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Abstract— This paper studies the problem of steering the
distribution of a linear time-invariant system from an initial
normal distribution to a terminal normal distribution under
no knowledge of the system dynamics. This data-driven control
framework uses data collected from the input and the state and
utilizes the seminal work by Willems et al. to construct a data-
based parametrization of the mean and the covariance control
problems. These problems are then solved to optimality as con-
vex programs using standard techniques from the covariance
control literature. We also discuss the equivalence of indirect
and direct data-driven covariance steering designs, as well as
a regularized version of the problem that provides a balance
between the two. We illustrate the proposed framework through
a set of randomized trials. We then analyze the robustness
properties of the data-free and data-driven covariance steering
methods and demonstrate the trade-offs between performance
and optimality among these methods in the presence of data
corrupted with exogenous noise.

I. INTRODUCTION

Recently, there has been an emergence of an increas-
ing reliance on data-driven methods for solving complex
problems in science and engineering. The field of artificial
intelligence has demonstrated the ability to solve extremely
difficult problems using input and output data with the
machinery of neural networks and learning-based algorithms
[1], [2].One of the major fundamental flaws of purely
learning-based solutions is their lack of verifiability, that is,
verifying that the networks will perform as expected given
an input data stream. Many works have begun looking at
robustness properties to verify these neural networks both
in the deterministic [3], [4]and the probabilistic settings [5],
[6]. The problem of analyzing the stability and robustness of
a general learning-based solution is still intractable, however.

In the context of control theory, it is also often the
case that we do not have prior knowledge of the system
dynamics. Ideally, we would like to use the data collected to
perform control designs that have guaranteed performance
and robustness properties, albeit in a learning/data-driven
context. To this end, another paradigm for control design is
to use the input and output data streams to either estimate the
model of the system or directly perform controller synthesis
using these data. The former technique is referred to as
indirect design, as it performs system identification (sysID)
first, followed by controller synthesis, while the latter is
referred to as a direct design, as it bypasses the sysID phase
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completely and directly generates control commands from
input and output data. Furthermore, each method may be
classified into either a certainty-equivalence (CE) or robust
approach, depending on whether uncertainties are taken into
account.

The indirect or sysID approach has been long studied in
a general setting [7], [8] with methods such as subspace
identification with broader applications to filtering and state
estimation [9]. For optimization-based control, such as the
linear quadratic regular (LQR), there are many works that
use the indirect approach [10]–[12]. Similarly, the direct
approach to data-driven LQR has been approached using
behavioral methods [13], gradient-based methods [14], [15],
and Riccati-based methods [16]. More recently, this problem
has been solved using concepts from behavioral systems
theory and subspace methods [17] by making use of Willems’
Fundamental Lemma, which characterizes all trajectories of
an LTI system through the range space of an input/output
data matrix [18]. This gives rise to a parametrization of
the feedback gains as a linear combination of the collected
data and allows to perform direct data-driven control design
through semi-definite programming (SDP) [19]. To this end,
the authors in [20], [21] were able to come up with a CE
and regularized design, thus bridging the gap between the
indirect and direct approaches.

All these optimization-based approaches to direct data-
driven LQR design are done in the deterministic setting,
assuming a single realization of the state trajectories from x0

to xf . To the best of our knowledge, this paper is the first
work that looks at the data-driven control design problem
where the state is a stochastic process instead of a single de-
terministic trajectory. Since it is still unclear how to perform
data-driven designs in the context of process noise, we limit
our analysis to uncertainties in the initial and final states,
leaving the case of process noise for future investigation.
Specifically, we assume that the initial and final values of
the state must follow a normal distribution, and the objective
is to steer the entire distribution of states from an initial to
a final one. This problem is referred to in the literature as
covariance steering (CS) and has been extensively studied
in the past couple of years in the Gaussian case [22]–[25],
non-Gaussian case [26], nonlinear case [27], as well as in
the presence of chance-constraints on the state and control
[28]–[30]. The CS problem in the unconstrained case has an
elegant separation property between the mean and covariance
dynamics, and both problems turn into convex programs [22].

