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Abstract— We consider Voronoi-like partitions for a team of In this work, we consider a more general dynamic par-
moving targets distributed in the plane, such that each setn titioning problem under some more realistic assumptions
this partition is uniquely associated with a particular moving compared to the problem formulation in [4]. In particular,

target in the following sense: a pursuer residing inside a gien - ¢ f ina t i ider th bl f
set of the partition can intercept this moving target fasterthan ~ 9/VEN @ t€am oh moving targets, we consider the probiem o

any other pursuer outside this set. It is assumed that each Partitioning the plane inta “capture zones” such that each
moving target employs its own “evading” strategy in respone  element in the partition is associated with a particular imgv
to the pursuer actions. In contrast to standard formulations of  target in the following sense: a pursuer that resides irtbide
problems of this kind in the literature, the evading strategy 4t “capture zone” at a given instant in time, can intercept

does necessarily restrict the evader to be slower than its th . I~
pursuer. In the special case when all moving targets employ the 4 mOY'ng target faster than any other Pursuer residing
a uniform evading strategy, the previous problem reduces to Outside this zone. In our problem formulation, we assume
the characterization of the Zermelo-Voronoi diagram. that each moving target can employ its own “evading”
strategy in response to the actions of its pursuer. Thitestya
does not necessarily constraint the target to move slower
than its pursuer. If the target intercept problem is feasibl
the optimal pursuit strategy is the solution of a special
Voronoi-like partition problems for a set of moving generacgse of Zermelo’s navigation problem [7]. After investiggt
tors in the plane, known in the literature as dynamic pariiti the feasibility and the existence of optimal solutions a th
problems [1], constitute a class of challenging problems igynamic partition problem, we propose an efficient numérica
dynamic computational geometry [2], [3], [4], [5], [6]. The solution, which is based on the propagation of the level sets
have received a considerable amount of attention recently the minimum intercept time by taking advantage of some

owing to their applicability in mobile network and multi- of the properties of the optimal solutions and the reachable
agent problems. One of the fundamental questions in thigts of ZNP.

framework, deals with the characterization of the proxymit
relations between the moving generators (i.e., agents) an
the points in the plane as time evolves. In contrast to t
standard Voronoi partitioning problem, where all genamato
are stationary, the solution of the dynamic partition peoil

I. INTRODUCTION

dn the special case when all the moving targets employ
uniform evading strategy, the solution of the proposed

ynamic partition problem is reduced to the Zermelo-Voiono

diagram [8], [9]. Two interesting attempts that deal witfsth

consists of asequence of time-evolving Voronoi diagrams. pro*?'em in the special case of a qutially-varying (albeit
A diagram of this time-evolving data structure at a paracul statltl)nary) Wmd, f|el(|1/ have .aplpealre.d in [10], [11], where
instant of time is a standard Voronoi diagram with respect tgurely computational/numerical solutions are prese léel.

the positions of the moving Voronoi generators at that timdrOPOSe an alternatl\_/e scheme for determining the Zer”?e'o‘
Voronoi diagram, which exploits the structure of the salati

The work of Devillers et al. [3], [4] highlights an inter- of the ZNP and deals with both temporally and spatially
esting aspect of dynamic partition problems. In particulakarying wind/current fields.

[3], [4] deals with the following problem: Given a set of ) ) )
n postmen (moving targets) that move along prescribed ra SThe rest of the paper IS orga_n_|ze_d as follows. In Section Il
with constant speed, a setotlogs (pursuers) going after the & formulate the dynamic partitioning problem based on the
postmen, find the rule that assigns each dog to each posth_Hr,"mum capture time of.the moving generators, anq In S?C'
under the assumption that every dog is faster than evepf)’n I_” we pre_sent an efficient SChe”.‘e_ for_chara_ctenzusg It
postmen. The main challenge of this problem comes froﬁ\?lunon' Se<_:t|on IV presents non-rivial s_|mu|at|on resu
the fact that any question regarding the proximity relaﬂionF'na”y' Section V concludes the paper with a summary of
between pursuers and moving targets has to be addresg%i]arks'

with respect to a generalized distance function, in thiecas

the minimum intercept time, rather than the usual Euclidean

distance, as with the standard Voronoi partition. Il. PROBLEM FORMULATION
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according to the following equation Next, we investigate the feasibility and existence of opti-
G i P e i _ 1 mal solutions of Problem 1. To this end, 2¥y’) denote
X7 = ur +ve(t), xr(0) =Xz, €T, () the reachable set from’ of the system described by (4).

