N = 10 time steps. As the mean and covariance dynamics
are coupled, the terminal covariance equality constraint (9j)
is relaxed to the inequality Σ̄[xN , xN ] ⪯ ΣF to avoid
infeasibility.

First, we consider the case where θx = 0 and θw = 1.2 so
that the system is subject only to i.i.d. additive disturbances,
denoted by (+) in Fig. 1(b). In this case, we observe, as
expected, that the proposed approach performs comparably
to the semidefinite programming approach which relies on
an i.i.d. noise assumption [12].

Next, let θw = 0 and θx = 0.3, so that system is
subject only to multiplicative disturbances, denoted by (×)
in Fig. 1(b), and let Ψ ∼ U(−1, 1), so that the disturbances
are sampled from a bounded set. In this case, we compare
the proposed approach with a robust approach utilizing ellip-
soidal sets [13], and find that the two perform comparably,
as expected.

Finally, let θx = 0.5, θw = 0.2, so that the system is sub-
ject to both additive and multiplicative uncertainties drawn
from distributions with unbounded and bounded support,
given by F̃xk

, F̃yk
∼ N (0, 1) and Ψ ∼ U(−1, 1). The results

are shown in Fig. 1(c). The proposed approach outperforms
both baselines. The SDP-based and robust ellipsoid-based
approaches fail to control the dispersion of the trajectories
and do not meet the terminal mean and covariance constraints
because the SDP-based stochastic approach assumes that the
noise is i.i.d., which is violated in the case of multiplicative
disturbances Ψ, and the robust approach assumes that the
noise is drawn from a bounded set, which is violated by
F̃xk

, F̃yk
.

V. CONCLUSION

This work has investigated the optimal covariance steer-
ing problem for systems subject to unknown parameters,
represented by constant random variables sampled from a
distribution with known moments. The proposed covariance
steering problem is solved using sequential convex pro-
gramming, and it was shown that if the sequential convex
programming algorithm converges, then a stationary point
has been found that solves the nonconvex covariance steering
problem. The proposed approach was compared with a
stochastic semidefinite programming-based approach and a
robust set-based approach which impose more restrictive
assumptions on the characteristics of the noise. It was shown
that the proposed approach effectively controls the terminal
distribution, whereas these baselines fail to meet the terminal
constraints in a spacecraft control example.



(a) Diagram of holonomic spacecraft model
(b) Only additive (+) or multiplicative (×)
uncertainty

(c) Both additive and multiplicative uncer-
tainty

Fig. 1: Spacecraft system and comparison of the proposed approach against baselines.

APPENDIX A

DERIVATION OF MEAN PROPAGATION

From (5), it follows that the expected state is given by the
equation

E[xk+1] = (Ā+ B̄Lk)E[xk] + B̄vk

+

np∑
j=1

(Ãj + B̃jLk)E[xkpj ],

where
E[xkpj1 ] = (Ā+ B̄Lk−1)E[xk−1pj1 ]

+

np∑
j2=1

(Ãj2 + B̃j2Lk−1)E[xk−1pj1pj2 ] + B̃j2vk−1E[pj1pj2 ],

E[xk−1pj1pj2 ] = (Ā+ B̄Lk−2)E[xk−2pj1pj2 ]

+ B̄vk−2E[pj1pj2 ]

+

np∑
j3=1

(Ãj3 + B̃j3Lk−2)E[xk−2pj1pj2pj3 ]

+ B̃j3vk−2E[pj1pj2pj3 ],
...

E[xk−npj1 . . . pjn+1
] = (Ā+ B̄Lk−n−1)E[xk−n−1pj1 . . . pjn+1

]

+ B̄vk−n−1E[pj1 . . . pjn+1
]

+

np∑
jn+2=1

(Ãjn+2
+ B̃jn+2

Lk−n−1)E[xk−n−1pj1 . . . pjn+2
]

+ B̃jvk−n−1E[pj1 . . . pjn+1
pjn+2

],

where k − n − 1 = 0 and E[x0p̄jℓ ] = µ0E[p̄jℓ ], and where
ℓ = 0, . . . , n+ 2, j = 1, . . . , np.

Therefore, the expected state at time k = 0, . . . , N − 1,
may be succinctly described in terms of f(E[xk−ℓp̄jℓ ],
E[xk−ℓp̄jℓ+1

], vk−ℓ,E[p̄jℓ ],E[p̄jℓ+1
]), given by (6).

