
Game-Theoretic and Risk-Sensitive Stochastic Optimal Control via
Forward and Backward Stochastic Differential Equations

Ioannis Exarchos1 Evangelos A. Theodorou2 Panagiotis Tsiotras3

Abstract— In this work we present a sampling-based al-
gorithm designed to solve game-theoretic control problems
and risk-sensitive stochastic optimal control problems. The
cornerstone of the proposed approach is the formulation of
the problem in terms of forward and backward stochastic
differential equations (FBSDEs). By means of a nonlinear
version of the Feynman-Kac lemma, we obtain a probabilistic
representation of the solution to the nonlinear Hamilton-Jacobi-
Isaacs equation, expressed in the form of a decoupled system
of FBSDEs. This system of FBSDEs can then be simulated by
employing linear regression techniques. Utilizing the connection
between stochastic differential games and risk-sensitive optimal
control, we demonstrate that the proposed algorithm is also
applicable to the latter class of problems. Simulation results
validate the algorithm.

I. INTRODUCTION

Game-theoretic or min-max extensions to optimal con-
trol are known to have a direct connection to robust and
H∞ nonlinear control theory, as well as to risk-sensitive
optimal control [1], [2], [3]. The origin of game-theoretic
control dates back to the work of Isaacs (1965) [4] on
differential games for two strictly competitive players, which
provided a framework for the treatment of such problems.
Isaacs associated the solution of a differential game with
the solution to a HJB-like equation, namely its min-max
extension, also known as the Isaacs (or Hamilton-Jacobi-
Isaacs, HJI) equation. This equation was derived heuristically
by Isaacs under the assumptions of Lipschitz continuity of
the dynamics and the cost, as well as the assumption that
both of them are separable in terms of the minimizing and
maximizing controls. A treatment of the stochastic extension
to differential games was first provided in [5]. Despite
the plethora of theoretic work in the area of differential
games, the algorithmic part has received significantly less
attention, due to the inherent difficulty of solving such
problems. A few approaches have been suggested in the
past, such as the Markov Chain approximation method [6],
but these have found limited applicability due to the “curse
of dimensionality.” Only very recently, a specific class of
minimax control trajectory optimization methods have been
derived, all based on the foundations of differential dynamic
programming (DDP) [7], [8], [9].
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There is an innate connection between min-max exten-
sions of optimal control and risk-sensitive stochastic control
formulations. This relationship was first investigated by
Jacobson in [1]. References [10] and [11] investigate risk-
sensitive stochastic control in an LQG setting and for non-
linear stochastic systems and infinite horizon control tasks
respectively. Ever since the fundamental work of [1], [10],
[11], the topic of risk sensitivity has been studied extensively.
In a risk-sensitive setting, the control objective is to minimize
a performance index, which is expressed as a function of the
mean and variance of a given state- and control-dependent
cost. Therefore, the element of risk sensitivity arises from
the minimization of the variance of that cost. An application
of the Dynamic Programming principle on the risk-sensitive
optimization criterion results in a backward PDE that is
similar to the HJI PDE. Thus, risk-sensitive optimal control
problems are directly related to stochastic differential games
[3].

In this paper we present an algorithm designed to
solve stochastic differential games by using the nonlinear
Feynman-Kac lemma. This algorithm is a sampling-based
scheme which relies on the theory of forward and back-
ward stochastic differential equations (FBSDEs) and their
connection to backward PDEs [12], [13]. In particular, we
first obtain a probabilistic representation of the solution to
the HJI PDE, expressed in the form of a system of FBSDEs.
This system of FBSDEs is then simulated by employing
linear regression techniques. Since the HJI PDE appears in
both stochastic differential games and risk-sensitive optimal
control problems, the proposed scheme is applicable to both
types of stochastic optimal control formulations.

The paper is organized as follows: In Section II we
introduce the problem statement and present the associated
HJI equation for the class of problems considered in this
work. Section III provides the stochastic representation of the
solution to the HJI equation using the nonlinear Feynman-
Kac lemma through FBSDEs. Risk-sensitive control and its
connection to game-theoretic control is treated in Section
IV. Section V deals with the numerical approximation used
in this paper to solve FBSDEs, whereas in Section VI we
provide application examples of the proposed algorithm.
Finally, conclusions are presented in the Section VII.

