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Abstract— We consider Voronoi-like partitions for a team of
moving targets distributed in the plane, such that each set in
this partition is uniquely associated with a particular moving
target in the following sense: a pursuer residing inside a given
set of the partition can intercept this moving target fasterthan
any other pursuer outside this set. It is assumed that each
moving target employs its own “evading” strategy in response
to the pursuer actions. In contrast to standard formulations of
problems of this kind in the literature, the evading strategy
does necessarily restrict the evader to be slower than its
pursuer. In the special case when all moving targets employ
a uniform evading strategy, the previous problem reduces to
the characterization of the Zermelo-Voronoi diagram.

I. I NTRODUCTION

Voronoi-like partition problems for a set of moving genera-
tors in the plane, known in the literature as dynamic partition
problems [1], constitute a class of challenging problems in
dynamic computational geometry [2], [3], [4], [5], [6]. They
have received a considerable amount of attention recently
owing to their applicability in mobile network and multi-
agent problems. One of the fundamental questions in this
framework, deals with the characterization of the proximity
relations between the moving generators (i.e., agents) and
the points in the plane as time evolves. In contrast to the
standard Voronoi partitioning problem, where all generators
are stationary, the solution of the dynamic partition problem
consists of asequence of time-evolving Voronoi diagrams.
A diagram of this time-evolving data structure at a particular
instant of time is a standard Voronoi diagram with respect to
the positions of the moving Voronoi generators at that time.

The work of Devillers et al. [3], [4] highlights an inter-
esting aspect of dynamic partition problems. In particular,
[3], [4] deals with the following problem: Given a set of
n postmen (moving targets) that move along prescribed rays
with constant speed, a set ofn dogs (pursuers) going after the
postmen, find the rule that assigns each dog to each postman,
under the assumption that every dog is faster than every
postmen. The main challenge of this problem comes from
the fact that any question regarding the proximity relations
between pursuers and moving targets has to be addressed
with respect to a generalized distance function, in this case
the minimum intercept time, rather than the usual Euclidean
distance, as with the standard Voronoi partition.
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In this work, we consider a more general dynamic par-
titioning problem under some more realistic assumptions
compared to the problem formulation in [4]. In particular,
given a team ofn moving targets, we consider the problem of
partitioning the plane inton “capture zones” such that each
element in the partition is associated with a particular moving
target in the following sense: a pursuer that resides insidethe
ith “capture zone” at a given instant in time, can intercept
the ith moving target faster than any other pursuer residing
outside this zone. In our problem formulation, we assume
that each moving target can employ its own “evading”
strategy in response to the actions of its pursuer. This strategy
does not necessarily constraint the target to move slower
than its pursuer. If the target intercept problem is feasible,
the optimal pursuit strategy is the solution of a special
case of Zermelo’s navigation problem [7]. After investigating
the feasibility and the existence of optimal solutions of the
dynamic partition problem, we propose an efficient numerical
solution, which is based on the propagation of the level sets
of the minimum intercept time by taking advantage of some
of the properties of the optimal solutions and the reachable
sets of ZNP.

In the special case when all the moving targets employ
a uniform evading strategy, the solution of the proposed
dynamic partition problem is reduced to the Zermelo-Voronoi
diagram [8], [9]. Two interesting attempts that deal with this
problem in the special case of a spatially-varying (albeit
stationary) wind field have appeared in [10], [11], where
purely computational/numerical solutions are presented.We
propose an alternative scheme for determining the Zermelo-
Voronoi diagram, which exploits the structure of the solution
of the ZNP and deals with both temporally and spatially
varying wind/current fields.

The rest of the paper is organized as follows. In Section II
we formulate the dynamic partitioning problem based on the
minimum capture time of the moving generators, and in Sec-
tion III we present an efficient scheme for characterizing its
solution. Section IV presents non-trivial simulation results.
Finally, Section V concludes the paper with a summary of
remarks.