wherevi(t) is a reference velocity signhal provided to theThe following proposition provides a necessary and sufficie

target, andui, is the “evading control strategy” of th¢"  condition for the feasibility of the™ MTP.

target. Throughout this work, it is assumed t#dD) always Proposition 1: Thei™ MTP has a feasible solution if and
consists ofn distinct points. Furthermore, the equations opnly if

motion of a pursuer, whose objective is to intercept itfe {ye R2? . ly| < p}n g}{(yi) £ . (7

moving target are given by Proposition 1 implies that the feasibility of th& MTP

xp =up, xp(0)=xp, (2) is equivalent to the system (4) being controllable to the

A origin. The controllability question for system (4) recesr
where xp(t) = [zp(t),yp(t)]" € R? andup € Up a rather detailed and careful treatment due to the existence
denotes the control input of the pursuer. It is assumegk the drift termw?(y*,t), and the fact that the contraf
that the set of admissible control input& consists of all is bounded [12]. The following proposition addresses the
measurable functions that take values in the closed udit bahuestion of complete controllability to the origin in the
Furthermore, it is assumed that the evading stratehy special case when the evading strateéyin (3) does not
employed by the*" target in response to the actions of itsdepend explicitly on time.
pursuer, is a time-varying feedback control law that degend

. i ) : ; Proposition 2: Let w(y’,t) = ALy + vi(t), and
th ) ) T ref
on the relatlve_posmon of thé™ moving target from its i (1)) < 1—e, wheree & (0.1), for all £ > 0. Assume that
pursuer. In particular,
i Ad i |) rankA?.z— = 2,
ug = A7 (t)(xp —x7), ) i) no left real eigenvectoe of A% satisfies(e,v) < 0,
where A% () is a2 x 2 real, time-varying matrix. for all v.

The objective of each pursuer is to determine an admis-"l) there is no eigenvalug & spec(Af) with Re(A) > 0.

sible pursuit strategy.» € Up that minimizes the timgy Theni™ MTP has a feasible solution for evepy € R2.
such thatxp (t) — x4 (t)| > p, for a given sufficiently small If, in addition, v/((t) = 0, then conditions i) - iii) are also
p > 0 (radius of capturability) and for allt < T}, where|-| necessary for the feasibility of th&"* MTP.

denotes the Euclidean norm. . o ~

_ _ A Proof: Letiil £ u' —v;(t), and letU* denote the set of
Let us con5|de.rAthe. following state transformatign= aj| admissible values ai’ for a givenviy(t). It follows that

xp — x&, wherey® = [yi,y]T € R% Equation (1) can then |vi(t)| < 1 — ¢, implies that{u € R? : |u| < ¢} C U?, and

be written in the following compact form therefore all conditions of Theorem 7 of [13] are satisfied.

i ; o ; i [ |
y'o=ut+w'(yht), y'(0) =Y, 4) _ y _ - N
The following proposition provides a sufficient condition
VAN _; VAN VAN ; ; . .
wherey’ = xp — X, u* = up andw® = —ul — viy(t), for the existence of a solution of Problem 1.

which implies, in light of (3), that Proposition 3: If there existsa’, 3¢ > 0 such that

i A i i i |AL(t)| < o and|vi,(t)] < B¢ for all t > 0 and condition
t) = —A-(t)y' — t). 5 T ref
w1 ()Y = vreilt) ®) (7) holds, then the!" MTP has an optimal solution.
Thus, the pursuit strategy of th& pursuer is the solution

. > i Proof: From Filippov’'s Theorem on the existence of
of the following minimum-time problem.

solutions of minimum-time problems [14, pp. 310-317], it
Problem 1 (i"" MTP): Given the system described by suffices to prove that there exists> 0 such that

equation (4), determine the control inpujt € Up, such that i i s
auation (4 ute U ) < k(L= ). ®)

Indeed, by virtue of the triangle and Cauchy-Schwartz in-
equalities, and the fact thai?| < 1 it follows

i) The trajectoryy® : [0,7}] — R? generated by the
control u? satisfies the boundary conditions

vi(0) =y, IYUTH) <p. (6) i i i i iy
+(0) (T Gy < (1A (0] + ol + )y
ii) The controlu’ minimizes alongy; the cost functional <Ay P+ (B + DIy 9)
A . ., . . -
J*(u*) = T¢, whereT} is the free final time, henceforth . : L
denoted ag (y'; w). Trzje2 result follows readily from the inequaligfy*| < 1 +

