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Abstract— A Stochastic Game Theoretic Differential Dy-
namic Programming (SGT-DDP) algorithm is derived to solve
a differential game under stochastic dynamics. We present the
update law for the minimizing and maximizing controls for both
players and provide a set of backward differential equations for
the second order value function approximation. We compute the
extra terms in the backward propagation equations that arise
from the stochastic assumption compared with the original GT-
DDP. We present the SGT-DDP algorithm and analyze how
the design of the cost function affects the feed-forward and
feedback parts of the control policies under the game theoretic
formulation. The performance of SGT-DDP is then investigated
through simulations on two examples, namely, a first order
nonlinear system, the inverted pendulum and the cart pole
problems with conflicting controls. We conclude with some
possible future extensions.

I. INTRODUCTION

Over the recent years, autonomy has become one of the
most active areas of research, with many applications in
the areas of robotics, automotive and aerospace systems.
From the different computational frameworks used to achieve
autonomy in engineered systems, stochastic trajectory op-
timization plays a key role since it provides a framework
for computing the best possible action in the presence of
exogenous stochastic disturbances. While there has been an
extensive amount of work on stochastic and deterministic
trajectory optimization, most of the prior work in this area
has been on discrete time representations. In cases where
the initial problem formulation is in continuous time, the
standard approach is to discretize the problem at hand and
then perform optimization in discrete time.

In this work we derive a method for stochastic trajectory
optimization using the framework of Differential Dynamic
Programming (DDP) [1]. DDP is one of the most well-
known trajectory optimization methods that iteratively finds
a local optimal control policy starting from a nominal control
and state trajectory. There has been a plethora of variations
and applications of DDP within the controls and robotics
communities. Starting with a differential game theoretic
formulation and its application on bipedal locomotion [2]
to receding horizon [3], and stochastic control formulations
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[4], [5], DDP has become one of the standard methods for
trajectory optimization with a broad range of applications
[4], [6]–[13].

In this paper we approach the problem of stochastic
trajectory optimization in continuous time from a game-
theoretic point of view, and present an algorithm that relies
on first order expansion of the dynamics and second order
expansion of the value function. In particular, we derive the
equations for the backward propagation of the value function
for the case of stochastic differential games. The resulting
algorithm has the attractive characteristics of DDP in terms
of scalability and numerical efficiency, while it also features
robustness to deterministic and stochastic disturbances due
to stochastic min-max formulation. The contribution of this
paper is twofold:

i) For the first time in the literature, we derive a stochas-
tic game theoretic Differential Dynamic Programming
algorithm in continuous time and provide a set of
backward ordinary differential equations for the zeroth,
first and second order terms in the approximation of
the value function along a nominal trajectory.

ii) The resulting algorithm is a generalization of our previ-
ous work on Game Theoretic DDP (GT-DDP) [14] to a
stochastic settings. Applications of the proposed algo-
rithm include robust stochastic trajectory optimization
and stochastic control under non-zero mean stochastic
disturbances.

The motivation of this work comes from the fact that there
is a fundamental connection between min-max extensions
of optimal control and risk-sensitive stochastic control for-
mulations [15]. This relationship was first investigated by
Jacobson in [16]. The work in [12] also investigated risk-
sensitive stochastic control in an LQG setting while the
work in [13] addressed risk-sensitive control for nonlinear
stochastic systems and infinite horizon control tasks. In a
risk-sensitive setting, the control objective is to minimize a
performance index, which is expressed as a function of the
mean and variance of a given state- and control-dependent
cost. Therefore, the element of risk sensitivity arises from the
minimization of the variance of that cost. Thus, risk-sensitive
optimal control problems are directly related to stochastic
differential games [17] considered in this paper.