In this work, we present a data-driven covariance control
design that steers the mean dynamics through an indirect
sysID approach, and steers the covariance dynamics through
a direct approach, using the techniques outlined in [25] and



[19]. For direct covariance steering the certainty-equivalence
approach is used, which adds an orthogonality constraint
to the resulting optimization problem. We also analyze the
regularized approach, which is a hybrid of the two. We finally
study the robustness of these approaches through a set of
randomized simulations with noisy data and compare the
various covariance steering frameworks.

II. PROBLEM STATEMENT

We consider the following discrete-time deterministic
time-invariant system

xk+1 = Axk +Buk, (1)

where x ∈ Rn, u ∈ Rm, with time steps k = 0, . . . , N − 1,
where N representing the finite horizon. The system matrices
A and B are assumed to be unknown. The uncertainty in the
system resides in the initial state x0, which is a random n-
dimensional vector drawn from the normal distribution

x0 ∼ N (µi,Σi), (2)

where µi ∈ Rn is the initial state mean and Σi ∈ Rn×n ≻
0 is the initial state covariance. Thus, although the system
dynamics (1) is deterministic, the uncertainty in the initial
state makes the state evolution {xk}Nk=1 a random process.
The objective is to steer the trajectories of (1) from the initial
distribution (2) to the terminal distribution

xN = xf ∼ N (µf ,Σf ), (3)

where µf ∈ Rn and Σf ≻ 0 are the desired state mean and
covariance at time N , respectively. The cost function to be
minimized is

J(u0, . . . , uN−1) := E
[N−1∑

k=0

x⊺
kQkxk + u⊺

kRkuk

]
, (4)

where Qk ⪰ 0 and Rk ≻ 0 for all k = 0, . . . , N − 1.
Problem 1: Given the unknown linear system (1), find

the optimal control sequence {uk}N−1
k=0 that minimizes the

objective function (4), subject to the initial state (2) and
terminal state (3).

III. PROBLEM REFORMULATION

Borrowing from the work in [25], we adopt the control
policy

uk = Kk(xk − µk) + vk, (5)

where Kk ∈ Rm×n are the feedback gains that control
the evolution of the covariance of the state, and vk ∈ Rm

is the feedforward term that controls the evolution of the
mean of the state. Under the control law (5) it is possible
to re-write Problem 1 as a convex program, which can be
solved to optimality using off-the-shelf solvers. Since the
state distribution remains Gaussian at all time steps, and
since a normal distribution is completely characterized by
its first two moments, we decompose the system dynamics
(1) into the mean dynamics and the covariance dynamics.

Plugging in the control law (5) into the dynamics (1) yields
the decoupled dynamics

µk+1 = Aµk +Bvk, (6a)
Σk+1 = (A+BKk)Σk(A+BKk)

⊺. (6b)

In the sequel, and similar to [31], we treat the moments of
the intermediate states {Σk, µk}N−1

k=1 in the steering horizon
as decision variables in the resulting optimization problem.

Similar to the dynamics, the cost function can be decou-
pled and written in terms of the first two moments as follows

J = Jµ(µk, vk) + JΣ(Σk,Kk), (7a)

Jµ :=

N−1∑
k=0

(µ⊺
kQkµk + v⊺kRkvk) , (7b)

JΣ :=

N−1∑
k=0

(
tr(QkΣk) + tr(RkKkΣkK

⊺
k )
)
. (7c)

Lastly, the two boundary conditions are written as

µ0 = µi, µN = µf , (8a)
Σ0 = Σi, ΣN = Σf . (8b)

