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Abstract— In this paper, we consider two problems dealing
with the partial attitude synchronization of a multi-satellite
system in which the satellites, modeled as rigid bodies, are
underactuated. Having control authority about only two of the
three principal axes, the objective is to align the uncontrolled
third axis of all satellites such that they point along the same
direction. Two control laws are proposed, one which aligns
two satellites towards the same direction in inertial space,
and another one which synchronizes an N -satellite system
such that the satellites align their underactuated axes towards
a fixed inertial direction. The synchronization discrepancy
between the satellites is expressed in a unique parameterization
that describes the uncontrolled axis of one satellite in the
frame of the other via a stereographic projection, while the
velocity discrepancy is described using a partial angular velocity
difference.

I. INTRODUCTION

Cooperative spacecraft synchronization has been explored
in numerous works. Much of the current literature covers
complete attitude convergence of a spacecraft cluster, and
various approaches have been used to achieve this objective
[1], [2], [3], [4], [5], [6], [7]. In [7], [5], the idea of
maintaining attitude alignment and performing synchronized
spacecraft maneuvers was explored, although in [5] the
communication graph was restricted to a bidirectional ring.
Simultaneously aligning the orientations of rigid bodies
in a network, and stabilizing each body, while spinning
about their unstable intermediate axis, was shown in [6].
Successful attitude convergence was proven using graph-
theoretic tools in [1] and [2] with undirected and leader-
follower communication graphs. Attitude synchronization of
a group of satellites was shown in [4] using relative infor-
mation with neighboring satellites or information of their
orientation with respect to a common reference frame. A
decentralized controller was presented in [3], which showed
attitude convergence even in the presence of uncertainties,
disturbances, and time-varying communication delays.

Control of single spacecraft subject to only two control
torques has been investigated in [8], [9], [10], [11] using the
same novel attitude parameterization used in this paper.

The first objective of this paper is to develop a control law
for the partial attitude synchronization between two under-
actuated satellites, where control torques about only two of
the three principle body axes for each satellite are available.
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The control objective is to align the third (uncontrolled)
axes of the two satellites. As a result, the two underactuated
satellites will eventually point their uncontrolled axes along
the same direction in the inertial space, given any initial ori-
entation. The relative or absolute orientation of the satellites
about these axes is inconsequential. The second objective
is to develop a control law for the attitude synchronization
between all satellites in an N -satellite cluster, where the
control law again influences two of the three principle body
axes in each satellite, with the purpose of aligning the
third uncontrolled axis. As a result of this control law, all
satellites will eventually point their uncontrolled axes along
the same fixed direction in the inertial space given any initial
orientation.

Controlling a single axis (as opposed to three-axis control)
may be of interest in many applications. For example, this
can be the situation when the synchronized pointing of the
sensor boresights (e.g., telescope) or high-gain antennas for
a multi-satellite system is desired, without the need for
complete full attitude control of the satellites. As shown in
this paper, such pointing requirements can be achieved using
only two control torques per satellite. Even if full actuation
is available for most satellites, the proposed control laws can
be utilized in cases of actuator failures.

II. NOTATION AND ATTITUDE KINEMATICS
In this paper, the relative orientation of a satellite with

respect to another satellite is given using the w-z attitude
parameters introduced in [12], [13] by Tsiotras and Longuski.
The precise definition of the z and the w parameters is given
below.

A. The w-z Attitude Parameters

Let there be two reference frames in the three-
dimensional space consisting of the unit vectors {̂i1, î2, î3}
and {b̂1, b̂2, b̂3} with the notation î representing the inertial
frame and b̂ a body-fixed frame. The rotation matrix that
transforms vectors from frame î to frame b̂ will be denoted
by Rb

i and can be decomposed into two successive rotations
according to two parameters w and z as follows [12], [13]

Rb
i (w, z) = Rb

i′(w)Ri′

i (z), (1)

where î′ represents the intermediate frame after the first
rotation by z. The matrix Ri′

i (z) is the initial rotation about
the î3 axis in the positive direction by an angle z, resulting
in the intermediate frame î′. It is therefore given by

Ri′

i (z) =

 cos(z) sin(z) 0
−sin(z) cos(z) 0

0 0 1

 . (2)
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Fig. 1. Visualization of the stereographic projection of î3 in the b̂ frame.