II. PROBLEM FORMULATION

We consider the problem of a differential game between
two players

V (x(t0), t0) = min
u

max
v

J(x,u,v)



= min
u

max
v

E
[
φ(x(tf )) +

∫ tf

t0

L(x,u,v)dt
]
, (1)

subject to the stochastic dynamics

dx = f(x,u,v, t)dt+ G(x)dw,
x(t0) = x0,

(2)

where V stands for the value function (expected cost-to-go),
the term J represents the performance index, and x ∈ Rn
represents the state of the dynamical system. The term
u ∈ Rp stands for the input of the minimizing player, whose
objective is to minimize the performance index. Similarly,
v ∈ Rq represents the input of the maximizing player,
which tries to maximize the performance index. The function
L : Rn×Rp×Rq 7→ R is the running cost and φ : Rn 7→ R is
the terminal cost, where the terminal time tf is a prescribed
constant. The term dw represents an increment of a m-
dimensional Wiener process (standard Brownian motion),
and G : Rn 7→ Rn×m is introduced to scale dw and match
the dimension of f : Rn×Rp×Rq×R 7→ Rn. It is assumed
that dw ∼ N (0, Im×mdt).

Denote by U the admissible feedback control
set of the minimizing player, that is, U = {u :
[t0, tf ] × Rn 7→ Rp,u(τ, ·) is Fτ -measurable, ∀τ ∈
[t, tf ], and u(·,x) is Lebesgue measurable, ∀x ∈ Rn}.
Similarly, the admissible feedback control set of
the maximizing player is given by V = {v :
[t0, tf ] × Rn 7→ Rq,v(τ, ·) is Fτ -measurable, ∀τ ∈
[t, tf ], and v(·,x) is Lebesgue measurable, ∀x ∈ Rn}.
Here Ft denotes the corresponding filtration with respect
to the Brownian motion, which can be interpreted as
representing all historical information available up to time t
about the stochastic process.

We assume in this paper that the value of the game exists,
that is,

V = min
u

max
v

J(x,u,v) = max
v

min
u
J(x,u,v). (3)

Next, we derive the stochastic min-max DDP framework.

III. OPTIMAL CONTROL VARIATIONS

Given a nominal mean trajectory of the state and initial
controls (x̄, ū, v̄), and letting δx = x − x̄, δu = u − ū,
δv = v − v̄, from

d(x̄ + δx) = f(x̄ + δx, ū + δu, v̄ + δv)dt+ G(x̄ + δx)dw
≈ (f(x̄, ū, v̄) +∇xfδx +∇ufδu +∇vfδv)dt

+ (G(x̄) + Gxδx)dw, (4)
dx̄ = f(x̄, ū, v̄)dt, (5)

we obtain

dδx = (∇xfδx +∇ufδu +∇vfδv)dt
+ (G(x̄) + Gx(δx))dw,

(6)

where Gx(δx) = [∇xG
(1)δx, . . . ,∇xG

(m)δx] and G(j)

denotes the j-th column vector of G, j = 1, . . . ,m. The
arguments of the functions in the previous derivation are

omitted when they are evaluated along the nominal trajectory
(x̄, ū, v̄).

In order to derive the update law for the minimizing
and maximizing controls, we start our analysis with Bell-
man/Isaac’s principle, which states

V (xt, t) =

min
u

max
v

E
[ ∫ t+dt

t

L(x,u,v)dt+ V (xt+dt, t+ dt)
∣∣∣∣xt],

(7)

where the subscript t and t+ dt are introduced to denote the
evaluation of the variables at time t and t+ dt, respectively.

The main idea is to take expansions of the terms in
both sides of equation (7) around the nominal state and
control trajectories (x̄, ū, v̄) to find the update equations for
the minimizing control, maximizing control and backward
differential equations for the zeroth, first and second order
approximation terms of the value function. Starting with the
left-hand side of (7), the second order expansion of the cost-
to-go function around a nominal trajectory x̄ is obtained as
follows

V (xt, t) = V (xt + x̄t − x̄t, t) = V (x̄t + δxt, t)

≈ Vt +∇xVtδxt +
1

2
δxT

t∇xxVtδxt,

where Vt = V (x̄t, t). As for the right-hand side of (7), the
first term is approximated as follows