Problem 1 is now recast as the following two sub-problems.
Problem 2: Given the mean dynamics (6a), find the

optimal mean trajectory {µk}N−1
k=1 and feedforward control

{vk}N−1
k=0 that minimize the mean cost (7b) subject to the

boundary conditions (8a).
Problem 3: Given the covariance dynamics (6b), find the

optimal covariance trajectory {Σk}N−1
k=1 and feedback gains

{Kk}N−1
k=0 that minimize the covariance cost (7c) subject to

the boundary conditions (8b).
Remark 1: Problem 2 is a standard quadratic program

with linear constraints that can be solved analytically given
knowledge of the system matrices [22]. As such, we will
perform an indirect design by first estimating the A and
B matrices to solve this problem in a data-driven fashion.
Problem 3, however, is a non-linear program due to the cost
term tr(RKkΣkK

⊺
k ) and the covariance dynamics.

In the following section, we review the main concepts
from behavioral systems theory that will allow us to
parametrize the decision variables in Problems 2 and 3 in
terms of input and output data streams.

IV. DATA-DRIVEN PARAMETERIZATION

In order to incorporate data into the problem formulation,
we use the concept of persistence of excitation, along with
Willems’ Fundamental Lemma [18] to parametrize the feed-
forward and feedback gains of the control policy. First, recall
the following definitions.

Definition 1: Given a signal {zk}T−1
k=0 where zk ∈ Rσ ,

we denote its Hankel matrix by

Zi,ℓ,j :=


zi zi+1 . . . zi+j−1

zi+1 zi+2 . . . zi+j

...
...

. . .
...

zi+ℓ−1 zi+ℓ . . . zi+ℓ+j−2

 ∈ Rσℓ×j , (9)



where i ∈ Z and ℓ, j ∈ N. For shorthand notation, if ℓ = 1,
we denote the Hankel matrix by

Zi,1,j ≡ Zi,j := [zi zi+1 . . . zi+j−1]. (10)
Definition 2: The signal {zk}T−1

k=0 : [0, T − 1] ∩ Z → Rσ

is persistently exciting of order ℓ if the matrix Z0,ℓ,j with
j = T − ℓ+ 1 has rank σℓ.

Corollary 1: In order for a signal to be persistently
exciting of order ℓ, it must be sufficiently long, i.e., it must
hold that T ≥ (σ + 1)ℓ− 1.

Suppose we carry out an experiment of duration T ∈
N where we collect input and state data {u(d)

k }T−1
k=0 and

{x(d)
k }Tk=0, respectively. Let the corresponding Hankel matri-

ces for the input sequence, state sequence, and shifted state
sequence (with ℓ = 1) be

U0,T := [u
(d)
0 u

(d)
1 . . . u

(d)
T−1], (11a)

X0,T := [x
(d)
0 x

(d)
1 . . . x

(d)
T−1], (11b)

X1,T := [x
(d)
1 x

(d)
2 . . . x

(d)
T ]. (11c)

The next result characterizes the rank of the stacked
Hankel matrices of the input and output data, and is central
to the method used to formulate a tractable data-driven
covariance steering problem.

Lemma 1 (Willems’ Fundamental Lemma [18]):
Suppose that system (1) is controllable. If the input
signal {uk}T−1

k=0 is persistently exciting of order n+ 1, then

rank

[
U0,T

X0,T

]
= n+m. (12)

Remark 2: In order to ensure that the input uk ∈ Rm

is persistently exciting of order n + 1 to satisfy Willems’
Fundamental Lemma, it is sufficient to check that T ≥ (m+
1)n+m. In practice, this can always be achieved in real-time
during data collection.

Lemma 1 implies that any arbitrary input-state sequence
can be expressed as a linear combination of the collected
input-state data. Furthermore, this can be extended [13]
to parameterizing any arbitrary feedback interconnection as
well. In the following section, based on the work in [19], we
parameterize the feedback gains in terms of the input-state
data and reformulate the covariance steering problem as a
semi-definite program (SDP).