II. PROBLEM STATEMENT

Let (Ω,F , {Ft}t≥0,P) be a complete, filtered probability
space on which a p-dimensional standard Brownian motion
Wt is defined, such that {Ft}t≥0 is the natural filtration



of Wt augmented by all P-null sets. Consider the game-
theoretic setting in which the expected game payoff is
defined by the functional

P (τ, xτ ;u(·), v(·)) = E
[
g(xT ) +

T∫
τ

[
q(t, xt)

+ 1
2u
>
t Rut − 1

2v
>
t Qvt

]
dt

]
, (1)

associated with the stochastic controlled system, which is
represented by the Itô stochastic differential equation (SDE){

dxt =f(t, xt)dt+G(t, xt)utdt+ L(t, xt)vtdt

+ Σ(t, xt)dWt, t ∈ [τ, T ], x(τ) = xτ ,
(2)

where T > τ ≥ 0, T is a fixed time of termination, x ∈ Rn is
the state vector, u ∈ Rν is the minimizing control vector, and
v ∈ Rµ is the maximizing control vector. Furthermore, R and
Q are respectively ν×ν and µ×µ positive definite matrices,
g : Rn → R, q : [τ, T ] × Rn → R, f : [0, T ] × Rn → Rn,
G : [0, T ] × Rn → Rn×ν , L : [0, T ] × Rn → Rn×µ and
Σ : [0, T ] × Rn → Rn×p are deterministic functions, that
is, they do not depend explicitly on ω ∈ Ω. We assume that
all standard technical conditions which pertain to the filtered
probability space and the regularity of functions are met, in
order to guarantee existence, uniqueness of solutions to (2),
and a well defined payoff (1). These impose, for example,
that the functions g, q, f , G, L and Σ are continuous
w.r.t. time t (in case there is explicit dependence), Lipschitz
(uniformly in t) with respect to the state variables, and satisfy
standard growth conditions over the domain of interest.
Furthermore, the square-integrable processes u : [0, T ]×Ω→
U ⊆ Rν and v : [0, T ] × Ω → V ⊆ Rµ are {Ft}t≥0-
adapted, which essentially translates into the control inputs
being non-anticipating, i.e., relying only on past and present
information.

The intuitive idea behind the game-theoretic setting is the
existence of two players of conflicting interests. The first
player controls u and wishes to minimize the payoff P over
all choices of v, while the second player wishes to maximize
P over all choices of u of his opponent. At any given time,
the current state, as well as each opponents’ current control
action is known to both players. Furthermore, instantaneous
switches in both controls are permitted, rendering the prob-
lem difficult to solve in general.

A. The Value Function and the HJI Equation

For any given initial condition (τ, xτ ), we investigate
the game of conflicting control actions u, v that minimize
(1) under all admissible non-anticipating strategies assigned
to u(·), while maximizing it over all admissible non-
anticipating strategies assigned to v(·). For the structure im-
posed on this problem by the form of the cost and dynamics
at hand, the Isaacs condition1 [4], [15], [16] holds, and the

1The Isaacs condition renders the viscosity solutions of the upper and
lower value functions equal (see [14]), thus making the order of minimiza-
tion/maximization inconsequential.

payoff is a saddlepoint solution to the following terminal
value problem of a second order partial differential equation,
known as the Hamilton-Jacobi-Isaacs (HJI) equation, which
herein takes the form
Vt + inf

u∈U
sup
v∈V

{
1
2 tr(VxxΣΣ>) + V >x (f +Gu+ Lv) + q

+ 1
2u
>Ru− 1

2v
>Qv

}
= 0, (t, x) ∈ [0, T )× Rn,

V (T, x) = g(x), x ∈ Rn.
(3)

In the above, function arguments have been suppressed for
notational compactness, and Vx and Vxx denote the gradient
and the Hessian of V , respectively. The term inside the
brackets is the Hamiltonian. For the chosen form of the cost
integrand, and assuming that the optimal controls lie in the
interiors of U and V , we may carry out the infimum and
supremum operations in (3) explicitly by taking the gradient
of the Hamiltonian with respect to u and v and setting it
equal to zero to obtain

Ru+G>(t, x)Vx(t, x) = 0, (4)

−Qv + L>(t, x)Vx(t, x) = 0. (5)