E

[∫ t+dt

t

L(x,u,v)dt
∣∣∣∣xt
]
≈ L(xt,ut,vt)dt

= L(x̄t + δxt, ūt + δut, v̄t + δvt)dt. (8)

This expression can be approximated as

Ldt+ (∇xLδx +∇uLδu +∇vLδv)dt

+
1

2

 δxt
δut
δvt

T  ∇xxL ∇xuL ∇xvL
∇uxL ∇uuL ∇uvL
∇vxL ∇vuL ∇vvL

 δxt
δut
δvt

 dt,

(9)

where the function L and its derivatives in the last equation
are all evaluated at (x̄t, ūt, v̄t) and thus omitted for sim-
plicity of notation. Henceforth, all the terms are evaluated at
(x̄t, ūt, v̄t), unless specified otherwise.

Before we expand the term E [V (xt+dt, t+ dt)] around
x̄t+dt and make it compatible with the left-hand side of (7),
we need to find an expression for δxt+dt in terms of δxt.
Indeed, from (6), we get

δxt+dt = δxt + (∇xfδxt +∇ufδut +∇vfδvt)dt
+ (G + Gx(δxt))dw,

where Gx(δxt) = [∇xG
(1)δxt, . . . ,∇xG

(m)δxt]. Return-
ing to the expansion of E[V (xt+dt, t+ dt)|xt], and letting
Vt+dt = V (x̄t+dt, t+ dt), we have

E
[
V (xt+dt, t+ dt)

∣∣xt] = E
[
V (x̄t+dt + δxt+dt, t+ dt)

∣∣xt]



By expanding the last term, we obtain

E
[
Vt+dt +∇xVt+dtδxt+dt +

1

2
δxT

t+dt∇xxVt+dtδxt+dt
∣∣xt

]
= Vt+dt +∇xVt+dt

[
δxt + (∇xfδxt +∇ufδut +∇vfδvt)dt

]
+

1

2

[
δxt + (∇xfδxt +∇ufδut +∇vfδvt)dt

]T∇xxVt+dt

·
[
δxt + (∇xfδxt +∇ufδut +∇vfδvt)dt

]
+

1

2
tr
(
∇xxVt+dt(G+Gx(δxt))(G+Gx(δxt))

T)dt, (10)

where tr(·) denotes the trace of a matrix. In the pre-
vious derivation, we make use of the fact that dw ∼
N (0, Im×mdt).

We proceed by taking expansions of all the terms. After
combining (9) with (10) and grouping the terms with respect
to δxt, δut and δvt, we can represent the right-hand side of
(7) in a compact form, that is,

E

[∫ t+dt

t

L(x,u,v)dt+ V (xt+dt, t+ dt)
∣∣∣∣xt
]

= Vt+dt +Q0dt+∇xVt+dtδxt

+
(
Qxδxt +Quδut +Qvδvt

)
dt+

1

2
δxT

t∇xxVt+dtδxt

+
1

2

 δxt
δut
δvt

T  Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

 δxt
δut
δvt

 dt, (11)

where

Q0 = L+
1

2
tr(∇xxVt+dtGGT),

Qx = ∇xL+∇xVt+dt∇xf +

m∑
j=1

G(j)T∇xxVt+dt∇xG
(j),

Qu = ∇uL+∇xVt+dt∇uf ,

Qv = ∇vL+∇xVt+dt∇vf

and the second partials,

Qxx = ∇xxL+∇xf
T∇xxVt+dt∇xfdt+ 2∇xxVt+dt∇xf

+

m∑
j=1

∇xG
(j)T∇xxVt+dt∇xG

(j),

Quu = ∇uuL+∇uf
T∇xxVt+dt∇ufdt,

Qvv = ∇vvL+∇vf
T∇xxVt+dt∇vf

and the mixed partials,

Qux = ∇uxL+∇uf
T∇xxVt+dt +∇uf

T∇xxVt+dt∇xfdt,

Qvx = ∇vxL+∇vf
T∇xxVt+dt +∇vf

T∇xxVt+dt∇xfdt,

Quv = ∇uvL+∇uf
T∇xxVt+dt∇vfdt,

Qxu = QT
ux, Qxv = QT

vx, Qvu = QT
uv.

