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Abstract— We consider the problem of finite-horizon optimal
control of a discrete linear time-varying system subject to a
stochastic disturbance and fully observable state. The initial
state of the system is drawn from a known Gaussian distri-
bution, and the final state distribution is required to reach
a given target Gaussian distribution, while minimizing the
expected value of the control effort. We derive the linear optimal
control policy by first presenting an efficient solution for the
diffusion-less case, and we then solve the case with diffusion
by reformulating the system as a superposition of diffusion-less
systems. We show that the resulting solution coincides with a
LQG problem with particular terminal cost weight matrix.

I. INTRODUCTION

The work in this paper is aimed at solving the problem
of the optimal steering of a discrete time varying stochastic
linear system, with a fully observable state, a known Gaus-
sian distribution of the initial state, and a state and input-
independent white-noise Gaussian diffusion. The goal is to
find the optimal input to steer the state of the system to
a pre-specified target Gaussian distribution in a given time,
while minimizing the expected value of the input signal `2-
norm. Unlike the classical LQG case [1], where the final
state covariance appears as a by-product of the solution, here
we are required to reach exactly the target covariance at the
given final time.

The covariance steering problem is relevant to a wide
range of control and path-planning applications, such as
decentralized control of swarm robots [2], closed-loop cool-
ing [3], and other areas, where it is more natural to specify
a distribution over the state rather than a fixed set of values.

The steady-state covariance control problem, (a.k.a. the
Covariance Assignment problem), has been extensively stud-
ied for both continuous and discrete-time stochastic linear
systems [4], [5], [6], [7]. A finite-time optimal solution for
the continuous case has been recently derived in [8], [9],
and [10], with a connection to the problems of Shrödinger
bridges [11] and the Optimal Mass Transfer [12]. In these
works the authors showed that, if the diffusion term affects
the system through all control input channels, the target
probability can always be achieved in finite time, and the so-
lution is given in state-feedback form. A more general case,
in which the control input and the diffusion channels are
different, can be solved using a soft constraint on the target
distribution (such as using the Wasserstein distance [13]), or
by numerical optimization methods [14].
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The discrete finite-time case has been addressed in [15],
in which the author used a relaxed formulation for the target
covariance in order to facilitate its numerical solution. In this
paper we treat a similar problem as in [15], but we impose
a hard equality constraint in the final distribution instead, so
the relaxation imposed in [15] is not needed. In addition, the
solution in [15] is based on a non-linear convex programming
with a large number of variables (O{n×m×N}, where n is
a state size, m is an input size, and N is the number of time
steps). The proposed method, on the other hand, requires
only n2/2+n decision variables.

Another special case of linear discrete finite-time Gaussian
stochastic systems was mentioned in [16], in which the
author shows a relation between the relative entropy and
the minimum energy LQG optimal control problems. The
system discussed in [16] has a full control authority and
the disturbance matrix is invertible. This paper extends the
results presented in [16] to a general linear system, In
addition, the conditions for the solvability presented in [16]
follow naturally from the analysis presented here.

Main Contribution: In this paper we first derive the
minimum-control-effort optimal steering solution for fully-
observable linear time-varying discrete stochastic systems,
subject to boundary conditions in terms of their Gaussian
distribution. The problem considered herein can be viewed
as a subset of the problems presented in [15], but with a
different solution formulation. We provide necessary con-
ditions for the existence of the solution, and proposes an
efficient numerical scheme for attaining it. Furthermore, we
show that the resulting controller coincides with solving a
LQG [1] problem, with the particular choice of the terminal
cost weight matrix.

The notation used throughout this paper is quite standard.
A unit matrix is denoted as I, and E[·] denotes the expectation
operator. A random variable x with normal distribution is
denoted as x ∼ N (µ,Σ), where µ is its mean, and Σ its
covariance matrix. The trace of a square matrix is denoted
by Tr [·]. The positive-definiteness of the square matrix R is
denoted as R� 0, and semi-definiteness is denoted as R� 0.
A zero matrix with dimensions m×n is denoted as 0m×n. An
n×n diagonal matrix with (a1,a2, . . . ,an) on the diagonal is
denoted as diag[a1,a2, . . . ,an]. A square root of a diagonal
matrix S is denoted as S

1
2 .