Therefore, for all (t, x) ∈ [0, T ] × Rn, the optimal controls
are given by

u∗(t, x) = −R−1G>(t, x)Vx(t, x), (6)

v∗(t, x) = Q−1L>(t, x)Vx(t, x). (7)

Inserting the above expression back into the original HJI
equation and suppressing function arguments for notational
brevity, we obtain the equivalent characterization

Vt + 1
2 tr(VxxΣΣ>) + V >x f + q − 1

2V
>
x

(
GR−1G>

− LQ−1L>
)
Vx = 0, (t, x) ∈ [0, T )× Rn,

V (T, x) = g(x), x ∈ Rn.

(8)

III. A FEYNMAN-KAC REPRESENTATION THROUGH
FBSDES

There is a close relationship between stochastic differen-
tial equations and second-order partial differential equations
(PDEs) of parabolic or elliptic type. Specifically, solutions
to a certain class of nonlinear PDEs can be represented by
solutions to forward-backward stochastic differential equa-
tions (FBSDEs), in the same spirit as demonstrated by the
well-known Feynman-Kac formulas [17] for linear PDEs. We
begin by briefly reviewing FBSDEs.

A. The Forward and Backward Process

As a forward process we shall define the square-integrable,
{Fs}s≥0-adapted process X(·)2, which, for any given initial

2While X is a function of s and ω, we shall use Xs for notational brevity.



condition (t, x) ∈ [0, T ]× Rn, satisfies the Itô FSDE{
dXs = b(s,Xs)ds+ Σ(s,Xs)dWs, s ∈ [t, T ],

Xt = x.
(9)

The forward process (9) is also called the state process in
the literature. We shall denote the solution to the forward
SDE (9) as Xt,x

s , wherein (t, x) are the initial condition
parameters.

In contrast to the forward process, the associated back-
ward process is the square-integrable, {Fs}s≥0-adapted pair
(Y (·), Z(·)) defined via a BSDE satisfying a terminal con-
dition{

dYs = −h(s,Xs, Ys, Zs)ds+ Z>s dWs s ∈ [t, T ],

YT = g(XT ).
(10)

The function h(·) is called the generator or driver. The solu-
tion is implicitly defined by the initial condition parameters
(t, x) of the FSDE since it obeys the terminal condition
g(Xt,x

T ). We will similarly use the notation Y t,xs and Zt,xs to
denote the solution for a particular initial condition parameter
(t, x) of the associated FSDE.

While FSDEs have a fairly straightforward definition, in
the sense that both the SDE and the filtration evolve forward
in time, this is not the case for BSDEs. Indeed, since
solutions to BSDEs need to satisfy a terminal condition,
integration needs to be performed backwards in time in some
sense, yet the filtration still evolves forward in time. It turns
out [12] that a terminal value problem involving BSDEs
admits an adapted (i.e., non-anticipating) solution if we back-
propagate the conditional expectation of the process, that is,
if we set Ys , E[Ys|Fs].

Notice that the forward SDE does not depend on Ys
or Zs. Thus, the resulting system of FBSDEs is said to
be decoupled. If, in addition, the functions b, Σ, h and
g are deterministic, in the sense that they do not depend
explicitly on ω ∈ Ω, then the adapted solution (Y,Z)
exhibits the Markovian property; namely, it can be written as
deterministic functions of solely time and the state process
[18]:

Theorem 1: (The Markovian Property) – There exist de-
terministic functions V (t, x) and d(t, x)3 such that the solu-
tion (Y t,x, Zt,x) of the BSDE (10) is

Y t,xs = V (s,Xt,x
s ), Zt,xs = Σ>(s,Xt,x

s )d(s,Xt,x
s ), (11)

for all s ∈ [t, T ].

B. The Nonlinear Feynman-Kac Lemma

We now proceed to state the nonlinear Feynman-Kac type
formula, which links the solution of a class of PDEs to that
of FBSDEs. Indeed, the following theorem can be proven by
an application of Itô’s formula (see [13], [18], [12]):

3By abuse of notation, here (t, x) are symbolic arguments of the functions
V and d, and not the initial condition parameters as in (Y t,x, Zt,x).
Throughout this work, it should be clear from the context whether (t, x)
are to be understood as initial condition parameters or symbolic arguments.