All the parameters in the previous expressions are henceforth
denoted as the Q-functions. The reason we single out Vt+dt,
∇xVt+dtδxt and 1

2δx
T
t∇xxVt+dtδxt instead of appending

them in the Q-functions will become clear later on, as we
derive the backward differential equations with respect to the
value function and its derivatives.

In order to find the optimal control updates δu∗
t and δv∗

t ,
we take the derivative of (11) with respect to δut and δvt,

respectively, and set them equal to zero to obtain

δu∗
t = −Q−1

uu

(
Quxδx +Quvδvt +Qu

)
, (12)

δv∗
t = −Q−1

vv

(
Qvxδx +Qvuδut +Qv

)
. (13)

By replacing the δvt term in (12) with (13) and solving
for δu∗

t , we can eliminate δvt in the expression of δu∗
t . We

can solve for δv∗
t in a similar manner and obtain

δu∗
t = lu + Luδx and δv∗

t = lv + Lvδx, (14)

with the feed-forward gains lv, lu and feedback gains Lv,Lu

defined as:

lu = −
(
Quu −QuvQ

−1
vvQvu

)−1(
Qu −QuvQ

−1
vvQv

)
,

Lu = −
(
Quu −QuvQ

−1
vvQvu

)−1(
Qux −QuvQ

−1
vvQvx

)
,

lv = −
(
Qvv −QvuQ

−1
uuQuv

)−1(
Qv −QvuQ

−1
uuQu

)
,

Lv = −
(
Qvv −QvuQ

−1
uuQuv

)−1(
Qvx −QvuQ

−1
uuQux

)
.

IV. BACKWARD PROPAGATION OF THE VALUE FUNCTION

Notice that the feed-forward and feedback gains are func-
tions of the value function and its first and second order
partial derivatives with respect to x. Therefore, we need to
find a way to obtain these values, and this is presented in
the following proposition.

Proposition 4.1: The value function and its first and
second order partial derivatives with respect to x can be
determined by the following backward ordinary differential
equations

−dV
dt

= Q0 + lT
uQu + lT

vQv +
1

2
lT
uQuulu

+ lT
uQuvlv +

1

2
lT
vQvvlv,

−d(∇xV )

dt
= Qx + LT

uQu + LT
vQv

+QT
uxlu +QT

vxlv + LT
uQuulu + LT

uQuvlv

+ LT
vQvulu + LT

vQvvlv,

−d(∇xxV )

dt
= Qxx + 2LT

uQux + 2LT
vQvx

+ 2LT
vQvuLu + LT

uQuuLu + LT
vQvvLv,

(15)

where the Q-functions are in the form

Q0 = L+
1

2
tr(∇xxVtGGT),

Qx = ∇xL+∇xVt∇xf +

m∑
j=1

G(j)T∇xxVt∇xG
(j),

Qu = ∇uL+∇xVt∇uf , Qv = ∇vL+∇xVt∇vf ,

Qxx = ∇xxL+ 2∇xxVt∇xf +

m∑
j=1

∇xG
(j)T∇xxVt∇xG

(j),

Quu = ∇uuL, Qvv = ∇vvL, Quv = ∇uvL,
Qux = ∇uxL+∇uf

T∇xxVt, Qvx = ∇vxL+∇vf
T∇xxVt,

Qxu = QT
ux, Qxv = QT

vx, Qvu = QT
uv, (16)



subject to the terminal conditions

V (tf ) = φ(x̄(tf ), tf ), ∇xV (tf ) = ∇xφ(x̄(tf ), tf ),

∇xxV (tf ) = ∇xxφ(x̄(tf ), tf ). (17)
Proof: In order to find the update law of the value

function and its first and second order partial derivatives, we
substitute the optimal minimizing control (12) and maximiz-
ing control (13) in the expansion of (7) to obtain

