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Abstract— We consider a relay pursuit-evasion problem with
two pursuers and one evader. We reduce the problem to a one-
pursuer/one-evader problem subject to a state constraint. A
suboptimal control strategy for the evader to prolong capture
is proposed and is compared to the optimal evading strategy.
Extensions to the multiple-pursuer/one-evader case are also
presented and evaluated via numerical simulations.

I. INTRODUCTION

There has been a lot of prior work on multiple pursuit
evasion problems [1]–[13]. Many of these references focus
on the pursuer’s strategy given the evader’s strategy [1]–
[6]. References [7]–[13] use a differential game formulation,
where the pursuers and the evaders know the strategies of
each other and make decisions accordingly. The current
paper addresses a pursuit problem of two pursuers and one
evader, in the case when the two pursuers implement a fixed
feedback strategy to capture the evader. It is assumed that the
pursuers are faster than the evader, so capture is ensured. The
objective of the evader is therefore to maximize the time-to-
capture under the assumption that it knows the strategy of
the pursuers.

Previous similar work on the multiple-pursuer/evader dif-
ferential game include references [14]–[19], which focus on
finding the evading strategy in a pursuit-evasion problem.
Pshenichnyi is one of the pioneers in studying multiple
pursuit-evasion problems. In [14] he provided conditions for
a successful evasion of one evader from multiple pursuers.
In [15], Chernousko showed that a maneuvering point evader
can avoid exact capture by any number of point pursuers
having lower speed. Follow-up work was presented by Zak
[16], where he studied the evading strategy of an evader
followed by many pursuers with geometric constraints in
Rr, where r ≥ 2. Ibragimov et al. [6] dealt with the
problem of evasion from many pursuers with simple motions
and integral constraints. Chodun [19] extended the evading
method of Zymowski [18] and presented an evading strategy
in a multiple-pursuer/one-evader game.

These papers aim at generating (sub)optimal evading
strategies for successful evasion. Our paper differs from these
prior works in the sense that due to our problem assumptions
capture is always guaranteed. The objective of the evader
is therefore to extend the time of capture. This problem is
motivated by the following situation: consider a decoy, whose
speed is limited, entering a defense area guarded by multiple
agents following a prescribed pursuing protocol. The decoy’s
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objective is to avoid capture as long as possible so that it can
”buy more time” for the other evader(s). The goal is to find
the optimal evading strategy to maximize the time-of-capture.

We assume a simplified version of this problem, involving
only two-pursuers and one evader. Both pursuers implement
a relay-pursuit strategy, according to which only one pursuer
is assigned to go after the target at every instant of time.
The latter is the active pursuer, while the other pursuer is
designated as the inactive pursuer. This strategy may be
desirable in cases when the pursuing agents play a dual role,
namely, both as pursuers and as guardians protecting some
area of interest, or when the power or energy consumption
of the pursuing agents needs to be taken into consideration.
Relay-pursuit has been applied before to solve multiple
pursuit-evasion problems in [20] and [21].

In our problem formulation, we also assume that the
pursuers have a stroboscopic view of the evader’s position,
i.e., at every instant of time, the pursuers only know the
current position of the evader but not its velocity. It is further
assumed that the evader is slower than the two pursuers, but
is aware of their strategies and current positions.

II. PROBLEM FORMULATION AND ANALYSIS

A. Problem Formulation
Given a distinct set of points in the plane, known as the

generators, we associate with each of the point locations a
region in the plane, such that each point in this region is
closer (with respect to some distance metric) to its own gen-
erator than to any other generator. This yields a tessellation
of the plane to a set of regions associated with the given
generators. This tessellation is the Voronoi diagram (VD)
generated by the given point set. The corresponding regions
are the Voronoi cells of the tessellation [22] and the curves
that partition these regions are the Voronoi boundaries.