II. PROBLEM STATEMENT

A. Problem Formulation
Consider the discrete stochastic linear time-varying system

xk+1 = Akxk +Bkuk +Gkwk. k = 0,1, ...,N, (1)

where x∈Rn is the state, u∈Rm is the control input, and w∈
Rr is a zero-mean white Gaussian noise with unit covariance.



Our objective is to steer the trajectories of system (1) from
a given initial Gaussian distribution having mean E[x0] = µ0
and covariance Σ0 to a final Gaussian distribution having
mean E[xN+1] = µF and covariance ΣF . That is, we wish the
initial and final states to be distributed according to

x0 ∼N (µ0,Σ0), xN+1 ∼N (µF ,ΣF), (2)

with µ0,Σ0,µF ,ΣF given, while minimizing the cost function

J(u0, ...,uN) = E[
N∑

k=0

u>kuk ]. (3)

B. System Dynamics

For each step k, the system state xk can be explicitly
calculated as follows. Let Ak1,k0 , Bk1,k0 , Gk1,k0 denote the
transition matrices of the state, the input, and the diffusion
term from step k0 to step k1 +1 (k1 > k0) as follows

Ak1,k0 = Ak1Ak1−1 · · ·Ak0 , Ak,k , Ak, (4a)

Bk1,k0 = Ak1,k0+1Bk0 , Bk,k , Bk, (4b)

Gk1,k0 = Ak1,k0+1Gk0 , Gk,k , Gk. (4c)

Let also Uk1,k2 and Wk1,k2 (k1 ≤ k2) be the vectors

Uk1,k2 =


uk1

uk1+1
...

uk2

 , Wk1,k2 =


wk1

wk1+1
...

wk2

 , (5)

and, for simplicity, let Uk ,U0,k and Wk ,W0,k. For conve-
nience, define the matrices

Bk1,k0 ,
[
Bk1,k0 Bk1,k0+1 · · · Bk1,k1

]
, (6a)

Gk1,k0 ,
[
Gk1,k0 Gk1,k0+1 · · · Gk1,k1

]
, (6b)

and let Ak , Ak,0, Bk , Bk,0, Gk , Gk,0. The system state at
step k+1 is given by

xk+1 = Akx0 +BkUk +GkWk. (7)

Since E[Wk] = 0, the mean of the state obeys

µk+1 , E[xk+1] = Akµ0 +BkE[Uk]. (8)

Defining now Ũk ,Uk−E[Uk], x̃k , xk−µk. It follows that

x̃k+1 = Akx̃0 +BkŨk +GkWk. (9)

The state covariance is given by1

Σk+1 , E[x̃k+1x̃>k+1]

= AkΣ0A>k +BkE[ŨkŨ>k ]B
>
k +GkE[WkW>k ]G

>
k

+BkE[Ũkx̃>0]A
>
k +AkE[x̃0Ũ>k ]B

>
k

+BkE[ŨkW>k−1]G
>
k−1 +Gk−1E[Wk−1Ũ>k ]B

>
k , (10)

1A causal state-feedback controller at step k is independent of the
diffusion term at step k′, with k′ ≥ k.

and the cost function (3) can be written as

J(UN) = E[U>NUN ] = E[UN ]
>E[UN ]︸ ︷︷ ︸
Jµ

+Tr [E[ŨNŨ>N ]]︸ ︷︷ ︸
JΣ

. (11)

It will be assumed in this paper that the system (1) is
controllable, that is, if Gk ≡ 0, the reachable set at k = N +1
is Rn, that is, for any xS ∈ Rn and xF ∈ Rn, there exist a
set of controls {uk}N

k=0 that brings the state from x0 = xS to
xN+1 = xF . From (7) it is straightforward to conclude that
system (1) is controllable if and only if BN is full row rank.

III. OPTIMAL COVARIANCE STEERING

As seen from (8), (10) and (11), the problem of steering
the mean and the covariance can be separated into two
independent subproblems: finding an optimal E[UN ] that min-
imizes Jµ satisfying the mean constraint (8) and the boundary
condition (2), and finding an optimal ŨN that minimizes JΣ

satisfying the covariance constraint (10) and the boundary
condition (2). This section presents an analytical solution to
both problems.