From this intermediate frame, we desire the third axis of
the inertial frame (also the third axis of the intermediate
frame) to be described with respect to the final body frame.
This is accomplished by describing the î3 vector in the b̂
frame as î3 = î′3 = ab̂1 + bb̂2 + cb̂3. This vector is then
stereographically projected onto the b̂1–b̂2 plane as a new
vector using the variables w1 and w2 defined below.

w1 =
b

1 + c
, w2 =

−a
1 + c

. (3)

The parameters w1 and w2 can then be used to describe
how far to rotate or “tilt” the b̂3 axis away from the î3 axis
about the vector ĥ = î3 × b̂3 as depicted in Fig. 1. The
rotation matrix Rb

i′(w) in (1), where w = [w1,w2]T ∈ R2,
then describes the rotation about the unit vector ĥ, and is
given by [13]

Rb
i′(w) =

1

1 + ‖w‖2

1 + w2
1 − w2

2 2w1w2 −2w2

2w1w2 1− w2
1 + w2

2 2w1

2w2 −2w1 1− ‖w‖2

 . (4)

The angle θ between the unit vectors î3 and b̂3 can be
easily computed as

θ = arccos

(
1− w2

1 − w2
2

1 + w2
1 + w2

2

)
. (5)

Clearly, θ = 0 when w1 = w2 = 0.
Next, consider the kinematics of the w parameters. To this

end, let the angular velocity of the b̂ frame with respect to
the î frame, expressed in the b̂ frame, be denoted as −→ω bi =
ω1b̂1 + ω2b̂2 + ω3b̂3, and let Rb

i be the rotation matrix
that transforms elements from the î frame to the b̂ frame of
reference as in (1). Taking the derivative of the î unit vectors
expressed in the b̂ frame, yields [14], [15], [16]ȧḃ

ċ

 =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

ab
c

 . (6)

Using equations (3) and (6), the differential equations for
the parameters w1 and w2 can be calculated as

[
ẇ1

ẇ2

]
=

1 + w2
1 + w2

2

2
[R̆b

i′(w)]Tω =

1

2

[
1 + (w1)2 − (w2)2 2w1w2 2w2

2w1w2 1− (w1)2 + (w2)2 −2w1

]ω1

ω2

ω3

 ,
(7)

where R̆b
i′(w) is defined as the matrix consisting of the two

first columns of the rotation matrix Rb
i′(w) given in (4), and

ω = [ω1, ω2, ω3]T ∈ R3.

III. UNDERACTUATED TWO SATELLITE
SYNCHRONIZATION

A. Definitions and Preliminaries

The first problem we consider in this paper (which we will
henceforth refer to as Problem 1) involves the synchroniza-
tion of two satellites, say, i and j. Associated with satellite
i is the body frame b̂i = (b̂i

1, b̂
i
2, b̂

i
3). Satellite i is assumed

to have the principle inertia tensor Ii = diag(Ii1, I
i
2, I

i
3),

with inertias Ii1, Ii2, and Ii3 along the b̂i
1, b̂i

2, and b̂i
3 axes,

respectively. We adopt the notation

Iiω̇i = S(ωi)Iiωi + ui, (8)

to refer to the rigid body dynamics specific to satellite i,
where ui = [ui1, u

i
2, u

i
3]T ∈ R3 represents the control torque

influencing satellite i and ωi = [ωi
1, ω

i
2, ω

i
3]T ∈ R3 represents

the inertial angular velocity of satellite i expressed in the b̂i

frame.
Satellite i is underactuated, that is, a control torque acts

only along the b̂i
1 and b̂i

2 axes, leaving the b̂i
3 axis uncon-

trolled, i.e., ui3 ≡ 0. The notation and definitions used for
satellite j are similar to satellite i and are thus omitted for
the sake of brevity. The desired objective is to synchronize
the uncontrolled b̂i

3 and b̂j
3 axes of the two satellites. This

is to be achieved by applying the necessary torques on each
satellite that depend only upon the partial relative angular
velocities and the partial attitude discrepancy, between the
two satellites i and j, described by the corresponding attitude
parameter w.