Consider the problem with just two pursuers and one
evader on the plane. Associated to the two pursuers is a VD
whose boundary is the bisector between the locations of the
two pursuers. Assuming that the pursuers use a relay-pursuit
strategy [20], the pursuer whose Voronoi cell contains the
evader is assigned as the active pursuer to chase the evader.
The other pursuer stays at its original location and plays
the role of a guard. The problem terminates when one of
the pursuers captures the evader. Capture is achieved when
the active pursuer enters a ball of radius ε > 0 centered at
the evader’s current position. It is assumed that the pursuers
are faster, but they only have accurate measurements of the
current position of the evader at every instant of time. In
the absence of any informative model of the future evader
position, a reasonable approach for each active pursuer is
to apply a pure pursuit strategy, according to which the
pursuer’s velocity vector points towards the current position



of the target. The active pursuer switches when the evader
enters the interior of the Voronoi cell of another pursuer.

Due to the symmetry of the problem, when the evader
resides on the Voronoi cell boundary, we can assign any
one of the two pursuers to be the active pursuer. Therefore,
throughout the pursuit process, we can fix one pursuer to
be the active pursuer, while the inactive pursuer remains
stationary on the plane, whose mere presence, however,
imposes a state restriction, namely that the evader does not
enter the interior of its corresponding Voronoi cell.

B. State Equations

Without loss of generality, we assume that the inactive
pursuer is located at the origin. Henceforth, the subscripts
P , E and G will be used to denote the active pursuer, the
evader, and the inactive pursuer, respectively. The equations
of motion are

ẋP = u cosφP , ẏP = u sinφP , (1)
ẋE = v cosφE, ẏE = v sinφE, (2)

where xP = (xP , yP ) and xE = (xE, yE) denote the
position of the active pursuer and the target, respectively,
φP ∈ [−π, π) denotes the control input of the active pursuer,
φE ∈ [−π, π) denotes the control input of the evader, and
u and v are the velocities (constant) of the pursuer and the
evader, respectively, with u > v. The state of the system is
x = [xP , yP , xE, yE]T ∈ R4.

Since the active pursuer implements a pure pursuit strat-
egy, it follows that

cosφP =
xE − xP

‖xE − xP‖
, sinφP =

yE − yP

‖xE − xP‖
, (3)

where ‖xE − xP‖ =
√

(xE − xP )2 + (yE − yP )2. Our goal
is to find the optimal control of the evader φE ∈ [−π, π)
to maximize the time-to-capture tc under the state constraint
‖xE − xP‖ ≤ ‖xE − xG‖, where xG = (0, 0), or equivalently,

S(x) = xP (xP − 2xE) + yP (yP − 2yE) ≤ 0. (4)

C. Problem Analysis

It is well known that in the one-pursuer/one-evader prob-
lem without state constraints, when the pursuer applies a
pure pursuit strategy, the optimal strategy for the evader is
to move away from the pursuer along their common line-
of-sight (LoS) [23]. The LoS is defined as the line passing
through the pursuer’s and evader’s instantaneous positions.

Given the problem formulation in Section II-A, if the
evader never reaches the boundary of X before it is captured
by moving along the LoS, the problem reduces to a one-
pursuer/one-evader problem without state constraints. In this
case, the time-to-capture is calculated by

t∗c =
‖xE(0)− xP (0)‖

u− v
. (5)

Proposition 2.1: Consider the pursuit-evasion problem
stated in Section II-A. The evader will be captured before
entering the Voronoi cell of the inactive pursuer while
moving along the LoS and away from the active pursuer,

if and only if the quadratic equation

at2 + bt+ c = 0, (6)

where a = u2 − 2uv, b = 2[(uxP (0) − vxP (0) −
uxE(0)) cosφE(0) + (uyP (0)− vyP (0)−uyE(0)) sinφE(0)]
and c = xP (0)2 + yP (0)2 − 2(xE(0)xP (0) + yE(0)yP (0)),
does not have a solution inside the interval [0, t∗c ], and φE(0)
is determined by the equations:

cosφE(0) =
xE(0)− xP (0)

‖xE(0)− xP (0)‖
, (7a)

sinφE(0) =
yE(0)− yP (0)

‖xE(0)− xP (0)‖
. (7b)

Proof: First note that for the evader to enter the Voronoi
cell of the inactive pursuer, there must exist some time 0 ≤
τ ≤ t∗c such that

‖xE(τ)− xP (τ)‖ = ‖xE(τ)‖. (8)

Suppose that the evader moves along the LoS before capture
occurs. Then φE(t) = φE(0) for all t ≥ 0, where φE(0)
satisfies (7a) and (7b). If there does not exist a time τ ∈
[0, t∗c ] such that equation (8) is satisfied, then the evader will
be captured without entering the Voronoi cell of the inactive
pursuer. Otherwise, we can express the position of the active
pursuer and the evader at time τ in terms of their initial
conditions and plug these expressions in (8), we eventually
obtain (6). If no solution of (6) lies in the time interval [0, t∗c ],
then the evader will be captured before entering the Voronoi
cell of the inactive pursuer, thus completing the proof.