A. Steering the Mean

Since the dynamics of the state mean are governed by (8),
and the cost function that is influenced by the mean is given
in (11), the optimal solution for E[UN ] will not influence the
covariance part of the solution. The solution for the mean
steering is well known in the literature, and is given below
for the sake of completeness.

Proposition 1: Given the controllable system (1), the op-
timal control E[U?

N ] that minimizes the cost

Jµ = E[UN ]
>E[UN ] =

N∑
k=0

E[uk]
>E[uk],

subject to the constraint

AN µ0 +BNE[UN ] = µF , (12)

is given by

E[U?
N ] = B>N(BNB>N)

−1
(µF −AN µ0). (13)

Now that we have the mean steering solution, the rest
of the paper will concentrate on solving the covariance
steering problem, using the deviation-from-mean dynamics
given by (9), and the covariance-part cost JΣ given in (11).
For simplicity, we will assume that the original system has
zero-mean constraints for the initial and final states.

B. Steering the Covariance

In this section we present the covariance steering controller
by first deriving a necessary condition for the solution, and
then presenting a numerical scheme to find a controller that
satisfies these necessary conditions.

To this end, assume a controller of the form

ŨN = Lx̃0, (14)



where L ∈ R(Nr)×n. The covariance-related part of the cost
function (11) can now be rewritten as:

JΣ = Tr [E[ŨNŨ>N ]] = Tr [LΣ0L>]. (15)

1) Diffusion-less Case: Suppose that Gk = 0 for all k ∈
[0,N] in (1). In this case, the final state covariance (10)
becomes

ΣF = ΣN+1 = ANΣ0A>N +BNE[ŨNŨ>N ]B
>
N

+BNE[ŨN x̃>0]A
>
N +ANE[x̃0Ũ>N ]B

>
N . (16)

Applying the controller (14) results in the final covariance
given by

ΣN+1 =(AN +BNL)Σ0(AN +BNL)>= ΣF . (17)

The following proposition describes the diffusionless lin-
ear discrete covariance steering control algorithm:

Proposition 2: Let the controllable system (1), with zero
diffusion, and positive definite initial state covariance Σ0� 0,
and let

V0S0V>0 = Σ0, VF SFV>F = ΣF , UΩSΩV>Ω = Ω, (18)

be the singular value decompositions (SVDs) of the respec-
tive matrices, where

Ω , SF
1
2 V>F(BNB>N)

−1
ANV0S0

1
2 . (19)

Then the optimal control gain L ∈R(Nr)×n that minimizes
(15) subject to a constraint ΣN+1 = ΣF , is given by

L? = B>N(BNB>N)
−1
(VF SF

1
2 UΩV>ΩS0

− 1
2 V>0 −AN). (20)

Proof: Please see the Appendix.

The proof of Proposition 2 reveals that the optimal control
can also be obtained from

L? =−B>NΛ(I+BNB>NΛ)
−1

AN , (21)

where Λ is the solution of a matrix Riccati equation.

Proposition 3: The matrix Λ in (21) that satisfies the
constraint (17), and minimizes the cost function (15), satisfies
the matrix Riccati equation

(ΘΣF)Λ+Λ(ΘΣF)
>+ΛΣF Λ+Θ(ΣF −ANΣ0A>N)Θ = 0, (22)

where Θ =(BNB>N)
−1.

Proof: Substituting L from (51) into the constraint (45),
and using matrix inversion identity, yields

ΣF =(I+BNB>NΛ)
−1

ANΣ0A>N(I+ΛBNB>N)
−1
, (23)

which can be rewritten as (22).
Note that the previous approach can be generalized to the

case where it is required that the final covariance is only
partially constrained, i.e., given D ∈ Rnp×n with np ≤ n and

final partial covariance matrix ΣF ∈ Rnp×np , the boundary
condition for the state covariance at step N+1 is defined as

DE[x̃N+1x̃>N+1]D
>= DΣN+1D>= ΣF . (24)

Rewriting the above equation for a linear controller gain
yields

D(BNL+AN)Σ0(BNL+AN)
>D>= ΣF , (25)

which can be seen as the covariance-steering for diffusion-
less system having transition matrices DBN and DAN , with
the solution given by Proposition 2.