II. PROBLEM FORMULATION

Consider a set of moving targetsT (t)
△
= {xi

T (t), t ≥
0, i ∈ I}, where I △

= {1, . . . , n}, and wherexi
T (t)

△
=

[xi
T (t), yi

T (t)]T ∈ R
2, is the position vector at timet of

the ith moving target. Each point inT (t) evolves with time



according to the following equation

ẋi
T = ui

T + vi
ref(t), xi

T (0) = x̄i
T , i ∈ I, (1)

wherevi
ref(t) is a reference velocity signal provided to the

target, andui
T is the “evading control strategy” of theith

target. Throughout this work, it is assumed thatT (0) always
consists ofn distinct points. Furthermore, the equations of
motion of a pursuer, whose objective is to intercept theith

moving target are given by

ẋP = uP , xP(0) = x̄P , (2)

where xP(t)
△
= [xP(t), yP(t)]T ∈ R

2, and uP ∈ UP

denotes the control input of the pursuer. It is assumed
that the set of admissible control inputsUP consists of all
measurable functions that take values in the closed unit ball.
Furthermore, it is assumed that the evading strategyui

T

employed by theith target in response to the actions of its
pursuer, is a time-varying feedback control law that depends
on the relative position of theith moving target from its
pursuer. In particular,

ui
T = Ai

T (t)(xP − xi
T ), (3)

whereAi
T (t) is a 2 × 2 real, time-varying matrix.

The objective of each pursuer is to determine an admis-
sible pursuit strategyuP ∈ UP that minimizes the timeT i

f

such that|xP (t) − xi
T (t)| > ρ, for a given sufficiently small

ρ ≥ 0 (radius of capturability) and for allt < T i
f , where| · |

denotes the Euclidean norm.

Let us consider the following state transformationyi △
=

xP − xi
T , whereyi △

= [yi
1, y

i
2]

T ∈ R
2. Equation (1) can then

be written in the following compact form

ẏi = ui + wi(yi, t), yi(0) = ȳi, (4)

where ȳi △
= x̄P − x̄i

T , ui △
= uP and wi △

= −ui
T − vi

ref(t),
which implies, in light of (3), that

wi(yi, t)
△
= −Ai

T (t)yi − vi
ref(t). (5)

Thus, the pursuit strategy of theith pursuer is the solution
of the following minimum-time problem.

Problem 1 (ith MTP): Given the system described by
equation (4), determine the control inputui

∗ ∈ UP , such that

i) The trajectoryyi
∗ : [0, T i

f ] 7→ R
2 generated by the

control ui
∗ satisfies the boundary conditions

yi
∗(0) = ȳi, |yi

∗(T
i
f )| ≤ ρ. (6)

ii) The controlui
∗ minimizes alongy∗i the cost functional

J i(ui)
△
= T i

f , whereT i
f is the free final time, henceforth

denoted asT i
f (ȳ

i; wi).

Problem 1 can be interpreted as the problem of steering
an integrator from̄yi to the origin in minimum-time, in the
presence of a temporally and spatially-varying drift term

wi(yi, t)
△
= −ui

T (yi, t) − vi
ref(t). This problem is a special

case of the Zermelo Navigation Problem (ZNP) [7].

Next, we investigate the feasibility and existence of opti-
mal solutions of Problem 1. To this end, letR(ȳi) denote
the reachable set from̄yi of the system described by (4).
The following proposition provides a necessary and sufficient
condition for the feasibility of theith MTP.

Proposition 1: The ith MTP has a feasible solution if and
only if

{y ∈ R
2 : |y| ≤ ρ} ∩ R(ȳi) 6= ∅. (7)

Proposition 1 implies that the feasibility of theith MTP
is equivalent to the system (4) being controllable to the
origin. The controllability question for system (4) requires
a rather detailed and careful treatment due to the existence
of the drift termwi(yi, t), and the fact that the controlui

is bounded [12]. The following proposition addresses the
question of complete controllability to the origin in the
special case when the evading strategyui

T in (3) does not
depend explicitly on time.