To this end, let (aij , bij , cij) be the components of the
third body axis of satellite j expressed in the frame of
satellite i, that is, let b̂j

3 = aijb̂i
1 + bijb̂i

2 + cijb̂i
3. A similar

form exists for describing the third body axis of satellite i
expressed in the frame of satellite j which is found by simply
switching the indices, i and j. This allows us to write the w
parameters defining the unit vectors b̂j

3 in the frame b̂i as

wij
1 =

bij

1 + cij
, wij

2 =
−aij

1 + cij
, (9)

and similarly for b̂i
3 in the frame b̂j in which we now let

wij = [wij
1 ,w

ij
2 ]T ∈ R2 define the stereographic projection

of the vector b̂j
3 onto the b̂i

1–b̂i
2 plane, and similarly for

wji = [wji
1 ,w

ji
2 ]T ∈ R2. Note that the two satellites are

synchronized when b̂i
3 = b̂j

3, equivalently, when b̂i
3 × b̂j

3 =
0. Thus, aij = bij = aji = bji = 0, and hence wij

1 = wij
2 =
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0 indicates synchronization. Note that the relative angular
velocity of satellite j with respect to satellite i expressed in
the frame of satellite i is given by

ωij = ωi −Ri
jω

j , (10)

where Ri
j is the rotation matrix describing elements of frame

b̂j in the frame b̂i. A similar expression holds for the
relative angular velocity of satellite i with respect to satellite
j expressed in the frame of satellite j.

From (7) it follows that the differential equations for the
parameters wij are given by

ẇij =
1 + ‖wij‖2

2
[R̆i

j′(wij)]Tωij , (11a)

and similarly for wji

Next, we present two lemmas that will help us solve
Problem 1.

Lemma 1: Let b̂i and b̂j denote the two body reference
frames for satellites i and j, respectively, and let w̃ij =
[wij

1 ,w
ij
2 , 0]T ∈ R3 be the parameters defining the third axis

of the reference frame b̂j expressed in the frame b̂i as in (9),
and similarly let w̃ji = [wji

1 ,w
ji
2 , 0]T ∈ R3 be the parameters

defining the third axis of the reference frame b̂i expressed
in the frame of reference b̂j . Then

w̃ij = −Ri
jw̃ji, w̃ji = −Rj

i w̃ij . (12)
Proof: The rotation matrix that transforms vectors from

frame b̂j to frame b̂i is Ri
j and depends on the values of

wij and zij as follows

Ri
j = Ri

j′(wij)Rj′

j (zij) (13)

with Ri
j′(wij) and Rj′

j (zij) as in (1) and similarly for
Rj

i = Rj
i′(wji)Ri′

i (zji). Using the fact that Ri
j = [Rj

i ]
T,

the following two identities result immediately.

−wji
1 = wij

1 cos(zij)− wij
2 sin(zij)

−wji
2 = wij

1 sin(zij) + wij
2 cos(zij)

(14)

By substituting equations (14) and the rotation matrix expres-
sion in equation (13) into equation (12) proves the desired
result.

Lemma 2: Let Qi represent the rotation matrix that trans-
forms elements from the body frame b̂i to the inertial frame,
let Q̆i ∈ R3×2 be the matrix consisting of the first two
columns of Qi, and let Qj and Q̆j be defined similarly for
the body frame b̂j . Then, Q̆T

i Q̆i = I2 and Q̆T
i Q̆j = R̃i

j ,
where R̃i

j represents the upper left 2× 2 sub-block of Ri
j .

Proof: The proof follows immediately by performing
the matrix multiplications, and thus it is omitted.

B. Main Result

In this section we provide the explicit feedback control
law that solves Problem 1.