2) Non-zero Diffusion Case: Consider now the complete
system given by (1), including the diffusion term (Gk 6= 0).
The system (1) at time step N+1 can be viewed as a sum of

N+1 uncorrelated (E[x(i)k x( j)
m
>
] = 0, k,m, i, j ∈ [0,N+1], i 6=

j), diffusion-less sub-systems as follows

xN+1 =

N∑
i=0

x(i)N+1 +GNwN , (26)

where x(i)N+1 for all i= 0, . . . ,N are computed, for all k∈ [i,N],
from

x(i)k+1 = Akx(i)k +Bku(i)k , x(i)i =

{
x0, for i = 0,
Gi−1wi−1, otherwise,

(27)

and x(i) and u(i) denote the state and the input of the i’th
sub-system. The final state can therefore be expressed as

xN+1 = ANx0 +BNU (0)
0,N +

N∑
i=1

GN,i−1wi−1 +BN,iU
(i)
i,N +GNwN ,

(28)

where,

U (i)
k1,k2

,


u(i)k1

u(i)k1+1
...

u(i)k2

 , 0≤ k1 ≤ k2 ≤ N. (29)

We assume control laws with a linear dependence on x(i)i ,
that is, similarly to (14), we let L(k) ∈ R(m(N−k+1))×n, k ∈
[0,N], be a set of matrices, such that

U (i)
i,N =

{
L(i)x(i)i , i ∈ [1,N],

L(0)x0 +E[UN ], i = 0.
(30)

Since all states x(i) for i ∈ [1,N] have zero mean, the mean
of xN+1 is governed by equation (8). The covariance of the
final state derived from (28) is then given by

ΣN+1 = (AN +BNL(0))Σ0(AN +BNL(0))>

+

N∑
i=1

(AN,i +BN,iL(i))Gi−1G>i−1(AN,i +BN,iL(i))>

+GNG>N . (31)



Theorem 1: Let the system (1), initial and final state
means µ0 and µF , and initial and final state covariance
matrices Σ0 � 0 and ΣF � 0. Let y0 = x0− µ0 and define,
for k ∈ [0,N],

yk = xk− (Ak−1xk−1 +Bk−1uk−1). (32)

Furthermore, let Φk ∈ Rn×n be given by

Φk =(I+BN,kB>N,kΛ)
−1

AN,k, (33)

where Λ = Λ>∈Rn×n is the solution of the matrix equation
N∑

k=1

ΦkGk−1G>k−1Φ
>
k +Φ0Σ0Φ

>
0 = ΣF −GNG>N . (34)

The optimal linear control law that minimizes the cost func-
tion (15) subject to a constraints ΣN+1 = ΣF and µN+1 = µF ,
and with the initial state mean µ0 and covariance Σ0, is given
by

uk = B>N,k(BNB>N)
−1
(µF −AN µ0)+

k∑
i=0

L(i)
k yi , (35)

where,

L(i)
k =−B>N,kΛΦi. (36)

Proof: Since the mean of the state is governed by (8),
the mean-steering solution E[UN ] is given by Proposition 1,
equation (13).

The second part of the controller, ŨN , having the linear
form (14) is directed to minimizing the covariance-related
cost (15), while adhering to the constraint E[x̃N+1x̃>N+1] =ΣF .

The Lagrangian of the minimization problem (15) subject
to the constraint (2) is given by

L(u,Λ) = Tr [E[ŨNŨ>N ]]+Tr [Λ(E[x̃N+1x̃>N+1]−ΣF)]. (37)

Using (30), and (31), the Lagrangian can be rewritten in
terms of L(i), i ∈ [0,N] as follows

L(u,Λ) = Tr
{

L(0)
Σ0(L(0))>−ΛΣF

+Λ(AN +BNL(0))Σ0(AN +BNL(0))>

+

N∑
i=1

L(i)Gi−1G>i−1(L
(i))>

+Λ(AN,i +BN,iL(i))Gi−1G>i−1(AN,i +BN,iL(i))>
}
,

(38)

yielding the first and second order necessary conditions
for a minimizer L(i) + B>N,iΛ(AN,i +BN,iL(i)) = 0, and I+

B>N,iΛBN,i � 0, respectively. Following a similar derivation as
in Proposition 2, the resulting optimal control gain is given
by (36), with Φk given by (33). Substituting this control back
into the constraint equation (31), results in the closed-loop
covariance equation (34).