[ |
Problem 1 can be interpreted as the problem of steering

an integrator fromy® to the origin in minimum-time, in the
presence of a temporally and spatially-varying drift ter

wi(y',t) = —uir(y',t) — vjes(t). This problem is a special 2A(xi-) 2 | J {xp € R?: |xp(t) — Xy (1)| < p}. (10)
case of the Zermelo Navigation Problem (ZNP) [7]. +>0,up €Up

Let 2(x-) be the set of all initial conditiongp, of the
qpursuer from which theé™ MTP has a solution, that is,



Next, we formulate a dynamic Voronoi partitioning problem
based on the minimum pursuit time of t{&MTP. The space
to be partitioned, denoted henceforth#sis the union of
2(xi-) for all i € 7.

Problem 2: Given a collection of moving targets (¢) 2

{xi-(t) € R* : i € I} which evolve according to the
equations (1) and (3), and a transition cost

¢! (x, %) 2 T} (x = Ky '), (1)
. N (@) Unfeasible case(0,0)7 € (b) Solvable case:(0,0)T ¢
determine a partitio®J = {0, : ¢ € Z} of A such that Re(§") R(¥?)
') Ql_: UieI Ti. Fig. 1. Thei™ MPT is solvable if and only if the origin (magenta
i) U; =U,, for eachi € 7. cross), belongs to the reachable seyofred x-cross).

iii) for eachx € int Y, c(x,X4) < c(x, X for j # i.

Henceforth, we shall refer to the solution of Problem 2 as . " ) L
the Optimal Pursuit Dynamic Voronoi Diagram (OP-DVD).Wherej_}Z is the minimum time of Prz%blem 12‘,\’|"'tw = w,
The sets7 (¢) and " constitute the set of the (moving) OF all ¢ € Z, determine a partitiold™" = {T{" : 7 € I}
Voronoi generators and the Voronoi cells or Dirichlet doof 2 such that
mains of the OP-DVD respectively. Each Voronoi ¢8l] of i) A =U,cr Ti-

OP-DVD can b_e interpretsg asa “capture ione” frr(])m which i) BN — 932N for eachi € 7.
a pursuer can intercept th® moving target faster than any ... : v i o g o,
other pursuer that lies within another Voronoi cell. i) for eachx € int Wi, ¢'(x,x7) < ¢’ (x,%7) for j 7 i.

. _ _ Henceforth, we shall refer to the solution of Problem 3 as
To this end, let us consider a pursuer traveling in thg . - al0-Voronoi Diagram (ZVD)
presence of spatially and temporally varying drift. It is '

assumed that the equations of motion of the pursuer are given
by I1l. CONSTRUCTION OF THEVORONOI PARTITIONS
xp = up + M(t)xp +v(t), xp(0)=3%p, (12) At this point it is not clear whether the minimum time-
where M () is a2 x 2 real, time-varying matrix and(¢) to-go to the origin for thei’® MTP enjoys the necessary
a two-dimensional time-varying vector. The objective of th properties (such as isotropy and convexity) that wouldvallo
pursuer is to reach a static targét from the set7(0) in  US to associate both Problems 2 and 3 with generalized
minimum time. Lety’(t) 4 xp(t) — %i-. Then (12) can be Voror_10|—l|ke paruuomng_pro_blems, f_or which efficient oo
written as follows putational methods exist in the literature. Th_erefore, we
_ _ _ _ _ need to adopt an alternative approach. In particular, let us
vy =u"+w(y',t), y'(0)=y", (13)  consider the minimum cost function : 2 — [0, c0) with
c«(x) = min,e7 ct(x, X4 ), thatis, the minimum time required
for a pursuer akp at timet¢ = 0 to intercept a moving target
residing at<’- att = 0. The OP-DVD can be characterized
by projecting ontd the intersections of the surfaeg with
each cost surface, i € Z. This method can be efficiently
implemented by propagating the level sets of each cost
AL () = —M(t), vig(t) = —(v(t) + M()%,), (14) surfacec’, that is, the projection of the iso-costs @fonto
_ . . 2, emanating fronk%, for all i € Z. This can be done by
forall t >0 andi € 7. Therefore, in the special case whengp|ving either a fast marching or a marker-particle algo-
w' = w, for aII. i€ Z, then Problem 2 reduces to therithm, as in [10], [L1]. The approaches in [10], [11], howeve
Zermelo-Voronoi diagram problem [8], [9]. The Zermelo-pqither take advantage of the structure of the solution ef th
Voronoi diagram Problem involves the construction of &Np nor they guarantee that numerical pathogenies will not
Voronoi-like partition of the plane for a given set of (Sttt  41ise In particular, as it is stressed in [15], the systejn (4
ary) Voronoi generators (which in our case is the point-sg{ ot necessarily small-time locally controllable [16hda
7(0) = {x7, i € I}), and a generalized distance functionconsequently the minimum time-to-go of thé MTP may
I_n our case the ggnerallzeq dl_stance function is thg m'n'muﬂhdergo discontinuous jumps. Such numerical pathogenies
time from an arbitrary poink in the plane t07'(0) in the  cannot be handled effectively unless more sophisticated
presence of both temporally and spatially varying diift  merical techniques, than those presented in [10], [¥&], a
Problem 3: Given a collection of fixed goal destinationsemployed (for example, approaches that find weak solutions
TA (%, € R?: i T} and a transition cost of the HJB equation of the ZNP [15]). Instead of resorting
_ o _ to exhaustive computational methods, next we investigate
' (x,x5) = T¢ (x — X5 w), (15) whether there exists a more direct and efficient method to