Proposition 1: Assume that satellites i and j are in com-
munication. The feedback control law for satellite i

ui1 = −ki3(Ii2 − Ii3)ωi
2ω

i
3 − k1wij

1 − k2δη
ij
1 ,

ui2 = −ki3(Ii3 − Ii1)ωi
1ω

i
3 − k1wij

2 − k2δη
ij
2 ,

(15)

where the control gains are k1 > 0, k2 > 0, and

ki3 =

{
1 for Ii1 6= Ii2
αi for Ii1 = Ii2

(16)

where αi ∈ R and δηij1 and δηij2 are defined as

δηij = ηi − R̃i
jη

j , (17)

with δηij = [δηij1 , δη
ij
2 ]T ∈ R2, and similarly for satellite

j, ensures that lim
t→∞

wij = lim
t→∞

wji = 0 and lim
t→∞

δηij =

lim
t→∞

δηji = 0, and thus solves Problem 1.
Proof: From equation (8) and the control law (15), the

closed-loop dynamics of satellite i are given by

Ii1ω̇
i
1 = (1− ki3)(Ii2 − Ii3)ωi

2ω
i
3 − k1wij

1 − k2δη
ij
1 ,

Ii2ω̇
i
2 = (1− ki3)(Ii3 − Ii1)ωi

1ω
i
3 − k1wij

2 − k2δη
ij
2 ,

Ii3ω̇
i
3 = (Ii1 − Ii2)ωi

1ω
i
2,

(18)

where a similar form also exists for satellite j by switching
the indices, i and j.

Consider the Lyapunov function candidate

V =k1 ln(1 + ‖wij‖2) + k1 ln(1 + ‖wji‖2)

+ (ηi)TJ iηi + (ηj)TJjηj .
(19)

where J i = diag(Ii1, I
i
2) and Jj = diag(Ij1 , I

j
2). By taking

the derivative of V along the trajectories of (18), and
after performing several algebraic manipulations, yields the
following expression

V̇ =− 2k2(ηi)Tδηij − 2k2(ηj)Tδηji (20)

where we have used Lemma 1 along with the fact that

2(wij)Tẇij = (1 + ‖wij‖2)
(
(wij)Tηi + (wji)Tηj

)
(21)

which follows from the use of (11), Lemma 1, and (17). To
proceed, recognize that R̃i

j = [R̃j
i ]

T and recall from (17) that

δηij = ηi − R̃i
jη

j , δηji = ηj − R̃j
iη

i.

It then follows that

V̇ = −2k2
(
Q̆iη

i − Q̆jη
j
)T(

Q̆iη
i − Q̆jη

j
)
≤ 0.

where we have used Lemma 2. Since V̇ ≤ 0, it follows that
the signals wij , wji, ηi, and ηj are all bounded. Now, by
letting V̇ = 0, it follows that

Q̆iη
i = Q̆jη

j , (22)

which after a left multiplication of Q̆T
i or Q̆T

j using again
Lemma 2, we find ηi = R̃i

jη
j and ηj = R̃j

iη
i. This along

with (22) leads to

δηij = ηi − R̃i
jη

j = 0, (23a)

δηji = ηj − R̃j
iη

i = 0, (23b)
(ηi)Tηi = (ηj)Tηj . (23c)

Taking advantage of (23), the following is found after some
additional algebraic manipulations.

0 = ωi
1wij

2 − ωi
2wij

1 . (24)
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Assume now that wij 6= 0, otherwise there is nothing to
prove. From the previous expression it follows that wij =
ληi where λ 6= 0 and ηi 6= 0. It will be shown that this
leads to a contradiction. Indeed, assuming V̇ ≡ 0, it follows
from Lemma 1, (18), and (22) that

0 = (ηi)Tω̇i
12 − (ηj)Tω̇j

12

= −k1(ηi)T[(J i)−1 + R̃i
j(J

j)−1R̃j
i

]
wij
12.

(25)

Letting P = (J i)−1 + R̃i
j(J

j)−1R̃j
i > 0, the previous

expression yields 0 = (ηi)TPwij = λ(ηi)TPηi, which
implies that either λ = 0 or ηi = 0, leading to a contra-
diction. Thus, the only point contained within the invariant
set M , {(wij , ηij) : V̇ ≡ 0} is (wij , ηij) = (0, 0) and by
LaSalle’s invariance principle, the proof is complete.