Theorem 2: (Nonlinear Feynman-Kac) – Consider the
Cauchy problem{
Vt + 1

2 tr(VxxΣΣ>) + V >x b(t, x) + h(t, x, V,Σ>Vx) = 0,

(t, x) ∈ [0, T )× Rn, V (T, x) = g(x), x ∈ Rn,
(12)

wherein the functions Σ, b, h and g satisfy mild regularity
conditions4. Then (12) admits a unique (viscosity) solution
V : [0, T ]× Rn → R, which has the following probabilistic
representation:

V (t, x) = Y t,xt , ∀(t, x) ∈ [0, T ]× Rn, (13)

wherein (X(·), Y (·), Z(·)) is the unique adapted solution of
the FBSDE system (9)-(10). Furthermore,

(Y t,xs , Zt,xs ) =

(
V (s,Xt,x

s ), Σ>(s,Xt,x
s )Vx(s,Xt,x

s )

)
,

(14)
for all s ∈ [t, T ], and if (12) admits a classical solution, then
(13) provides that classical solution.

A careful comparison between equations (8) and (12)
indicates that the nonlinear Feynman-Kac representation
can be applied to the HJI equation given by (8) under a
certain decomposability condition, stated in the following
assumption:

Assumption 1: There exist matrix-valued functions Γ :
[0, T ]×Rn → Rp×ν and B : [0, T ]×Rn → Rp×µ such that
G(t, x) = Σ(t, x)Γ(t, x) and L(t, x) = Σ(t, x)B(t, x) for
all (t, x) ∈ [0, T ] × Rn, satisfying the same mild regularity
conditions.
This assumption implies that the range of G and L must be
a subset of the range of Σ, and thus excludes the case of a
channel containing control input but no noise, although the
converse is allowed. Under this assumption, the HJI equation
given by (8) becomes

Vt + 1
2 tr(VxxΣΣ>) + V >x f + q − 1

2V
>
x Σ

(
ΓR−1Γ>

−BQ−1B>
)

Σ>Vx = 0, (t, x) ∈ [0, T )× Rn,

V (T, x) = g(x), x ∈ Rn,
(15)

in which function arguments have been suppressed, and
which satisfies the format of (12) with

b(t, x) ≡ f(t, x), (16)

and

h(t, x, z) ≡ q(t, x)− 1
2z
>(Γ(t, x)R−1Γ>(t, x)

−B(t, x)Q−1B>(t, x)
)
z. (17)

We may thus obtain the (viscosity) solution of (15) by
simulating the system of FBSDE given by (9) and (10).

4In fact, [13] requires the functions Σ, b, h and g to be continuous,
Σ and b to be uniformly Lipschitz in x, and h to be uniformly – w.r.t
(t, x)– Lipschitz in (y, z). However, the nonlinear Feynman-Kac lemma has
been recently extended to cases in which the driver is only continuous, and
satisfies quadratic growth in z– see References [?], [?], [?], [?]. Concerning
existence of solutions to the HJI equation in this case, see [?].



Notice that (9) corresponds to the uncontrolled (u = 0,
v = 0) system dynamics.

IV. CONNECTION TO RISK-SENSITIVE CONTROL

The connection between dynamic games and risk-sensitive
stochastic control is well-documented in the literature [1],
[2], [3]. Specifically, the optimal controller of a stochastic
control problem with exponentiated integral cost (a so-called
risk-sensitive problem) turns out to be identical to the min-
imizing player’s unique minimax controller in a stochastic
differential game setting. Indeed, consider the problem of
minimizing the expected cost given by

J(τ, xτ ;u(·)) = ε lnE
{

exp
1

ε

[
g(xT )

+

∫ T

τ

q(t, xt) + 1
2u
>
t Rut dt

]}
, (18)

where ε is a small positive number. The state dynamics are
described by the Itô SDEdxt = f(t, xt)dt+G(t, xt)utdt+

√
ε

2γ2
Σ̃(t, xt)dWt,

t ∈ [τ, T ], x(τ) = xτ .
(19)