D. The Region for Non-LoS Evasion
In order to find the explicit expression for the region in

which the condition of Proposition 2.1 is not satisfied, and
without loss of generality, let the initial position of the active
pursuer be P = (xP (0), 0).
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Fig. 1. Shaded region of the evader’s initial positions such that the problem
is not degenerate.

In Figure 1, the green region depicts the evader’s initial
positions for which the condition of Proposition 2.1 is not
satisfied. That is, if the evader starts from a position inside
the shaded region, it will not be able to move along the LoS
throughout the pursuit without violating the state constraint.



This region has a triangle-like shape. We denote the three
vertices as A,B and C, where A resides on the line segment
between the active pursuer and the inactive pursuer, and B,C
are on the Voronoi boundary.

The curves AB and AC satisfy the equation

0 = (((v − u)xP (0) + ux)(x− xP (0)) + uy2)2 (9)
− u(2v − u)xP (0)(2x− xP (0))((x− xP (0))2 + y2),

which is derived from 0 = b2 − 4ac, where a, b and
c are defined in Proposition 2.1, by plugging in (7a),
(7b) and the initial condition for the active pursuer. Equa-
tion (9) is plotted in Figure 1 in blue. The coordi-
nates of the points A,B and C are given by A =
(xP (0)v/u, 0), B = (xP (0)/2,

√
v/(2u)− 1/4 |xP (0)|),

and C = (xP (0)/2,−
√
v/(2u)− 1/4 |xP (0)|).

Henceforth, let D denote the shaded region, shown in
Figure 1, of the evader’s initial conditions that lead to a
non-degenerate solution of the problem.

III. PROBLEM FORMULATION AND ANALYSIS IN THE
REDUCED STATE SPACE

A. The Reduced State Space
The equations (1)-(2) can be expressed in a three-

dimensional space by fixing the origin of a new coordinate
system to the active pursuer and by aligning the positive
direction of the x-axis with the direction of the active
pursuer’s velocity vector [23]. Let us denote this new frame
by M. In the frame M, the active pursuer is fixed at the
origin, and the motion of the evader is restricted to lie on the
x-axis due to the pure pursuit strategy of the active pursuer.
The inactive pursuer, however, is no longer stationary inM.

Let θ = φE−φP be the angle between the active pursuer’s
and evader’s velocity vectors. Then φ̇P is given by

φ̇P =
v sin θ

‖xE − xP‖
. (10)
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Fig. 2. Geometry of evader (E), active (P) pursuer, and inactive (G) pursuer
in the inertial (I) and the active pursuer frames (M).

Let the coordinates of the inactive pursuer and the evader
be, respectively, xG = (η, ζ) and xE = (χ, 0) in the frame

M, as shown in Figure 2. The equations of motion in the
frame M are then given by

χ̇ = −u+ v cos θ, (11)

η̇ = −u+ v
ζ

χ
sin θ, (12)

ζ̇ = −v η
χ

sin θ, (13)

while the constraint (4) is given by

S(ξ) =
1

2
(χ2 − (η − χ)2 − ζ2) ≤ 0, (14)

where ξ = [χ, η, ζ]T ∈ R3. The boundary conditions in frame
M are given by

χ(0) = ‖xE(0)− xP (0)‖, χ(tf ) = ε,

η(0) = ‖xP (0)‖ cos(π + ψ(0)− φP (0)), η(tf ) free,
ζ(0) = ‖xP (0)‖ sin(π + ψ(0)− φP (0)), ζ(tf ) free,

(15)

where ψ(0) is the initial value of the angle ψ =
atan(yP , xP ), as shown in Figure 2. Given (11)-(13), the
constraint (14) and boundary conditions (15), our goal is to
find the optimal control θ to maximize tc.