APPENDIX B

COVARIANCE DYNAMICS

The covariance dynamics are given by

Σ̄[xk+1−κp̄iι , xk+1−κp̄jℓ ]

= g({Σ̄[xk−κp̄iυ , xk−κp̄jη ], Σ̄[xk−κp̄iυ,p̄jη
],

Σ̄[p̄iυ , p̄jη ],E[p̄iυ , p̄jη ]}
ι+1,ℓ+1
υ=ι,η=ℓ, Lk−κ, vk−κ)

= (Ā+ B̄Lk−κ)Σ̄[xk−κp̄iι , xk−κp̄jℓ ](Ā+ B̄Lk−κ)
⊤

+ (Ā+ B̄Lk−κ)Σ̄[xk−κp̄iι , p̄jℓ ]v
⊤
k−κB̄

⊤

+

np∑
jℓ+1=1

((Ā+ B̄Lk−κ)Σ̄[xk−κp̄iι , xk−κp̄jℓ+1
](Ãjℓ+1

+ B̃jℓ+1
Lk−κ)

⊤

+ (Ā+ B̄Lk−κ)Σ̄[xk−κp̄iι , p̄jℓ+1
]v⊤k−κB̃

⊤
jℓ+1

)

+ B̄vk−κΣ̄[p̄iι , xk−κp̄jℓ ](Ā+ B̄Lk−κ)
⊤

+ B̄vk−κΣ̄[p̄iι , p̄jℓ ]v
⊤
k−κB̄

⊤

+

np∑
jℓ+1=1

(B̄vk−κΣ̄[p̄iι , xk−κp̄jℓ+1
](Ãjℓ+1

+ B̃jℓ+1
Lk−κ)

⊤

+ B̄vk−κΣ̄[p̄iι , p̄jℓ+1
]v⊤k−κB̃

⊤
jℓ+1

)

+ D̄E[p̄iι , p̄jℓ ]D̄⊤ +

np∑
jℓ+1=1

(D̄E[p̄iι , p̄jℓ+1
]D̃⊤

jℓ+1
)

+

np∑
iι+1=1

((Ãiι+1
+ B̃iι+1

Lk−κ)Σ̄[xk−κp̄iι+1
, xk−κp̄jℓ ](Ā

+ B̄Lk−κ)
⊤

+ (Ãiι+1
+ B̃iι+1

Lk−κ)Σ̄[xk−κp̄iι+1
, p̄jℓ ]v

⊤
k−κB̄

⊤

+

np∑
jℓ+1=1

((Ãiι+1
+ B̃iι+1

Lk−κ)Σ̄[xk−κp̄iι+1
,

xk−κp̄jℓ+1
](Ãjℓ+1

+ B̃jℓ+1
Lk−κ)

⊤

+ (Ãiι+1
+ B̃iι+1

Lk−κ)Σ̄[xk−κp̄iι+1
, p̄jℓ+1

]v⊤k−κB̃
⊤
jℓ+1

))



+

np∑
iι+1=1

(B̃iι+1vk−κΣ̄[p̄iι+1 , xk−κp̄jℓ ](Ā+ B̄Lk−κ)
⊤

+ B̃iι+1vk−κΣ̄[p̄iι+1 , p̄jℓ ]v
⊤
k−κB̄

⊤

+

np∑
jℓ+1=1

(B̃iι+1vk−κΣ̄[p̄iι+1 , xk−κp̄jℓ+1
](Ãjℓ+1

+ B̃jℓ+1
Lk−κ)

⊤

+ B̃iι+1
vk−κΣ̄[p̄iι+1

, p̄jℓ+1
]v⊤k−κB̃

⊤
jℓ+1

))

+

np∑
iι+1=1

(D̃iι+1E[p̄iι+1 , p̄jℓ ]D̄
⊤

+

np∑
jℓ+1=1

(D̃iι+1
E[p̄iι+1

, p̄jℓ+1
]D̃⊤

jℓ+1
)), (13)

where

Σ̄[xk+1−κp̄iι , p̄jℓ ]

= h({Σ̄[xk−κp̄iυ , p̄jη ], Σ̄[p̄iυ , p̄jη ]}
ι+1,ℓ+1
υ=ι,η=ℓ, vk−κ)

= (Ā+ B̄Lk−κ)Σ̄[xk−κp̄iι , p̄jℓ ] + B̄vk−κΣ̄[p̄iι , p̄jℓ ]

+

np∑
iι+1=1

(Ãiι+1 + B̃iι+1Lk−κ)Σ̄[xk−κp̄iι+1 , p̄jℓ ]

+ B̃iι+1vk−κΣ̄[p̄iι+1 , p̄jℓ ]. (14)

Due to space limitations, the full derivation of (13) and (14)
may be found in [28].
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