A. Direct Data-Driven Covariance Steering

Assuming the signal {uk}T−1
k=0 is persistently exciting of

order n+ 1, we can express the feedback gains as follows[
Kk

In

]
=

[
U0,T

X0,T

]
Gk, (13)

where Gk ∈ RT×n are newly defined decision variables
that provide the link between the feedback gains and the
input-state data. Furthermore, we can re-write the covariance
dynamics (6b) as

Σk+1 = [B A]

[
Kk

In

]
Σk

[
Kk

In

]⊺
[B A]⊺

= X1,TGkΣkG
⊺
kX

⊺
1,T , (14)

where we use the fact that X1,T = AX0,T + BU0,T .
Similarly, the covariance cost (7c) can be re-written as

JΣ,k = tr(QkΣk) + tr(RkU0,TGkΣkG
⊺
kU

⊺
0,T ). (15)

To remedy the nonlinearity GkΣkG
⊺
k in the covariance

dynamics and the cost, and assuming that Σk ≻ 0, define
the new decision variables Sk := GkΣk ∈ RT×n, which
yields the covariance dynamics

Σk+1 = X1,TSkΣ
−1
k SkX

⊺
1,T , (16)

and the covariance cost

JΣ,k = tr(QkΣk) + tr(RkU0,TSkΣ
−1
k S⊺

kU
⊺
0,T ). (17)

This problem is still non-convex due to the nonlinear term
SkΣ

−1
k S⊺

k . To this end, let us relax the covariance dynamics
by defining a new decision variable Yk ⪰ SkΣ

−1
k S⊺

k , which
yields the relaxed optimization problem

min
Σk,SkYk

J̄Σ =
N−1∑
k=0

(
tr(QkΣk) + tr(RkU0,TYkU

⊺
0,T )

)
, (18a)

such that, for all k = 0, . . . , N − 1,

Ck := SkΣ
−1
k S⊺

k − Yk ⪯ 0, (18b)

G
(1)
k := X1,TYkX

⊺
1,T − Σk+1 = 0, (18c)

G
(2)
k := Σk −X0,TSk = 0, (18d)

with the boundary conditions (8b). The last equality con-
straint (18d) comes from the second block in (13) by
multiplying Σk on the right. The relaxed problem (18) is
convex, since the constraint (18b) can be written using the
Schur complement as the linear matrix inequaltiy (LMI)[

Σk S⊺
k

Sk Yk

]
⪰ 0. (19)

The equality constraint (18c) and cost (18a), on the other
hand, are simply linear in all the decision variables, and
hence convex.

B. Indirect Data-Driven Mean Steering

Given the mean dynamics (6a) in terms of the open-loop
control vk, Lemma 1 also provides a system identification
type of result using the following theorem.

Theorem 1: Suppose the signal uk is persistently exciting
of order n + 1. Then, the system (6a) has the following
equivalent representation

µk+1 = X1,T

[
U0,T

X0,T

]† [
vk
µk

]
. (20)

Proof: See [13] for details.
Remark 3: Theorem 1 gives a data-based open-loop rep-

resentation of a (noise-less) linear system. One may equiv-
alently interpret equation (20) as the solution to the least-
squares problem

min
B,A

∥∥∥∥X1,T − [B A]

[
U0,T

X0,T

]∥∥∥∥
F

, (21)



where ∥ · ∥F is the Frobenius norm. Thus, equation (20)
provides the solution for the system matrices that best
approximates the system dynamics.
Using Theorem 1, we can express the mean steering problem
as the following convex problem

min
µk,vk

Jµ =

N−1∑
k=0

(µ⊺
kQkµk + v⊺kRkvk), (22a)

such that, for all k = 0, . . . , N − 1,

H
(1)
k := Fµµk + Fvvk − µk+1 = 0, (22b)

with the boundary conditions (8a), where Fµ ∈ Rn×n and
Fv ∈ Rn×m result from the partition of

F := X1,T

[
U0,T

X0,T

]†
=

[
Fv

Fµ

]
∈ Rn×(m+n). (23)

V. CERTAINTY EQUIVALENCE AND REGULARIZED
DATA-DRIVEN METHODS

In this section, we establish the link between the direct
CS design in Section IV-A and the indirect design, as well
as briefly outline a regularized design based on [21] that
trade-offs the two frameworks.