Therefore, the matrix Λ that satisfies the constraint (34)
provides the optimal gains for the optimal controller (35).

Note that the controller in (35) can be efficiently calculated
by updating the vector Uk,N at every step k (starting from

k = 0) by U0,N = B>N(BNB>N)
−1
(µF −AN µ0), Uk,N = Uk,N +

L(k)(xk− x̂k), where x̂0 = µ0 and x̂i+1 = Aix̂i+Biui. The non-
negativity of the left-hand side of (34) yields

ΣF −GNG>N � 0, (39)

which is exactly the condition for solvability for the covari-
ance steering problem provided in [16, Proposition 5.1].

IV. RELATION WITH LQG
The stochastic control problem formulated in Section II-A

can be also viewed as a special case of the standard discrete
LQG [1, p.264]. This similarity will be detailed in this
section, focusing on the covariance control, thus assuming
a zero-mean state.

Theorem 2: Let the system (1), with zero-mean states, and
initial and final state covariance matrices Σ0 and ΣF . Let
Q f ∈ Rn×n be a symmetric matrix. Assume that the LQG
controller that minimizes the cost function

J(u0, ...,uN) = E[
N∑

k=0

u>kuk + x>N+1Q f xN+1], (40)

subject to the dynamics (1), results in the final state co-
variance being equal to ΣF . Then, this controller coincides
with the optimal controller given by the problem described
in Theorem 1, with Λ = Q f .

Proof: The Lagrangian of the original problem can be
written as

L= E[
N∑

k=0

u>kuk + x>N+1ΛxN+1]−Tr [ΛΣF ]. (41)

Given that Λ = Q f , minimizing the Lagrangian (41) yields
the same result as minimizing (40), and the optimal solution
is given by the LQG controller. Since, by construction, this
solution agrees with the boundary conditions, it is also a
solution of the covariance steering problem.

Corollary 1: Assume Λ, which solves the optimal control
problem given by (3), is unique. Then, the controller (35)
coincides with the LQG controller that minimizes the cost
function:

J(u0, ...,uN) = E[
N∑

k=0

u>kuk + x>N+1ΛxN+1] (42)

Proof: Recall that the Lagrangian of the optimal control
problem given by (3) can be written as (41). Since Λ = Λ>

is given,

UN = argmin
UN

E[
N∑

k=0

u>kuk + x>N+1ΛxN+1]−Tr [ΛΣF ]

= argmin
UN

E[
N∑

k=0

u>kuk + x>N+1ΛxN+1], (43)

subject to the dynamics (1). The solution to (43) is given by
the LQG controller,and minimizes the cost (40) with QF =Λ.



Note that the presented results coincide with the results
in [16]. In fact, equation (5.5) in [16] is exactly equation (34),
with the right closed-loop transition matrices.

V. NUMERICAL EXAMPLE

In this section the performance of the algorithm is tested
using a simple example of a fourth-order linear time-varying
system, which is derived from linearizing and discretizing a
non-linear cart-pole dynamics along a particular trajectory.

Let y denote the cart’s position, let u denote the force
pushing the cart, and let θ denote the pole’s angle measured
from vertical axis so that θ = 0 indicates the configuration
when the pole points vertically downwards. The equations
of the of the cart-pole system are

θ̈ =
−(u+mplθ̇ 2 sinθ)cosθ −(mc +mp)gsinθ

l(mc +mp sin2
θ)

,

ÿ =
u+mp sinθ(lθ̇ 2 +gcosθ)

mc +mp sin2
θ

. (44)

The following parameters were used in the numerical
simulations: mp = 0.01[kg],mc = 1[kg], ` = 0.25[m],g =
9.81[m/sec2]. The equations of motion were linearized about
a trajectory that brings the pole rom the downward position
θ0 = 0 to the upward position θF = π in 1 second , and then
discretized using Euler’s method with sampling time of Ts =
0.001 sec, resulting in a linear discrete time-varying system

with states defined as x ,
[
δθ δ θ̇ δy δ ẏ

]>
, where δθ ,

δ θ̇ , δy, and δ ẏ denote deviations from the nominal values
of θ , θ̇ , y, and ẏ respectively. To this model, a disturbance

noise was added, with G =
[
0 0.004 0 0.008

]>
.