Proposition 2: Let w(yi, t) = Ai
T yi + vi

ref(t), and
|vi

ref(t)| < 1− ǫ, whereǫ ∈ (0, 1), for all t ≥ 0. Assume that

i) rankAi
T = 2,

ii) no left real eigenvectore of Ai
T satisfies〈e, v〉 ≤ 0,

for all v.
iii) there is no eigenvalueλ ∈ spec(Ai

T ) with Re(λ) > 0.

Then ith MTP has a feasible solution for everȳyi ∈ R
2.

If, in addition, vi
ref(t) ≡ 0, then conditions i) - iii) are also

necessary for the feasibility of theith MTP.

Proof: Let ũi △
= ui−vi

ref(t), and letŨ i denote the set of
all admissible values of̃ui for a givenvi

ref(t). It follows that
|vi

ref(t)| < 1− ǫ, implies that{u ∈ R
2 : |u| < ǫ} ⊂ Ũ i, and

therefore all conditions of Theorem 7 of [13] are satisfied.

The following proposition provides a sufficient condition
for the existence of a solution of Problem 1.

Proposition 3: If there exists αi, βi > 0 such that
|Ai

T (t)| < αi and |vi
ref(t)| < βi for all t ≥ 0 and condition

(7) holds, then theith MTP has an optimal solution.

Proof: From Filippov’s Theorem on the existence of
solutions of minimum-time problems [14, pp. 310-317], it
suffices to prove that there existsk > 0 such that

〈ẏi, yi〉 ≤ k(1 + |yi|2). (8)

Indeed, by virtue of the triangle and Cauchy-Schwartz in-
equalities, and the fact that|ui| ≤ 1 it follows

〈ẏi, yi〉 ≤ (|Ai
T (t)||yi| + |vi

ref| + |ui|)|yi|
≤ αi|yi|2 + (βi + 1)|yi|. (9)

The result follows readily from the inequality2|yi| ≤ 1 +
|yi|2.

Let A(x̄i
T ) be the set of all initial conditions̄xP of the

pursuer from which theith MTP has a solution, that is,

A(x̄i
T )

△
=

⋃

t≥0,uP∈UP

{x̄P ∈ R
2 : |xP (t)− xi

T (t)| ≤ ρ}. (10)



Next, we formulate a dynamic Voronoi partitioning problem
based on the minimum pursuit time of theith MTP. The space
to be partitioned, denoted henceforth asA, is the union of
A(x̄i

T ) for all i ∈ I.

Problem 2: Given a collection of moving targetsT (t)
△
=

{xi
T (t) ∈ R

2 : i ∈ I} which evolve according to the
equations (1) and (3), and a transition cost

ci(x, x̄i
T )

△
= T i

f (x − x̄i
T ; wi), (11)

determine a partitionV = {Vi : i ∈ I} of A such that

i) A =
⋃

i∈I Vi.
ii) Vi = Vi, for eachi ∈ I.
iii) for each x ∈ intVi, c(x, x̄i

T ) < c(x, x̄j
T ) for j 6= i.

Henceforth, we shall refer to the solution of Problem 2 as
the Optimal Pursuit Dynamic Voronoi Diagram (OP-DVD).
The setsT (t) and V

i constitute the set of the (moving)
Voronoi generators and the Voronoi cells or Dirichlet do-
mains of the OP-DVD respectively. Each Voronoi cellVi of
OP-DVD can be interpreted as a “capture zone” from which
a pursuer can intercept theith moving target faster than any
other pursuer that lies within another Voronoi cell.

To this end, let us consider a pursuer traveling in the
presence of spatially and temporally varying drift. It is
assumed that the equations of motion of the pursuer are given
by

ẋP = uP + M(t)xP + ν(t), xP (0) = x̄P , (12)

whereM(t) is a 2 × 2 real, time-varying matrix andν(t)
a two-dimensional time-varying vector. The objective of the
pursuer is to reach a static targetx̄i

T from the setT (0) in

minimum time. Letyi(t)
△
= xP(t) − x̄i

T . Then (12) can be
written as follows

ẏi = ui + w(yi, t), yi(0) = ȳi, (13)

whereui △
= uP , andw(yi, t)