Suppressing function arguments for notational compactness,
the associated Hamilton-Jacobi-Bellman PDE for this prob-
lem is [3]
Vt + inf

u∈U

{
ε

4γ2
tr(VxxΣ̃Σ̃>) + V >x (f +Gu) + q

+ 1
2u
>Ru+

1

4γ2
V >x Σ̃Σ̃>Vx

}
= 0, (t, x) ∈ [0, T )× Rn,

V (T, x) = g(x), x ∈ Rn.
(20)

The infimum operation can be performed explicitly,
and yields the optimal control u∗(t, x) =
−R−1G>(t, x)Vx(t, x). Setting Σ =

√
ε/2γ2Σ̃ and

substituting the optimal control in the PDE (20) we readily
obtain the equivalent characterization

Vt + 1
2 tr(VxxΣΣ>) + V >x f + q − 1

2V
>
x

(
GR−1G>

− 1

ε
ΣΣ>

)
Vx = 0, (t, x) ∈ [0, T )× Rn,

V (T, x) = g(x), x ∈ Rn.
(21)

The above equation is merely a special case of equation (8)
obtained for the game-theoretic version, if one substitutes
Q = (1/ε)I and L = Σ. Notice that this special case of
L automatically satisfies Assumption 1 with B being the
identity matrix. Thus, imposing the same decomposability
condition on G, the solution to the risk-sensitive stochastic
optimal control problem can be obtained by simulating the
system of FBSDEs given by (9) and (10) using the definitions
(16) and (17).

V. APPROXIMATING THE SOLUTION OF FBSDES

The solution of FBSDEs has been studied to a great extent
independently from its connection to PDEs, mainly within
the field of mathematical finance. Though several generic
schemes exist [19], [20], [21], in this paper we employ a
modification proposed in previous work by the authors [22],
which exploits the regularity present in FBSDEs that arise
from the application of the nonlinear Feynman-Kac lemma.

We begin by selecting a time grid {t = t0 < . . . < tN =
T} for the interval [t, T ], and denote by ∆ti , ti+1 − ti
the (i + 1)-th interval of the grid (which can be selected
to be constant) and ∆Wi , Wti+1 − Wti the (i + 1)-th
Brownian motion increment5. For notational brevity, we also
denote Xi , Xti . The simplest discretized scheme for the
forward process is the Euler scheme, which is also called
Euler-Maruyama scheme [23]:{

Xi+1 ≈ Xi + b(ti, Xi)∆ti + Σ(ti, Xi)∆Wi,

i = 1, . . . , N, X0 = x.
(22)

Several alternative, higher order schemes exist that can be
selected in lieu of the Euler scheme [23]. To discretize the
backward process, we further introduce the notation Yi , Yti
and Zi , Zti . Then, recalling that adapted BSDE solutions
impose Ys , E[Ys|Fs] and Zs , E[Zs|Fs] (i.e., a back-
propagation of the conditional expectations), we approximate
equation (10) by

Yi = E[Yi|Fti ] ≈ E[Yi+1+h(ti+1, Xi+1, Yi+1, Zi+1)∆ti|Xi].
(23)

Notice that in the last equality the term Z>i ∆Wi in (10)
vanishes because of the conditional expectation (∆Wi is
zero mean), and we replace Fti with Xi in light of the
Markovian property presented in Section III-A. By virtue of
equation (14), the Z-process in (10) corresponds to the term
Σ>(s,Xt,x

s )vx(s,Xt,x
s ). Therefore we can write

Zi = E[Zi|Fti ] = E[Σ>(ti, Xi)∇xv(ti, Xi)|Xi]

= Σ>(ti, Xi)∇xv(ti, Xi), (24)

which naturally requires knowledge of the solution at time
ti on a neighborhood x, v(ti, x). The backpropagation is
initialized at

YT = g(XT ), ZT = Σ(T,XT )>∇xg(XT ), (25)

for a g(·) which is differentiable almost everywhere. There
are several ways to approximate the conditional expectation
in (23), however in this work we shall employ the Least
Squares Monte Carlo (LSMC) method6, which we shall
briefly review in what follows.