Let E denote the region D in the frame M, and let F =
{ξ ∈ R3 : (χ cos ν, χ sin ν) ∈ E} denote the set of initial
conditions in the reduced space leading to a non-degenerate
solution.

B. Optimal Evading Strategy

To solve the previous problem, we utilize optimal control
theory. To this end, and noticing that Ṡ(ξ) = −χu +
ηv cos θ + ζv sin θ, let the Hamiltonian be

H = −1 + λ1 (−u+ v cos θ) + λ2

(
−u+ v

ζ

χ
sin θ

)
+ λ3

(
−v η

χ
sin θ

)
+ µ (−χu+ ηv cos θ + ζv sin θ) ,

where λ1, λ2, λ3 and µ are co-state variables. The co-states
λ1, λ2 and λ3 evolve according to

λ̇1 = −∂H
∂χ

=
(λ2ζ − λ3η)v sin θ

χ2
+ µu, (16)

λ̇2 = −∂H
∂η

=
λ3v sin θ

χ
− µv cos θ, (17)

λ̇3 = −∂H
∂ζ

= −λ2v sin θ

χ
− µv sin θ, (18)

The multiplier µ satisfies the Kuhn-Tucker condition and
the complementary slackness condition, that is, µ =
0, if S 6= 0, and µ ≥ 0, if S = 0. The transversality condi-
tions for this optimal control problem are

λ2(tc) = 0, λ3(tc) = 0, H(tc) = 0. (19)

Furthermore, since H does not depend explicitly on time,
the optimal Hamiltonian H∗(t) = 0 for all t ∈ [0, tc].

By Pontryagin’s Minimum Principle, the optimal control
θ∗ is computed from Hθ = 0, which yields

tan θ∗ =
λ2ζ − λ3η + µζχ

(λ1 + µη)χ
. (20)



Theorem 3.1: Consider the optimal control problem (11)-
(15). Assume that u > v > u/2 and assume that the initial
conditions are such that ξ(0) ∈ F . Then the optimal control
of the evader is given as follows:

tan θ∗(t) =



λ2ζ − λ3η
λ1χ

, t ∈ [0, τ1],

q − σp
√
p2 + q2 − 1

p+ σq
√
p2 + q2 − 1

, t ∈ [τ1, τ2],

0, t ∈ [τ2, tc],

where p = vη/(uχ), q = vζ/(uχ), σ = sgn(q). Further-
more, τ2 satisfies the switching condition:

vη(τ2)− uχ(τ2) = 0. (21)
Proof: If the initial condition of the evader is not on

the boundary of the Voronoi cell of the inactive pursuer, it
follows that the control is given by (20) with µ = 0, and
hence

tan θ∗(t) =
λ2ζ − λ3η

λ1χ
, for t ∈ [0, τ1]. (22)

The evader will follow this strategy till some time τ1 > 0
when it will hit the boundary of X and then will stay on
the boundary, defined by S(ξ) = 0, for t ∈ [τ1, τ2]. For the
evader to stay on the boundary of X , one easily computes

Ṡ(ξ) = −χu+ ηv cos θ + ζv sin θ = 0, (23)

and thus p cos θ + q sin θ = 1, where p = vη/(uχ) and
q = vζ/(uχ). It follows that

cos θ =
p± q

√
p2 + q2 − 1

p2 + q2
, sin θ =

q ∓ p
√
p2 + q2 − 1

p2 + q2
.

During the time when the evader moves on the boundary, we
want to keep cos θ positive and as large as possible without
violating the boundary condition. It follows that when the
evader moves along the boundary, the control to use is

cos θ =
p+ σq

√
p2 + q2 − 1

p2 + q2
, sin θ =

q − σp
√
p2 + q2 − 1

p2 + q2
,

where σ = sgn(q). It follows that

tan θ∗(t) =
q − σp

√
p2 + q2 − 1

p+ σq
√
p2 + q2 − 1

, for t ∈ [τ1, τ2]. (24)

The optimal value of the multiplier µ∗ for t ∈ [τ1, τ2] can
be immediately computed from (20) as follows

µ∗ =
λ1χ tan θ∗ + λ3η − λ2ζ

χ(ζ − η tan θ∗)
, (25)

with boundary condition µ(τ−2 ) = µ(τ+2 ) = 0. After the
evader leaves the constraint at time t = τ2, and prior to
capture, µ∗ = 0 and thus, equations (17) and (18) can be
rewritten as [