IV. N -SATELLITE SYNCHRONIZATION WITH
INERTIAL VELOCITY FEEDBACK

In this section we consider the problem of partial attitude
synchronization of N ≥ 2 underactuated satellites. Each
satellite, denoted by i, belongs to the set S = {1, 2, . . . , N}.
Satellite i ∈ S is in communication with a subset of S
denoted by Ni ⊂ S \ {i}. We assume that Ni 6= ∅ for
all i ∈ S. We also assume that each communication link
between any satellite pair is bi-directional, that is, j ∈ Ni

if and only if i ∈ Nj . As in Problem 1, each satellite
in S is underactuated with the desired objective being to
synchronize the uncontrolled b̂i

3 axes for all satellites so
that, unlike the objective in Problem 1, the final orientation
of b̂i

3 for each satellite i ∈ S is along some common,
fixed inertial direction. This can be achieved by applying
the necessary torques on each satellite i that depend only
upon its corresponding inertial angular velocities and the
partial attitude discrepancy, between the satellites i and j ∈
Ni, described by wij . Henceforth, we will refer to this as
Problem 2. The definitions related to any satellite in S and
the parameters defining the relationship between any two
satellites i and j in S are identical to those in Problem 1.

For solving Problem 2 in this section, we need to use some
tools from algebraic graph theory [17], [18]. Communication
between satellites will be encoded using a communication
graph G. The graph G = {V,E} is described by the vertex
set V = {1, · · · , N} having as vertices the satellites, and the
edge set E = {(i, j) ∈ V × V | j ∈ Ni} = {e1, · · · , eM}
consisting of M directed links (i, j), where the set Ni ⊂ V
consists of all satellites j in communication with satellite i.
A graph G with a directed set of edges is a directed graph.
The graph G is undirected when j ∈ Ni ⇐⇒ i ∈ Nj ,
∀i, j ∈ V , i 6= j. The incidence matrix for a directed graph
G, denoted by D(G) ∈ RN×M , is defined as

[D(G)]ik


1, if (i, j) = ek ∈ E
−1, if (j, i) = ek ∈ E
0, otherwise.

(26)

Let the incidence matrix D(G) for a directed graph be the
same for an undirected graph in which each edge in the
undirected graph is arbitrarily directed. Notice that each

column of D(G) sums to 0 and contains a 1 and a −1 for
each end of the corresponding edge. An undirected graph
G is a tree when there is exactly one path between any two
vertices in the graph, i.e. it is acyclic. A tree has M = N−1
edges and the matrix D(G) for a tree is full column rank.

Lemma 3: Consider an undirected tree graph G with n
vertices and m = n− 1 edges and incidence matrix D(G) ∈
Rn×m. Let the matrix D̃(G) ∈ Rpn×qm be such that it has
the same structure as D(G) ⊗ A, where A ∈ Rp×q, p ≥ q
constructed as follows. For every element in D(G), there
corresponds a p×q submatrix in D̃(G) so that D̃(G) is given
by

[D̃(G)]a,b =


Φik if (i, j) = ek ∈ E
Ψik if (j, i) = ek ∈ E
0 otherwise.

(27)

where a and b indicate a range of indices for the submatrix
[D̃(G)]a,b where p(i−1)+1 ≤ a ≤ pi and q(k−1)+1 ≤ b ≤
kq, and where Φik,Ψik ∈ Rp×q . Then, if either Φik or Ψik

is full column rank for all i = 1, . . . , N and k = 1, . . . ,m,
then D̃(G) is also full column rank.

Proof: Begin by noticing that because the graph G is
a tree, then D(G) is full column rank. Now, notice that an
ordering of vertices and edges always exists such that the
upper (n − 1) × m submatrix of D(G) is lower triangular.
Since D(G) may be constructed for an undirected graph
through arbitrarily directing each link, then without loss
of generality, we choose Φik, for all i = 1, . . . , N and
k = 1, . . . ,m, to be full column rank and the matrix D̃(G)
may be constructed such that the upper p(n − 1) × qm
submatrix is lower block triangular where the blocks along
the diagonal are the appropriate matrices Φik. Then it follows
directly that D̃(G) is full column rank.