A. Certainty-Equivalence Design
For notational simplicity, let the matrix

W0 :=

[
U0,T

X0,T

]
.

In the direct data-driven covariance control design, the set
of optimal solutions G∗

k to (18) coincides with the set of
solutions to (13), that is,

{G∗
k : (Σ∗

k, S
∗
k , Y

∗
k ) ∈ argmin(18)} = W †

0

[
K∗

k

In

]
+Ghom,

(24)
where Ghom is any matrix in the null space of W0. Let
ΠW0

:= IT − W †
0W0 be the orthogonal projection on

the nullspace of W0. It has been shown in [20] that by
introducing the extra orthogonality constraint ΠW0Gk = 0,
for all k = 1, . . . , N , results in an optimization problem
(18) that is equivalent to the corresponding indirect design.
Since Sk is a decision variable in (18), this amount to adding
the additional equality constraints ΠW0Sk = 0 to (18). In
the context of covariance steering, the indirect design is
equivalent to the bi-level program

min
Σk,UkYk

J̄Σ =

N−1∑
k=0

tr(QkΣk) + tr(RkYk), (25a)

such that, for all k = 0, . . . , N − 1,

C
(1)
k :=

[
Σk U⊺

k

Uk Yk

]
⪰ 0, (25b)

C
(2)
k :=

[
Σk U⊺

k B̂
⊺

B̂Uk Γ̂k

]
⪰ 0, (25c)

[B̂ Â] = argminB,A∥X1 − [B A]W0∥F , (25d)

where Γk := Σk+1− ÂΣkÂ
⊺− ÂU⊺

k B̂
⊺− B̂UkÂ

⊺. See [25]
for details on this derivation.

B. Regularized Design

By adding the constraint ΠW0
Sk = 0 to the objective

function, we arrive at a regularized direct data-driven co-
variance steering formulation. Letting λ ≥ 0 be a tunable
hyperparameter that balances indirect with direct designs,
the regularized problem becomes

min
Σk,SkYk

J̄Σ =

N−1∑
k=0

tr(QkΣk) + tr(RkU0,TYkU
⊺
0,T )

+ λ∥ΠW0
Sk∥, (26a)

such that, for all k = 0, . . . , N − 1,

Ck := SkΣ
−1
k S⊺

k − Yk ⪯ 0, (26b)

G
(1)
k := X1,TYkX

⊺
1,T − Σk+1 = 0, (26c)

G
(2)
k := Σk −X0,TSk = 0. (26d)

It can be shown [21] that for λ sufficiently large, the regu-
larized design (26) coincides with the certainty-equivalence
design. This regularized design is useful for balancing the
robustness of the indirect design with the performance of
the direct design, as we shall see in Section VI.

VI. NUMERICAL EXAMPLE

To illustrate the proposed data-driven method, we run a
set of 100 trials on the double integrator system

A =

[
1 1
0 1

]
, B =

[
0
1

]
, (27)

with initial distribution µ0 = [20 − 2]⊺,Σ0 = diag(1, 0.5)
and terminal distribution µf = [0 8]⊺,Σf = 0.5I2. The state
and control cost weights are Qk = 0.01I2 and Rk = 1, for
all k = 0, 1, . . . , N , respectively. We pick a control horizon
N = 10 and data collection horizon T = 15 to ensure that
T ≥ (m + 1)n + m = 5. The data is generated for every
trial by randomly sampling the initial state and input over
the collection horizon T from a standard normal distribution.
The following set of simulations was run on a 32 GB Intel
i7-10850H @ 2.60 GHz computer.