whereu’ 2 up, andw(y’, t) 2 M)y + (v(t) + M(t)xy).
Thus the problem of steering the pursuer frgmto x4 in
minimum time, is equivalent to the problem of driving the
system (13) frony’ to the origin, which is exactly the'"
MTP in the special case’ = w, for all i € Z, that is,



solve Problem 2, by taking advantage of the structure of theatisfiesl[y’, u’, 7] > 0 (< 0) for all 7 € [0,], theny! is

solution of the ZNP to significantly simplify the process ofa strong locally or globally minimizing (maximizing) curve

expanding the level sets of for eachi € Z. Furthermore, iflly:, u?, 7] = 0 for all 7 € [0,¢], theny! is
an abnormal extremal curve of ti& MTP.

A. Sructure of Optimal Solutions and Reachable Sets of the

i Moving Target Problem Using Proposition 5, one can readily determine @lle

(©L(t)) that correspond to either locally or globally maxi-

We first present some key results from the solution of theizing curves of the ZNP. Note that from the principle of op-
i MTP, (equivalently, the ZNP to the origin), that are nectimality, if 6; € (©(t))® for somet > 0, thend’ € (0% (7))
essary for the subsequent discussion. The reader intgrester all 7 > ¢. In order to further refine our knowledge of
in a more detailed treatment of the ZNP may refer to [169%(¢), we need to explore the connection between the sets
pp. 239-247, pp. 370-373]. In particular, if thi& problem £:(y') anddR<,(y*). The following proposition, which is a
is feasible, then the contrai’ that solves the" MTP has direct consequence of Pontryagin’s Maximum Principle| wil
necessarily the following structurei = [cos#?, sinf:]T, prove useful for the subsequent discussion [12, pp. 33-337

whered? satisfies the following differential equation [16] Proposition 6: £,(y') C 0%<,(v")
0 = (afy 11 (t) — afy 91(¢)) cos 0 sin 0} + afy 1y(t) sin® 6, Proposition 6 implies that all points in the interior of
— afy y(t) cos® 0L, 01(0) = 6", (16) R<i(y') correspond necessarily t§' < (©.(t))°. The

_ ~ following theorem provides us with a necessary and sufficien
whereay, (1), k,£ € {1,2}, are the elements of the matrix condition to determine whether a control law will drive
A’-(t). It follows that the (candidate) optimal contral is  the system (4) t@R<.(y') aftert units of time.