The next proposition provides the solution to Problem 2.
Proposition 2: Consider a system of N satellites and

assume that their communication graph G is a tree. The
feedback control law for each satellite i ∈ S,

ui1 = −k2iωi
1 −

∑
j∈Ni

k1wij
1 ,

ui2 = −k2iωi
2 −

∑
j∈Ni

k1wij
2 ,

(28)

where the control gains are k1 > 0 and k2i > 0 for i ∈ S,
ensures that lim

t→∞
wij = 0 and lim

t→∞
ηi = 0 for all i ∈ S and

j ∈ Ni, and thus solves Problem 2.
Proof: From the control law (28) and equations (15),

the closed-loop dynamics of satellite i are given by

Ii1ω̇
i
1 = (Ii2 − Ii3)ωi

2ω
i
3 − k2iωi

1 −
∑

j∈Ni
k1wij

1 ,

Ii2ω̇
i
2 = (Ii3 − Ii1)ωi

1ω
i
3 − k2iωi

2 −
∑

j∈Ni
k1wij

2 ,

Ii3ω̇
i
3 = (Ii1 − Ii2)ωi

1ω
i
2.

(29)
Consider the Lyapunov function candidate

V =
∑
i∈S

∑
j∈Ni

k1
2

ln(1 + ‖wij‖2) +
1

2

∑
i∈S

(ωi)TIiωi. (30)

Taking the time derivative of V along the trajectories of
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the system (29), and after combining terms, yields

V̇ =
∑
i∈S
−k2i(ηi)Tηi +

∑
i∈S

∑
j∈Ni

(k1 − k1)(ηi)Twij

= −
∑
i∈S

k2i(η
i)Tηi ≤ 0.

(31)

It follows that the system is Lyapunov stable and hence the
signals wij and ωi, for j ∈ Ni and all i ∈ S, are bounded.
From (29), it follows that M , {(wij , ηi) : V̇ ≡ 0} =
{(wij , 0) :

∑
j∈Ni

wij = 0 ∀i ∈ S}.
Since a tree with N vertices and N − 1 edges has an

incidence matrix D ∈ RN×(N−1) for an arbitrarily directed
digraph that is full column rank [18], the agreement subspace
lim
t→∞

∑
j∈Ni

wij = 0, for all i ∈ S, can be described as
∑

j∈N1
w1j

...∑
j∈NN

wNj

 = 0 = D̃E, (32)

where D̃ is a block matrix with the same form of D ⊗ A,
where A ∈ R2×2, and E represents the column matrix
consisting of the edge measurements wij without the repeat
edge measurements wji. It follows from Lemma 1 and
Lemma 3, where we have taken Φik = I2×2 and Ψik = R̃i

j

for each corresponding edge wji ∈ E, that D̃ is also full
column rank. Then the agreement subspaceM consists only
of the point where lim

t→∞
wij = 0 and lim

t→∞
ηi = 0 for all

i ∈ S, j ∈ Ni, and by LaSalle’s invariance principle, the
proof is complete.

V. SIMULATION RESULTS

To demonstrate the results of this paper, two numerical
simulations to validate Proposition 1 and Proposition 2 were
performed. For Proposition 1, two satellites, one having
generic inertia properties and the other being axisymmetric,
were simulated. For Problem 2, four satellites with generic
inertia properties were simulated.

A. Simulation 1: Two Satellites in Communication

For Problem 1, we assume two satellites in communi-
cation and take i = 1 and j = 2. The satellites have
moments of inertia I1 = diag(10, 25, 20) kg ·m2 and I2 =
diag(10, 10, 25) kg ·m2. The initial angular velocities for
Satellites 1 and 2 are ω1(0) = (0.2,−0.1, 0.2)T rad/s
and ω2(0) = (−0.2, 0.2,−0.2)T rad/s, respectively.
The initial orientations given in unit quaternions for
Satellites 1 and 2 are [0.8805, 0.4402,−0.1761, 0] and
[0.2774, 0.5547, 0.5547, 0.5547], respectively. The control
gains were set to k1 = 1.5 and k2 = 6 for both satellites,
k13 = 1, and k23 = 0.