λ̇2
λ̇3

]
=
v sin θ∗

χ

[
0 1
−1 0

] [
λ2
λ3

]
, (26)

whose solution subject to the boundary conditions (19) is
given by λ2(t) = λ3(t) = 0 for all t ∈ [τ2, tc]. There-
fore, when t ∈ [τ2, tc], we have from (20) that tan θ∗ =

(λ2ζ − λ3η)/λ1χ = 0, and hence θ∗ = 0 for all t ∈ [τ2, tc].
By imposing the Erdmann’s corner conditions at the entry
and exit points from the state constraint [24] after some
tedious, but rather straightforward calculations, one obtains
that θ∗(τ−1 ) = θ∗(τ+1 ) and θ∗(τ−2 ) = θ∗(τ+2 ). Hence the
control is continuous at τ1 and τ2. Since θ∗(τ+2 ) = 0,
it follows that θ∗(τ−2 ) = 0 and hence the evader will
leave the boundary when the evader’s velocity is parallel
to the current LoS. Since after the switching at t = τ2 we
have that θ∗(τ2) = 0, it follows that sin θ∗(τ2) = 0 and
hence the switching condition to leave the boundary follows
immediately from (23) and is given by (21). This completes
the proof.

IV. A SUBOPTIMAL EVADING STRATEGY

Summarizing the previous analysis, we conclude that the
optimal trajectory of the evader involves three periods: first,
the evader moves in the Voronoi cell of the active pursuer in
a way such that the optimal conditions (transversality condi-
tion, Erdmann corner condition, etc.) are satisfied before she
hits the boundary, then the evader moves along the boundary
until the switching condition (21) is satisfied, finally the
evader moves along the LoS till capture occurs.

Given the analysis of the previous section, one can
compute numerically the evader’s optimal trajectory. Note,
however, that the second and third period strategies can be
easily implemented without resorting to the solution of a two-
point boundary value problem. The following result follows
immediately from the previous observations.

Corollary 4.1: Consider the optimal control problem (11)-
(15) and let u > v > u/2. Assume that the initial condition
is such that S(ξ(0)) = 0. Then the optimal control of the
evader is given by

tan θ∗(t) =

{
(24), t ∈ [0, τ ],
0, t ∈ [τ, tc],

where τ satisfies the switching condition (21).
When the evader starts from a general position, a subop-

timal control scheme for the evader that can be computed
analytically is proposed as follows: The evader first moves
along the LoS away from the pursuer before it hits the bound-
ary. Then she moves on the boundary until the switching
condition (21) is satisfied. Afterwards, the evader resumes
moving along the LoS until capture occurs. Simulation
results in Section VI-A show that the relative differences
between the time-to-capture by applying this strategy and the
optimal one are always less than 5%, given different speed
ratio and initial positions of the evader and the pursuer.

V. GENERALIZATION IN THE
MULTIPLE-PURSUER/ONE-EVADER PROBLEM

The main idea of the proposed suboptimal evader control
strategy is that the evader moves along the LoS whenever
it is able to, otherwise it will move along the Voronoi
cell boundary. We can generalize this idea and propose a
suboptimal evading strategy for the multiple-pursuer/one-
evader relay pursuit problem. In this case, there will be one
active pursuer and multiple inactive pursuers that play the
role of guards. The objective of the evader is to maximize



the instantaneous velocity component along the LoS at every
instant of time without violating the state constraints imposed
by the fact that the evader never enters the interior of the
Voronoi cells of an inactive pursuer.