Vt +∇xVtδxt +
1

2
δxT

t∇xxVtδxt

= Vt+dt +Q0dt+∇xVt+dtδxt

+Qxdtδxt +Qudtδut +Qvdtδvt +
1

2
δxT

t∇xxVt+dtδxt

+
1

2

 δxt
δut
δvt

T  Qxxdt Qxudt Qxvdt
Quxdt Quudt Quvdt
Qvxdt Qvudt Qvvdt

 δxt
δut
δvt

 .
(18)

After grouping terms on the right-hand side of (18) as
zeroth order, first order and second order expressions of
δxt, we can equate the coefficients on the left-hand side
and right-hand side of (18) and after some mathematical
manipulations, we arrive at

−dVt
dt

= Q0 + lT
uQu + lT

vQv +
1

2
luQuulu

+ lT
uQuvlv +

1

2
lT
vQvvlv, (19)

−d∇xVt
dt

= Qx + LT
uQu + LT

vQv +QT
uxlu +QT

vxlv

+LT
uQuulu + LT

uQuvlv + LT
vQvulu + LT

vQvvlv, (20)

−d∇xxVt
dt

= Qxx + 2LT
uQux + 2LT

vQvx

+ 2LT
vQvuLu + LT

uQuuLu + LT
vQvvLv. (21)

Letting dt→ 0 in (19) through (21), we readily obtain (15).
Similarly, the expressions of the Q-functions are turned into
(16).

At the final time, we have V (x(tf ), tf ) = φ(x(tf )). By
taking the expansions around x̄(tf ) we get

φ(x(tf )) = φ(x̄(tf ) + δx(tf ))

≈ φ(x̄(tf )) +∇xφ(x̄(tf ))δx(tf )

+ δx(tf )T∇xxφ(x̄(tf ))δx(tf ). (22)

Therefore, the boundary conditions at t = tf for the
backward differential equations are represented by (17), and
this completes the proof.

Now that we have found a method to obtain the value
function and its first and second order partial derivatives
with respect to the state through backward propagation, we
put all the pieces together and provide the Stochastic Game
Theoretic Differential Dynamic Programming (SGT-DDP)
algorithm in a pseudocode form shown in Algorithm 1.

The cost function is chosen depending on the application.
The roles of minimizing and maximizing controls in the
control design are determined by the choices of the Hessian
of L with respect to the controls. In order to see this feature,

Algorithm 1 Pseudocode of the SGT-DDP Algorithm
Given:

- Stochastic dynamics dx = f(x,u,v, t)dt+ G(x)dw
- Initial condition of the dynamics x0

- Initial minimizing control ū and maximizing control v̄
- Terminal time tf
- Multiplier γ
- A constant N

1: procedure UPDATE CONTROL(x0, ū, v̄, tf , γ, N )
2: for i from 1 to N do
3: Find the initial mean trajectory x̄ by integrating

the deterministic part of the controlled dynamics forward
with x0, ū and v̄;

4: Find the value of V, Vx, Vxx at tf according to
(17);

5: Compute the quadratic approximation of the
value function V, Vx, Vxx in [0, tf ] by integrating back-
ward the equations (15);

6: Compute lu,Lu, lv,Lv with the Q-functions
from (16);

7: Compute δx(t) through δxt+dt = δxt +
(∇xfδxt + ∇ufδut + ∇vfδvt)dt while replacing δu
and δv with (lu +Luδx) and (lv +Lvδx), respectively;

8: Compute δu = lu +Luδx and δv = lv +Lvδx;
9: Update control u∗ = u∗ +γδu, where γ ∈ (0, 1]

is chosen as the learning rate;
10: Set ū = u∗ and v̄ = v̄∗;
11: end for
12: return x∗, u∗, v∗, lu,Lu, lv,Lv.
13: end procedure

recall that Quu = ∇uuL and Qvv = ∇vvL. Furthermore,
since ∇uuL and ∇vvL are design parameters, they can be
chosen such that ∇uuL is positive definite and ∇vvL is
negative definite. Such design makes sure that the role of the
controller u is to minimize the cost whereas the controller
v aims to maximize it. Since Quu > 0 and Qvv < 0,
we can deduce that