. . dA . Ol
determined up to one parameter; we thus weif¢; 6°). Theorem 1: A control law u’, will steer system (4) from

To this end, lety’ denote the solution of the differential y¢ at~ = 0 to 99%<,(y*) at7 = ¢ if and only if the following
equation (4) foru’ = ui(-;6"), which we henceforth refer equation -
to as the extremal curve of thd MTP, and letR<,(y*) dp? DT
denote the set of all points that can be reached by (4) from ar —(A7) (7)p", (21)
y* in time less than or equal to Furthermore, we define the
t-level set ofc’, henceforth denoted as(y?), to be the set 2dmits a non-trivial solution?, such that

of all points that can be reached frgmin minimum timet. <
The following proposition highlights the connection betme (L ul) 2 (pl,v), forall o <1, (22)
the setsR<;(y’) and/,(y’) and the extremal curves'. for almost all+ € [0, #].
Proposition 4: The setsi<,(y') and/,(y") are given by Proof: The proof follows readily from Theorem 2 in
Rei(y U U (r;5%, ), (17) [17, p. 73-75]. m
re[0,¢] fies! Remark 2: Note that the proof of Theorem 1 is contingent
i ire. i 7 upon the assumption that’ admits the structure given in
6" < U (55" 0). (18) (5). In particular, as it was highlighted in [17], Theorem 1

fiest
Proof: It suffices to note, in light of Proposition 3
that if y € R(y 7), then there exist®’ € S' such that

can be interpreted as follows: Let' be given by (5); then
' Pontryagin’s Maximum Principle is both a necessary and
sufficient condition for the control’ to drive the system

y = ¢'(r;y",0") for somer € [0, ). B (4)fromy’ atT = 0to 9%R<,(y') at T = ¢.
_ From Proposition 4S' admits the following decomposi- Corollary 1: Let y® be a strong minimizing extremal of
tion the i*" MTP generated by the control law, for € [0, 1].

S' = OL(1)U(OL(1)", OLBN(OL(1) =2, t >0, (19) Then

where ©% (t) denotes the set of’ such thaty(t;y¢,0%) € y:(t) € OR<i(y")- (23)
¢:(y"). Note that a point iMi<,(y’) N ¢¢(y’) can be reached Proof: It can be shown [16, p. 370-373] that a solution
after ¢ units of time by means of an extremal curve that i®. of equation (21), satisfies, for almost allc [0, ],
either: 1) maximizing (locally or globally), 2) locally min i i i T
mizing or 3) abnormal (that is, an extremal curve that does pi(7) = w(T)[cos . (7), sin O (7)] ",
not satisfy the strengthened Legendre condition [12]). Tr\g:,herew( ) has the same sign &' (7), u’ (1), 7], provided
following proposition provides us with a sufficient conditi -, Iy’ (1), ui (1), 7] # 0. Becaus*e by hypotheS|§s is a
for determining whether an extremal curve of Problem 1 i §trong *mlnrmTzrng curve, it follows thaify’ (), u’ (7)*7] >
maximizing, minimizing or abnormal [7], [16]. 0 for all 7 € [0,¢], which implies thatw*( ) >0 for all
Proposition 5: Let yi (1) = ¢'(7;y*,0°) be the extremal 7 € [0,1]. Furthermore foru® = [cosfi,sin@:]T and in
curve generated by’ (7; %), for 7 € [0, t]. If the functional light of (24), condition (22) gives

(24)

l[y?m uiaT] é 1+ <wi(Yi77—)7 ui>a (20) w = w([cos@i,sinHi]T,v), for all |’U| < 11 (25)

*



for almost allT € [0,¢]. Sincew(r) > 0 for all 7 € [0,#], there existss > 0, such that for allx € B.(x4) N A%, ),
condition (25) always holds true by virtue of the Cauchythe minimum time-to-go fronx to any pointx’-, where
Schwartz inequality. B j c 7, is strictly greater than the minimum time-to-go to
; i =L : J (i i i
Corollary 2: If u’ corresponds to an abnormal extremaky- Let 7 = minje 7 inf{T{ (x,x7) : x € B:(x7) NA(x7)}.
of the i*" MTP, then the trajectory’ generated by’ for ~From small-time local controllability it follows that fovery

T € [0,t], satisfiesy’(t) € %R« (y'), if and only if there 7' < 7, there exists sufficient sma = (') > 0
exists a non-trivial solutiop’. of (21), such that such thatB. (x7) C <, (x7). Therefore, by construction,
i T¢ (x,x4) < 7 forall x € B-(x%), thus completing the proof.
_w > (pi, ), forall ju] <1, (26) u
[ (2 7)] Proposition 9: Let xp(T}) = x4 (1), for all i € Z, in (6)
for almost all7 € [0, ¢]. (equivalently, letp = 0 in (6)), and letx; € 9%(x7), then
Proof: It suffices to note that ifi. corresponds to an X7 € 0T;.
abnormal extremal for € [0,t], thenl[y’, u, 7] = 0, which Proof: The proof follows readily from the fact that
furthermore implies that 0UA(Xy) NY; > X is hon-empty andd; C A(X%). |
, w(yl,t) Another fundamental topological property of a standard
u(t) = _W (27)  voronoi diagram is the connectedness of its Voronoi cells;