Fig. 1: Monte Carlo trajectories of data-driven solution.

Figure 1 shows the trajectories of the system using the
data-driven framework on a set of 100 Monte Carlo runs. As



(a) Absolute difference in feedforward control.

(b) Two-norm difference in feedback control.

Fig. 2: Comparison of differences between model-based and
data-driven covariance steering solutions in the noiseless case
(β = 0) with mean errors (solid line) and 3σ error bars.

mentioned, the terminal covariance is indeed less than the
desired one, as denoted by the solid black line. Nevertheless,
the control law successfully steers the system between the
two distributions with no knowledge of the system matrices.

It is also fruitful to compare the gains and feedforward
control to that of the model-based covariance steering solu-
tion, as outlined [25]. Figure 2 shows the difference between
the two solutions with the corresponding mean and 3σ
errors over the set of trial runs. Figure 2 shows that the
two solutions are nearly exact, with the feedforward control
having an error of within 10−8 and the feedback control
within 10−2. Next, we compare the robustness properties
of the various data-driven control designs as outlined in
Section V. To this end, we add noise into the data collection
and simulations but keep the designs as if there is no noise in
the system. The question then becomes how these methods
will perform when the data is corrupted by noise. For the
data collection, we add an extra term Dwk into the dynamics,
where wk ∼ N (0, In) and D = βIn, with β > 0 a tunable
parameter for the noise intensity. Figure 3 shows the effect of
increasing levels of noise on the accuracy of the feedforward
control data-driven solution. Even for moderately large noise
levels (β = 10−2), the 3σ variance of the error is within 0.04.
Thus, indirect mean steering design is a fruitful avenue for
designing robust nominal controllers against noise. Even for
moderately large noise levels (β = 10−2), the 3σ variance of
the error is within 0.04. Thus, indirect mean steering design
is a fruitful avenue for designing robust nominal controllers
against noise.

Fig. 3: Absolute value error in data-driven feedforward
control for different levels of exogenous noise.

For the feedback design, we compare the direct solution as
outlined in Section IV-A with the certainty-equivalence and
regularized designs. To this end, we fix the noise intensity to
be β = 10−3 and choose the regularization hyperparameter
as λ = 2 × 10−2. Figure 4 shows the mean and 3σ
variance of the normed error of the corresponding data-
driven methods when corrupted with noise. Interestingly,
the certainty-equivalence (i.e., indirect) approach is the most
robust among the three, achieving an error within 10−2,
while the direct approach is the least robust. Table I shows

Fig. 4: Norm error in data-driven feedback control for direct,
regularized, and certainty-equivalence methods for a noise
level β = 10−3 and regularization hyperparameter λ = 2 ×
10−2.

the mean and variance of the empirical error for the kth trial

Ek :=
|J∗ − Ĵk|

J∗ , (28)

between the optimal model-based cost and the data-driven
costs. We see that although the direct data-driven solution
is the least robust, it is also the most optimal in the sense
that it achieves the closest cost with the true, model-based
solution. On the other hand, the CE approach has the best



TABLE I: Mean cost error among different data-driven
covariance steering approaches for corrupted data.

×104 Direct Regularized CE

E[Ek] 3.9886 4.3614 12.0494

σ2[Ek] 0.0009 0.0013 0.0261

robustness but worst performance. Thus, the regularized form
of the problem is a useful design for balancing robustness
with optimality by varying λ.

VII. CONCLUSION

In this work, we have presented a tractable data-driven so-
lution to the Louisville problem of steering the distribution of
a deterministic linear system from one normal distribution to
another. The problem was solved by decoupling the dynamics
into mean and covariance dynamics and then performing
an indirect data-driven design for the mean motion, and a
direct data-driven design for the covariance motion through a
convex relaxation. The data-driven solution matches almost
exactly with its model-based counterpart. Further work in
this direction will look at how to incorporate noise into the
system dynamics. This problem is much harder to solve, as
the introduction of random noise (a) cannot be measured in
a real-time data-driven scenario, and (b) yields input-state
data that can have multiple realizations.
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linear convergence of random search for discrete-time LQR,” IEEE
Control Systems Letters, vol. 5, no. 3, pp. 989–994, 2021.