△
= M(t)yi + (ν(t) + M(t)x̄i

T ).
Thus the problem of steering the pursuer fromx̄P to x̄i

T in
minimum time, is equivalent to the problem of driving the
system (13) from̄yi to the origin, which is exactly theith

MTP in the special casewi = w, for all i ∈ I, that is,

Ai
T (t) = −M(t), vi

ref(t) = −(ν(t) + M(t)x̄i
T ), (14)

for all t ≥ 0 and i ∈ I. Therefore, in the special case when
wi = w, for all i ∈ I, then Problem 2 reduces to the
Zermelo-Voronoi diagram problem [8], [9]. The Zermelo-
Voronoi diagram Problem involves the construction of a
Voronoi-like partition of the plane for a given set of (station-
ary) Voronoi generators (which in our case is the point-set
T (0) = {x̄i

T , i ∈ I}), and a generalized distance function.
In our case the generalized distance function is the minimum
time from an arbitrary pointx in the plane toT (0) in the
presence of both temporally and spatially varying driftw.

Problem 3: Given a collection of fixed goal destinations

T △
= {x̄i

T ∈ R
2 : i ∈ I} and a transition cost

ci(x, x̄i
T )

△
= T i

f (x − x̄i
T ; w), (15)
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Fig. 1. The i
th MPT is solvable if and only if the origin (magenta

cross), belongs to the reachable set ofȳ
i (red x-cross).

whereT i
f is the minimum time of Problem 1 withwi = w,

for all i ∈ I, determine a partitionVZN = {VZN
i : i ∈ I}

of A such that

i) A =
⋃

i∈I Vi.
ii) VZN

i = VZN
i , for eachi ∈ I.

iii) for each x ∈ intVi, ci(x, x̄i
T ) < cj(x, x̄j

T ) for j 6= i.

Henceforth, we shall refer to the solution of Problem 3 as
the Zermelo-Voronoi Diagram (ZVD).

III. C ONSTRUCTION OF THEVORONOI PARTITIONS

At this point it is not clear whether the minimum time-
to-go to the origin for theith MTP enjoys the necessary
properties (such as isotropy and convexity) that would allow
us to associate both Problems 2 and 3 with generalized
Voronoi-like partitioning problems, for which efficient com-
putational methods exist in the literature. Therefore, we
need to adopt an alternative approach. In particular, let us
consider the minimum cost functionc∗ : A 7→ [0,∞) with
c∗(x) = mini∈I ci(x, x̄i

T ), that is, the minimum time required
for a pursuer at̄xP at timet = 0 to intercept a moving target
residing atxi

T at t = 0. The OP-DVD can be characterized
by projecting ontoA the intersections of the surfacec∗ with
each cost surfaceci, i ∈ I. This method can be efficiently
implemented by propagating the level sets of each cost
surfaceci, that is, the projection of the iso-costs ofci onto
A, emanating from̄xi

T , for all i ∈ I. This can be done by
employing either a fast marching or a marker-particle algo-
rithm, as in [10], [11]. The approaches in [10], [11], however,
neither take advantage of the structure of the solution of the
ZNP, nor they guarantee that numerical pathogenies will not
arise. In particular, as it is stressed in [15], the system (4)
is not necessarily small-time locally controllable [16], and
consequently the minimum time-to-go of theith MTP may
undergo discontinuous jumps. Such numerical pathogenies
cannot be handled effectively unless more sophisticated
numerical techniques, than those presented in [10], [11], are
employed (for example, approaches that find weak solutions
of the HJB equation of the ZNP [15]). Instead of resorting
to exhaustive computational methods, next we investigate
whether there exists a more direct and efficient method to



solve Problem 2, by taking advantage of the structure of the
solution of the ZNP to significantly simplify the process of
expanding the level sets ofci for eachi ∈ I.