(
Quu − QuvQ

−1
vvQvu

)−1
> 0, and(

Qvv −QvuQ
−1
uuQuv

)−1
< 0. Combining these two matrix

inequalities and the form of the feed-forward and feedback
gains of the control policies in the expressions for lu,Lu, lv
and Lv, it can be seen that the controls are updated such
that the control u tends to reduce the cost while the control
v tends to increase it.

V. SIMULATION RESULTS

In this section, we apply the proposed SGT-DDP algorithm
to two systems. The first system is the inverted pendulum and
the second one is the cart pole problem. Specifically, the first
system is governed by the equations

dx =

[
x(2)

(mg`/I) sinx(1)− (b/I)x(2) + (1/I)(u + v)

]
dt

+

[
0

αx(1)

]
dw, (23)
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Fig. 1: (a) Plots of mean and standard deviation of 1000 trajectories of θ.
Cyan, magenta and yellow plots correspond to the case of Rv = 0.13, 0.2
and 10, respectively. The red line at the bottom depicts the desired state
θ = 0. (b) Plots of mean and standard deviation of 1000 trajectories of θ̇.

where x = [θ, θ̇]T and the parameters are chosen as m =
1 Kg, ` = 0.5 m, b = 0.1, I = ml2, g = 9.81Kg ·m/ sec2

and α = 1. Our goal is to bring the pendulum from the initial
state [θ, θ̇] = [π, 0] to the target position [θ, θ̇] = [0, 0]. The
cost function is given by

J = x(tf )TQfx(tf ) +

∫ tf

0

(uTRuu− vTRvv) dt, (24)

where
Qf =

[
100, 0
0, 5

]
. (25)

For the simulation, we set Ru = 0.1 and Rv = 0.13, 0.2, 10
to observe how the change of control authority of the
maximizing control affects the outcome of the simulation.

We set the initial control to be ū ≡ 0, v̄ ≡ 0, the terminal
time to be tf = 1 and the multiplier γ = 0.8. For each
value of Rv, we run the inverted pendulum system with
feedback minimizing control for 1000 times. In Fig. 1a,
we have three colored plots, where cyan, magenta and dark
yellow plots correspond to the case of Rv = 0.13, 0.2 and
10, respectively. The plot of each color contains the mean
of the trajectories of θ with respect to time and an error bar
with a distance of the standard deviation above and below the
curve is drawn at every time step. Similarly, the mean and
standard deviation of the trajectories of θ̇ for these values of
Rv are shown in Fig. 1b.

It can be observed from Fig. 1 that the feedforward and
feedback parts of the control policy change with Rv. In
particular, as Rv decreases the feedforward control steers the
mean trajectory towards the desired state earlier. Moreover,
the optimal feedback gains reduce the variability of the
trajectories when Rv gets small. This behavior indicates
that the game-theoretic formulation can give rise to robust
policies that shape both the mean and the variance of the
optimal trajectories.

Furthermore, we compare the performance of the feedback
control emerging from our algorithm with the control that
results from the deterministic game theoretic DDP in [14].
This time, we fix Rv = 1 and α = 4. The other parameters
remain unchanged. The result is shown in Fig. 2 where the
orange plots depict the mean and error bars of the state
trajectories subject to the feedback control originated from
the algorithm proposed in this paper and the blue plots are
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Fig. 2: (a) Comparison of plots of mean and standard deviation of 1000
trajectories of θ with respect to the SGT-DDP and the GT-DDP control in
orange and blue, respectively. (b) Comparison of plots of θ̇ with respect to
the SGT-DDP and the GT-DDP control.

associated with the deterministic game theoretic DDP from
[14]. It can be seen that the SGT-DDP algorithm returns a
control that drives the mean trajectory towards the desired
state earlier. One explanation of this behavior is as follows.
Recall from (15) that

−d(∇xxV )

dt
= Qxx + 2LT

uQux + 2LT
vQvx

+ 2LT
vQvuLu + LT

uQuuLu + LT
vQvvLv.