The initial and the final states are chosen as µ0 = µF =
04×1,Σ0 = ΣF = diag [0.01,0.01,0.01,0.01].

The results are shown in Figures 1-3. Figure 1 exhibits
10 randomly-generated closed-loop trajectories (states and
control), and the 3σ bounds calculated from 20,000 Monte-
Carlo runs. The controller costs are shown in Figure 3.
Figure 2 depicts evaluation of state covariance singular
values through time.

Similarly to the LTI example, the results show that the two
algorithms give exactly the same results.

VI. CONCLUSIONS

In this work we have derived a minimum-control-effort
optimal steering solution for linear time-varying discrete
stochastic systems, subject to boundary conditions in the
form of Gaussian distribution parameters. Having presented
the influence of the diffusion at each time-step on the final
covariance, we have formulated a condition for calculating
the optimal control law from a class of linear-state-dependent
control laws. The resulting controller set consists of “open-
loop” inputs, which are recalculated at each step based on
the diffusion term reconstruction from the previous step.

In addition, we have shown that the solution to the
covariance steering problem coincides with the solution to a
specially-formulated LQG problem. This similarity allowed
an efficient calculation of the controller values using a
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backward-propagated discrete-time dynamic Riccati equa-
tion, as well as a justification for using a linear feedback
controller for the covariance steering.

Future work will address a case with a state-dependent
cost function, the conditions for the existence of the solution,
and the algorithm applicability for the covariance steering of
non-linear systems.
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APPENDIX

PROOF OF PROPOSITION 2

Let Ξ, AN +BNL. Then the constraint (17) can be written
as

ΞΣ0Ξ
>= ΣF . (45)

First we show feasibility. Substituting (20) into (45) yields

Ξ = AN +BNB>N(BNB>N)
−1
(VF SF

1
2 UΩV>ΩS0

− 1
2 V>0 −AN)

=VF SF
1
2 UΩV>ΩS0

− 1
2 V>0 , (46)

and hence

ΞΣ0Ξ
>=VF SF

1
2 UΩV>ΩS0

− 1
2 V>0 V0S0V>0 V0S0

− 1
2 VΩU>ΩSF

1
2 V>F

=VF SFV>F = ΣF . (47)

To show optimality, introduce the Lagrangian of the equal-
ity constraint minimization problem (15) and (17)

L(L,Λ) = Tr [LΣ0L>]+Tr [Λ(ΞΣ0Ξ
>−ΣF)] (48)

where Λ ∈ Rn×n. Without loss of generality we assume that
Λ = Λ>. The first-order optimality condition LL(L,Λ) = 0
yields:

L+B>NΛ(AN +BNL) = L+B>NΛΞ = 0, (49)

whereas the second order condition LLL(L,Λ) = 0 yields

I+B>NΛBN � 0. (50)

It follows that

L =−B>NΛ(I+BNB>NΛ)
−1

AN . (51)

Substituting this value of L into the constraint (17) yields

Ξ = AN−BNB>NΛ(I+BNB>NΛ)
−1

AN

=(I+BNB>NΛ)
−1

AN . (52)

Using the SVDs (18) we can rewrite the constraint (45) as

ΞV0S
1
2
0 R>=VF S

1
2
F , (53)

where R is an orthogonal matrix. Combining (53) with (52)
yields

BNB>NΛ = ANV>0 S
1
2
0 R>S

− 1
2

F V>F − I, (54)

and the resulting optimal gain is

L? = B>N(BNB>N)
−1
(VF SF

1
2 RS0

− 1
2 V>0 −AN). (55)

In order to find R, the optimal gain equation is substituted
into the cost function JΣ, resulting in

JΣ = Tr [B>N(BNB>N)
−1
(VF S

1
2
F RS

− 1
2

0 V>0 −AN)V0S0V>0 L?>]

= Tr [(BNB>N)
−1
(ΣF +ANΣ0A>N)]−2Tr [R>UΩSΩV>Ω] (56)

where Ω was defined in (19). The minimum of the cost (56)
is attained by maximizing the term Tr [R>UΩ], yielding

R? = arg min
R∈U n

JΣ = arg max
R∈U n

Tr [R>UΩSΩV>Ω] =UΩV>Ω, (57)

where the last equation follows from the von Newmann trace
inequality [17]. Substituting R? into the optimal gain L?

yields (20).