[16] H. J. van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel,
“Data informativity: A new perspective on data-driven analysis and
control,” IEEE Transactions on Automatic Control, vol. 65, no. 11,
pp. 4753–4768, 2020.

[17] I. Markovsky and F. Dörfler, “Behavioral systems theory in data-driven
analysis, signal processing, and control,” Annual Reviews in Control,
vol. 52, pp. 42–64, 2021.

[18] J. C. Willems, P. Rapisarda, I. Markovsky, and B. D. Moor, “A note
on persistency of excitation,” vol. 3, Atlantis, Paradise, Bahamas, Dec
14-17 2004, pp. 2630–2631.

[19] M. Rotulo, C. D. Persis, and P. Tesi, “Data-driven linear quadratic reg-
ulation via semidefinite programming,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 3995–4000, 2020, 21st IFAC World Congress.

[20] F. Dörfler, P. Tesi, and C. De Persis, “On the certainty-equivalence
approach to direct data-driven LQR design,” IEEE Transactions on
Automatic Control, pp. 1–8, 2023.

[21] ——, “On the role of regularization in direct data-driven lqr control,”
in 2022 61th IEEE Conference on Decision and Control (CDC), 2022,
pp. 1091–1098.

[22] M. Goldshtein and P. Tsiotras, “Finite-horizon covariance control of
linear time-varying systems,” in 56th IEEE Conference on Decision
and Control, Melbourne, Australia, Dec 12–15 2017, pp. 3606–3611.

[23] E. Bakolas, “Finite-horizon separation-based covariance control for
discrete-time stochastic linear systems,” in 57th IEEE Conference on
Decision and Control, Miami Beach, FL, Dec 17–19, 2018, pp. 3299–
3304.

[24] K. Okamoto and P. Tsiotras, “Optimal stochastic vehicle path planning
using covariance steering,” IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 2276–2281, 2019.

[25] F. Liu, G. Rapakoulias, and P. Tsiotras, “Optimal covariance steering
for discrete-time linear stochastic systems,” 2023, arXiv: 2211.00618.

[26] V. Sivaramakrishnan, J. Pilipovsky, M. Oishi, and P. Tsiotras, “Dis-
tribution steering for discrete-time linear systems with general distur-
bances using characteristic functions,” in American Control Confer-
ence (ACC), Atlanta, Georgia, June 8 - 10 2022, pp. 4183–4190.

[27] J. Ridderhof, K. Okamoto, and P. Tsiotras, “Nonlinear uncertainty
control with iterative covariance steering,” in 58th IEEE Conference
on Decision and Control, Nice, France, Dec 11–13 2019, pp. 3484–
3490.

[28] J. Pilipovsky and P. Tsiotras, “Chance-constrained optimal covariance
steering with iterative risk allocation,” in American Control Confer-
ence, New Orleans, LA, May 26–28 2021, pp. 2011–2016.

[29] E. Bakolas, “Optimal covariance control for discrete-time stochastic
linear systems subject to constraints,” in 55th IEEE Conference on
Decision and Control, Las Vegas, NV, Dec 12–14, 2016, pp. 1153–
1158.

[30] J. Ridderhof, J. Pilipovsky, and P. Tsiotras, “Chance-constrained co-
variance control for low-thrust minimum-fuel trajectory optimization,”
in AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, CA,
Aug 9–13 2020.

[31] G. Rapakoulias and P. Tsiotras, “Discrete-time optimal covariance
steering via semidefinite programming,” in 62nd IEEE Conference on
Decision and Control (CDC), Marina Bay Sands, Singapore, Dec. 13–
15, 2023.