The LSMC method addresses the general problem of
numerically estimating conditional expectations of the form
E[Y |X] for square integrable random variables X and Y ,
if one is able to sample M independent copies of pairs
(X,Y ). The method itself is based on the principle that the

5Here, ∆Wi would be simulated as
√

∆tiξi, where ξi ∼ N (0, I).
6Treating conditional expectations by means of linear regression was

made popular in the field of mathematical finance by [24].



conditional expectation of a random variable can be modeled
as a function of the variable on which it is conditioned
on, that is, E[Y |X] = φ∗(X), where φ∗ solves the infinite
dimensional minimization problem

φ∗ = arg min
φ

E[|φ(X)− Y |2], (26)

and φ ranges over all measurable functions with
E[|φ(X)|2] < ∞. A finite-dimensional approximation
of this problem can be obtained if one decomposes
φ(·) ≈

∑k
i=1 ϕi(·)αi = ϕ(·)α, with ϕ(·) being a row vector

of k predetermined basis functions and α a column vector of
constants, thus solving α∗ = arg minα∈Rk E[|ϕ(X)α−Y |2],
with k being the dimension of the basis. Finally, this problem
can be simplified to a linear-least squares problem if one
substitutes the expectation operator with its empirical
estimator [25], thus obtaining

α∗ = arg min
α∈Rk

1

M

M∑
j=1

|ϕ(Xj)α− Y j |2, (27)

wherein (Xj , Y j), j = 1, . . . ,M are independent copies of
(X,Y ). Introducing the notation

Φ(X) =

 ϕ(X1)
...

ϕ(XM )

 ∈ RM×k, (28)

the solution to this least-squares problem can be obtained by
directly solving the normal equation, i.e.,

a∗ =

(
Φ>(X)Φ(X)

)−1
Φ>(X)

( Y
1

...
YM

), (29)

or by performing gradient descent. The LSMC estimator for
the conditional expectation assumes then the form E[Y |X =
x] = φ∗(x) ≈ ϕ(x)a∗.

Returning to our problem, we may apply the LSMC
method to approximate the conditional expectation in equa-
tion (23) for each time step. To this end, we require a vector
of basis functions ϕ for the approximation of E[Yi|Xi].
Although the basis functions can be different at each time
step, we shall use the same symbol for notational simplicity.
Then, Monte Carlo simulation is performed by sampling M
independent trajectories {Xm

i }i=1,...,N , in which the index
m = 1, . . . ,M specifies a particular Monte Carlo trajectory.
Whenever this index is not present, the entirety with respect
to this index is to be understood. The numerical scheme is
initialized at the terminal time T and is iterated backwards
along the entire time grid, until the starting time instant has
been reached. At each time step ti, we are given M pairs of
data (Y mi , Xm

i )7 on which we perform linear regression to
estimate the conditional expectation of Yi as a function of x
at the time step ti. This provides us an approximation of the

7Here, Ym
i denotes the quantity Ym

i+1+∆tih(ti+1, X
m
i+1, Y

m
i+1, Z

m
i+1),

which is the Ym
i sample value before the conditional expectation operator

has been applied.

Value function v at time ti for the neighborhood of the state
space that has been explored by the sample trajectories at
that time instant, since v(ti, x) = E[Yi|Xi = x] ≈ ϕ(x)αi.
We then replace Y mi = E[Y mi |Xm

i ] ≈ ϕ(Xm
i )αi, thereby

treating the conditional expectation as a projection operator.
Finally, the approximation of the conditional expectation of
Zi is obtained by taking the gradient with respect to x on
v(ti, x), evaluating it at Xm

i , and scaling it with Σ

Zmi ≈ Σ(ti, X
m
i )>∇xϕ(Xm

i )αi. (30)

Concluding one iteration, this process is repeated for
ti−1, . . . , t1. Note that this approach requires the basis
functions ϕ(·) of our choice to be differentiable almost
everywhere, so that ∇xϕ(x) is available in analytical form
for almost any x. The proposed algorithm is then summarized
as

Initialize : YT = g(XT ), ZT = Σ(T,XT )>∇xg(XT ),

αi = arg min
α

1

M

∥∥∥Φ(Xi)α−
(
Yi+1

+ ∆tih(ti+1, Xi+1, Yi+1, Zi+1)

)∥∥∥2,
Yi = Φ(Xi)αi, Zmi = Σ(ti, X

m
i )>∇xϕ(Xm

i )αi,
(31)

where m = 1, . . . ,M and the matrix Φ defined in (28).
Again, the minimizer in (31) can be obtained by directly
solving the normal equation, i.e.,

ai =

(
Φ>(Xi)Φ(Xi)

)−1
Φ>(Xi)

(
Yi+1

+ ∆tih(ti+1, Xi+1, Yi+1, Zi+1)

)
,

(32)

or by performing gradient descent. The essential algorithm
output is the collection of ai’s, that is, the basis function
coefficients at each time instant, which are needed to recover
the Value function approximation for the particular area of
the state space that is explored by the forward process.