(26)

Let Qvv = ∇vvL be negative definite. Then the more
authority the maximizing control has (the smaller Qvv is),
the larger the right-hand side of (26) becomes. Similarly,
by the expression of Qxx, as the state-dependent noise gets
larger, the right-hand side of (26) also increases. Therefore,
the noise and the maximizer affect the update of ∇xxV in a
similar fashion. Hence, it is expected that the enhancement
of the control authority of the maximizing control and the
inclusion of noise in SGT-DDP result in similar behavior, as
shown in Figs. 1 and 2.

In the next example, we consider the cart pole problem
with conflicting controls under stochastic disturbances. This
is an underactuated mechanical system and the corresponding
dynamics is given by

ẋ = f(x) +G(x)(u + v + dw), (27)

where

f(x) =



x(2)

m sinx(3)(−` ˙x(4)
2
+ g cosx(3))

M +m sin2 x(3)
x(4)

−m`x(4)2 cosx(3) sinx(3) + (M +m)g sinx(3)

`(M +m sin2 x(3))


,

(28)
and

G(x) =



0

1

M +m sin(x(3))2

0

cos(x(3))

`(M +m sin(x(3))2)

 , (29)

The state x = [x, ẋ, θ, θ̇]T where x represents the displace-
ment of the cart and θ stands for the angle of the pole.
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Fig. 3: Mean and standard variance of 100 trajectories of the four states with
respect to time under conflicting controls in blue. The red lines represents
the goal states θ = 0.

` = 0.5 is the length of the pole, M = 10 is the mass of the
cart and m = 1 is the mass of the pole, and g = 9.8 is the
gravitational constant. The cost function is in the form

J = (x(tf )− xf )TQf (x(tf )− xf ) (30)

+

∫ tf

0

(uTRuu− vTRvv)dt, (31)

where Qf = diag([0, 500, 5000, 50]). The other parameters
in the cost function are given by Ru = 0.01, Rv = 0.1.
The minimizing control u aims to bring the system from
the initial state x0 = [0, 0, π, 0]T to the desired state xf =
[0, 0, 0, 0]T, whereas the maximizing control v attempts to
stop this from happening. Note that the terminal displace-
ment is actually not restricted to reach zero since Qf (1, 1) =
0 in the cost function. The initial controls are set to ū ≡ 0,
v̄ ≡ 0, the terminal time tf = 3 and the multiplier is set to
γ = 0.3. The mean of 100 trajectories of the states under
conflicting feedback controls and stochastic disturbances are
depicted in Fig. 3 in blue. Error bars of the standard deviation
are drawn around the mean trajectories.

VI. CONCLUSION

We consider a differential game involving two conflict-
ing controls under stochastic dynamics. Starting from the
Bellman-Isaacs equation, we take expansions of the value
function and its derivatives around a nominal trajectory
and find the update law of the minimizing and maximizing
controls of both players, as well as the backward differential
equations of the approximation of the value function up to
the second order. We present the SGT-DDP algorithm and
analyze the effect of the game theoretic formulation in the
feed-forward and feedback parts of the control policies.

The SGT-DDP algorithm is tested on three distinct sys-
tems: one is a first-order nonlinear system and the other
two are the inverted pendulum and cart pole problems with
conflicting controls. We investigate how the intensity of the

stochastic noise affects the behavior of the controls and the
corresponding trajectories.

Possible extensions of this research include applications
of this method to more realistic systems with higher order
dynamics, including many applications starting from neuro-
muscular and bio-mechanical systems to stochastic pursuit-
evasion problems. The extension of SGT-DDP to systems
with control and state constraints is another direction of the
research.
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