. . _ N something which does not hold true, in general, for the
By plugging equation (27) in (22) then condition (26) follsw \oronoi cells of the OP-DVD as it will be demonstrated
readily. B in Section IV. The connectedness of the ZVD in the special

The only case that needs to be further investigated &&se when the winds/currents do not depend explicitly on
when there exists a point = ¢(t;y%,0%) € 9R<,(y*) but time is conjectured in [11].
y ¢ (,(y*). This situation appears when the boundary of
PM<:(y") consists of points that can be reached in time IV. SIMULATION RESULTS
as well as in time shorter than The following proposition
provides a necessary condition that will allow us to comple

the characterization of; (y?).

In this section we present simulation results to illustrate
the previous developments. First, we consider the OP-DVD
problem for a team ofi moving targets where each target

Proposition 7: y € £,(y*) only if y ¢ ¢,(y?) for all 7 € employs a feedback “evading” strategy of the forh =
[0,t). — Al (xp — xi), where

The complete characterization 6f(y’) can therefore be i A\ i i
achieved by characterizing only the level sét§y?) for 7 € 7= <—/\i m) , K FOMNER,
[0,¢], which requires, in turn, the computation @R« (y*)
for 7 € [0,¢]. This can be carried out by making use o
Corollaries 1-2.

@nd furthermore let/y(t) = 0. In this case equation (4)
admits a closed form solution. In particuléf,(t) = 6+ \'t,

which implies [19]
B. Topological Properties of the OP-DVD Z(T}) = o= —IA'T) (gi F el (1 - e(*ﬁ”))/,ﬁj) . (28)

In this section we examine a fundamental topologicavlvhere () A () + dyi(t), 3 & Gi 4 i and wherej 2
property of the OP-DVD, namely the relative positionsgf W Iior i_(%ll') 2 jgaua'tién_(gé) ir%}p,fli,es i g =
with respect to its associated Voronoi c&l]. The following ' Yt '

two propositions present sufficient conditions f6r to be, zty e(jéi)(l _ e(—ﬂiﬂ/ﬁi) =0. (29)
respectively, an interior and a boundary point of its asgedi i i i _
\Voronoi cell ;. Equation (29) defines a system of two equations for

and 77. Note that neitherd’ nor 7} depend on\! (this

Proposition 8: Let the set7(0) consisting of distinct \,ouid not be the case ifi(T}) # 0). After some algebraic
points inR?, and let the system (4) be small-time |Oca"ymanipulations it follows from (29) that

controllable at the origin. Theki, € int(T;). N o
oA o 6 = arctan(y}/y}), (30)
Proof: Let Q[St(XT) = UTG[O t] U‘PGMP{XP e R= i i Q=i 3

i imMe i T¢ = =1/k" In(1 £ [£"[[¥*]). (31)
Ixp (7) — x4 (7)| < p}. From small-time local controllability,
y' € intR<(y") for all ¢ > 0 [18, p. 34], which implies Note that both equations (30)-(31) admit two solutions at
thatx’ € int 2A<(x;) for all t > 0. Therefore, there exists most. Therefore] is the least non-negative solution of (31)
e > 0, such thatB. (x,) A {x: |x — x| < e} C AR). and6" is the corresponding solution of (30). It follows from
Assume thaki, € Q[()-(,;) for j € J c 7 andi # j. Then (31) that theit” MTP is always feasible wher’ < 0, and
B.(xr) N A(x,) # @, for j € J. By hypothesisZ (0) it is feasible if and only ifly’| < 1/|x*| whenk® > 0.
consists of distinct points, which implies that for suffitie =~ The OP-DVD diagram for a particular scenario is illus-
smalle x ¢ B.(xi), for all j € 7. We wish to show that trated in Fig. 2. Here, we consider a team of ten moving



problem reduces to the Zermelo-Voronoi diagram problem.
We have presented an efficient scheme for the construction
of the solution of this partition problem, by exploiting the
structure of the solution of a special case of Zermelo's
navigation problem.
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