VI. SIMULATION RESULTS

To evaluate the algorithm’s performance, two simulations
were performed on scalar systems, for which, owing to their
simplicity, we have the opportunity to evaluate the system
behavior.

A. A Linear System Example

The first example used is a scalar linear system for which
the analytic solution can be recovered. Specifically, for a very
high maximizer control weight Q, we expect the solution to
be almost identical to the LQR solution, which is available
in closed form [26]. We simulate the algorithm for dx =
(0.2x + u + 0.5xv)dt + 0.5dw, with q(t, x) = 0, R = 2,
x(0) = 1, T = 1 and g(xT ) = 40x2T , thus penalizing
deviation from the origin at the time of termination, T . For
Q, the maximizing control cost factor, we selected varying
values ranging from 5 to 50,000. In the latter case, we
expect to recover the LQR coefficients. For the purposes of



comparison with the closed form solution, the set of basis
functions for Y was selected to be [1 x x2]>. For the LQR
controller, the coefficients correspond to the basis functions
[1 x2]>. Two thousand trajectories were generated on a time
grid of ∆t = 0.004. Fig. 1 shows that, indeed, for very
hight values of Q the algorithm recovers the correct theoretic
LQR coefficients, while Fig. 2 depicts simulations for the
case in which the maximizing control is allowed to act on
the system when it is relatively cheap. In this case, we can
see that because the maximizer has enough control authority,
the equilibrium has moved away from the desired value of
x(T ) = 0, as expected.
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Fig. 1. Simulation of the system with very high maximizing control
cost weight Q = 50, 000. (a) Controlled trajectories (red) vs.
uncontrolled (blue), (b) Y and Z coefficients, compared to those
obtained by the closed form solution of the LQR if the maximizing
control was not present (black dashed lines). We observe that for a
high maximizing control cost, the obtained coefficients match those
of the LQR as expected.

B. A Nonlinear System Example

To demonstrate that the scheme can accommodate nonlin-
earity in the dynamics, we also applied the algorithm to the
same problem as in Section VI-A, by replacing the dynamics
with dx = (4 cosx + u + 0.5xv)dt + 0.5dw. The drift
was replaced by a nonlinear term to introduce an additional
behavior to the open-loop system trajectories. The results
are depicted in Fig. 3. From the shape of the value function
in Fig. 3(b) it is seen that the value is relatively flat at the
beginning since there is no state-dependent running cost and
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Fig. 2. Simulation of the system with small maximizing control
cost weight Q = 5. (a) Controlled trajectories (red) vs. uncontrolled
(blue), (b) Y and Z coefficients, compared to those obtained by the
closed form solution of the LQR if the maximizing control was not
present (black dashed lines).

becomes progressively quadratic at the final time owing to
the boundary condition V (T, xT ) = 40x2T . Note, however,
that Fig. 3(b) shows the value function over a rectangular
grid. In fact, we have an accurate estimate of the value
function only over the area of the state space visited by the
sampled (open-loop) trajectories. In that sense, the areas not
visited by the system are extrapolated based on the basis
functions chosen to represent V .

VII. CONCLUSIONS

In this paper we presented a new algorithm for stochas-
tic differential games and risk-sensitive stochastic optimal
control problems. By utilizing a nonlinear version of the
Feynman-Kac lemma, we obtained a probabilistic repre-
sentation of the associated PDEs, by means of a system
of FBSDEs. This system is then simulated using linear
regression. We have demonstrated the applicability of the
proposed algorithm by applying it on two scalar systems,
including a linear system for which a closed-form solution
is known. Future work will focus on alterative methods
to perform regression, convergence and error properties of
the scheme, as well as on the application of the proposed
technique to more realistic systems.
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Fig. 3. Simulation of the nonlinear system with small maximizing
control cost weight Q = 5. (a) Controlled trajectories (red) vs.
uncontrolled (blue), (b) The Value function, (c) Y coefficients.
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