Specifically, suppose that, at some time, the evader reaches
the intersection of three adjacent Voronoi cells. One of the
Voronoi cells is generated by the active pursuer xP . Let the
generators of the other two Voronoi cells be xG1 and xG2.
Let S1 = ‖xE − xP‖2 − ‖xE − xG1‖2, S2 = ‖xE − xP‖2 −
‖xE − xG2‖2. The velocity ṽE of the evader to stay on the
intersection of three adjacent Voronoi cells can be found by
solving for Ṡ1 = 0 and Ṡ2 = 0. After some calculations, one
obtains

ṽE =

[
ẋE

ẏE

]
=

[
(s2 − s1)/(r1s2 − r2s1)
(r2 − r1)/(r2s1 − r1s2)

]
, (27)

where

r1 = − xP − xG1

u‖xE − xP‖
, s1 = − yP − yG1

u‖xE − xP‖
, (28)

r2 = − xP − xG2

u‖xE − xP‖
, s2 = − yP − yG2

u‖xE − xP‖
. (29)

Hence, ṽ = ‖ṽE‖ is the speed of the evader to stay on the
intersection of three Voronoi cells. Suppose that the evader
hits the intersection at some time τ during the process, if it
happens that ṽ(τ) < v, then the evader will move with speed
ṽ for some time before she can freely move with maximum
speed.

VI. SIMULATION RESULTS

A. Comparison Between the Proposed Suboptimal and Op-
timal Strategy

In this section we compare the optimal strategy and the
suboptimal strategy for the evader proposed in Section IV.
We set u = 1.0, v = 0.7. Let the capture radius be
ε = 0.001, fixed throughout the simulations. Given the
initial conditions of the evader xE(0) = (−1.1, 0.6), the
active pursuer xP (0) = (−2, 1), and the inactive pursuer
xG(0) = (0, 0), the numerical result generated by GPOPS is
shown in Figure 3 and the optimal time-to-capture is tc =
3.2033. The evader’s trajectory generated by applying the
evading strategy proposed in Section IV as well as the active
pursuer’s trajectory are shown in Figure 4 and are represented
by a red and a green line, respectively. With this approach,
the time-to-capture is t′c = 3.1216. In this simulation, the
relative time difference between the optimal control and the
suboptimal control is ∆ = (tc − t′c)/tc = 2.55%.

In Table I we present additional results under different
initial positions and/or different evader speeds. As shown
from this table, the relative difference in terms of time-
to-capture between the optimal control and the suboptimal
control is, in general, quite small.

B. Case of Three Pursuers

We have implemented the generalization of the suboptimal
evading strategy to a three-pursuer/one-evader relay pursuit
problem and compared the result with the optimal control
of the evader generated by GPOPS. The initial conditions
of the evader and the active pursuer are xE(0) = (−1.1, 0.6)
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Fig. 3. Trajectory of the active pursuer in red and optimal trajectory of
the evader in green.
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Fig. 4. Trajectory of the active pursuer in red and trajectory of the evader
generated by applying the proposed evading strategy in green.

and xP (0) = (−2, 1), respectively. The two inactive pursuers
are located at xG1(0) = (0, 0), xG2(0) = (−0.2, 1). The
numerical result generated by GPOPS is shown in Figure 5.
The corresponding optimal time-to-capture is tc = 3.1530.
The evader’s trajectory generated by applying the evading
strategy we proposed in Section IV, and the active pursuer’s
trajectory are presented in Figure 6 in red and green lines,
respectively. As seen from Figures 5 and 6 the trajectories
are very similar. The time-to-capture is t′c = 3.1366. The
relative time difference this time is ∆ = 0.52%.

VII. CONCLUSIONS

This paper deals with the optimal control of the evader in
a two-pursuer/one-evader relay-pursuit problem. We provide
the conditions for the evader to reach and stay on the bound-
ary of the Voronoi diagram formed by the two pursuers,
and derive the optimal control strategy of the evader to
maximize capture time. We also propose a suboptimal, yet



TABLE I
RELATIVE TIME DIFFERENCE UNDER VARYING EVADER SPEEDS AND

INITIAL CONDITIONS

XXXXXXXXXX[xP yP xE yE]
v

0.7 0.8 0.9

[-2, 1, -1.1, 0.6] 2.55% 2.72% 3.13%
[-2, 0, -1.1, 0.1] 1.70% 0.41% 1.27%
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Fig. 5. Trajectory of the active pursuer (in red) and optimal trajectory of
the evader (in green) obtained from GPOPS. The cyan line represents the
Voronoi diagram of the three pursuers with initial conditions.

practical, control strategy for the evader that does not require
the solution of the corresponding two-point boundary-value
optimal control problem. We generalize this idea and apply
it to the multiple-pursuer/one evader relay pursuit problem.
Simulation results support the theoretical claims.
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