The w parameters describing the b̂3 axis of Satellite 2
in the frame of Satellite 1 are plotted in Fig. 2. To better
visualize the effectiveness and behavior of the controller, an
animation depicting the two satellites as they rotate in inertial
space was also made. Snapshots at distinct time instances
from the animation are shown in Fig. 3. The animation can
be found in http://dcsl.gatech.edu/movies/undersatsim1.avi.
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Fig. 2. The w parameter state history of simulation 1.
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Fig. 3. Snapshots at different phases of simulation 1.

B. Simulation 2: N -Satellites in Communication

For Problem 2, we assume four satellites communicating
based on a given communication topology encoded
in the sets Ni, for i ∈ S = {1, 2, 3, 4}. For this
problem we therefore have N = 4. The assumed
communication connections are given by N1 , {3},
N2 , {3}, N3 , {1, 2, 4}, N4 , {3}. The satellites have
moments of inertia I1 = diag(45, 25, 15) kg ·m2, I2 =
diag(15, 35, 45) kg ·m2, I3 = diag(84, 24, 15) kg ·m2,
and I4 = diag(60, 40, 15) kg ·m2, and their initial angular
velocities are ω1(0) = (0.2,−0.1, 0.1)T rad/s, ω2(0) =
(−0.1,−0.1,−0.2)T rad/s, ω3(0) = (0.1, 0.1, 0.1)T rad/s,
and ω4(0) = (0.1, 0.3, 0.1)T rad/s, respectively.
The initial orientations given in unit quaternions for
Satellites 1, 2, 3, and 4 were chosen as [1, 0, 0, 0],
[0.5547, 0.5547,−0.2774, 0.5547], [0,−0.3162, 0, 0.9487],
and [0,−0.4472, 0, 0.8944], respectively. The control gains
were set to k1 = 0.2 and k2i = 1 for i = 1, 2, 3, 4.

The w parameters describing the b̂3 axis of Satellite 2
in the frame of Satellite 1 and Satellites 1, 2, and 4 in the
frame of Satellite 3 are plotted in Fig. 4. Similar behavior
was observed for the other partial attitude parameters as well.
Several snapshots of the simulation’s animation are shown
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in Fig. 5. The animation can be found in http://dcsl.gatech.
edu/movies/undersatsim2.avi.

0 100 200 300 400 500
seconds

-30

-20

-10

0

10

20

w
112

 a
nd

 w
212

w
1
12

w
2
12

(a)

0 100 200 300 400 500
seconds

-2

-1.5

-1

-0.5

0

0.5

1

1.5

w
131

 a
nd

 w
231

w
1
31

w
2
31

(b)

0 100 200 300 400 500
seconds

-1

0

1

2

3

4

w
132

 a
nd

 w
232

w
1
32

w
2
32

(c)

0 100 200 300 400 500
seconds

-1.5

-1

-0.5

0

0.5

1

1.5

2

w
134

 a
nd

 w
234

w
1
34

w
2
34

(d)

Fig. 4. The w parameter state histories for Problem 2: (a) w parameters of
satellite 2 in the frame of satellite 1; (b) w parameters of satellite 1 in the
frame of satellite 3; (c) w parameters of satellite 2 in the frame of satellite
3; (d) w parameters of satellite 4 in the frame of satellite 3.

VI. CONCLUSIONS

In this paper we have solved two problems related to
the partial attitude stabilization within a system of multiple
underactuated satellites. Each of the satellites considered has
two control torques acting on two of their principal axes,
while the third principal axis is left uncontrolled. Only rela-
tive partial attitude is used in the feedback control. Two cases
are considered. In the first case the satellites’ underactuated
axes end up pointing along the same orientation in space and
use only relative partial velocities for feedback. In the second
case the axes end up pointing along the same fixed inertial
orientation and use inertial partial velocity for feedback. In
addition to maintaining alignment of the relative attitude
among intentionally underactuated spacecraft, the results of
this paper can also be used to control originally fully-actuated
satellite clusters subject to actuator failures.
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