A. Structure of Optimal Solutions and Reachable Sets of the
ith Moving Target Problem

We first present some key results from the solution of the
ith MTP, (equivalently, the ZNP to the origin), that are nec-
essary for the subsequent discussion. The reader interested
in a more detailed treatment of the ZNP may refer to [16,
pp. 239-247, pp. 370-373]. In particular, if theith problem
is feasible, then the controlui

∗ that solves theith MTP has
necessarily the following structure:ui

∗ = [cos θi
∗, sin θi

∗]
T,

whereθi
∗ satisfies the following differential equation [16]

θ̇i
∗ = (ai

[1,1](t) − ai
[2,2](t)) cos θi

∗ sin θi
∗ + ai

[2,1](t) sin2 θi
∗

− ai
[1,2](t) cos2 θi

∗, θi
∗(0) = θ̄i. (16)

whereai
[k,ℓ](t), k, ℓ ∈ {1, 2}, are the elements of the matrix

Ai
T (t). It follows that the (candidate) optimal controlui

∗ is
determined up to one parameter; we thus writeui

∗(·; θ̄i).

To this end, letϕi denote the solution of the differential
equation (4) forui = ui

∗(·; θ̄i), which we henceforth refer
to as the extremal curve of theith MTP, and letR≤t(ȳ

i)
denote the set of all points that can be reached by (4) from
ȳi in time less than or equal tot. Furthermore, we define the
t-level set ofci, henceforth denoted asℓt(ȳ

i), to be the set
of all points that can be reached from̄yi in minimum timet.
The following proposition highlights the connection between
the setsR≤t(ȳ

i) andℓt(ȳ
i) and the extremal curvesϕi.

Proposition 4: The setsR≤t(ȳ
i) andℓt(ȳ

i) are given by

R≤t(ȳ
i) =

⋃

τ∈[0,t]

⋃

θ̄i∈S1

ϕ(τ ; ȳi, θ̄i), (17)

ℓt(ȳ
i) ⊆

⋃

θ̄i∈S1

ϕi(t; ȳi, θ̄i). (18)

Proof: It suffices to note, in light of Proposition 3,
that if y ∈ R≤t(ȳ

i), then there exists̄θi ∈ S
1 such that

y = ϕi(τ ; ȳi, θ̄i) for someτ ∈ [0, t].

From Proposition 4,S1 admits the following decomposi-
tion

S
1 = Θi

∗(t)∪(Θi
∗(t))

c, Θi
∗(t)∩(Θi

∗(t))
c = ∅, t ≥ 0, (19)

whereΘi
∗(t) denotes the set of̄θi such thatϕ(t; ȳi, θ̄i) ∈

ℓt(ȳ
i). Note that a point inR≤t(ȳ

i)∩ ℓc
t(ȳ

i) can be reached
after t units of time by means of an extremal curve that is
either: 1) maximizing (locally or globally), 2) locally mini-
mizing or 3) abnormal (that is, an extremal curve that does
not satisfy the strengthened Legendre condition [12]). The
following proposition provides us with a sufficient condition
for determining whether an extremal curve of Problem 1 is
maximizing, minimizing or abnormal [7], [16].

Proposition 5: Let yi
∗(τ) = ϕi(τ ; ȳi, θ̄i) be the extremal

curve generated byui
∗(τ ; θ̄i), for τ ∈ [0, t]. If the functional

I[yi
∗, u

i
∗, τ ]

△
= 1 + 〈wi(yi

∗, τ), ui
∗〉, (20)

satisfiesI[yi
∗, u

i
∗, τ ] > 0 (< 0) for all τ ∈ [0, t], then yi

∗ is
a strong locally or globally minimizing (maximizing) curve.
Furthermore, ifI[yi

∗, u
i
∗, τ ] = 0 for all τ ∈ [0, t], thenyi

∗ is
an abnormal extremal curve of theith MTP.

Using Proposition 5, one can readily determine allθ̄i ∈
(Θi

∗(t))
c that correspond to either locally or globally maxi-

mizing curves of the ZNP. Note that from the principle of op-
timality, if θ̄i ∈ (Θi

∗(t))
c for somet ≥ 0, thenθ̄i ∈ (Θi

∗(τ))c

for all τ ≥ t. In order to further refine our knowledge of
Θi

∗(t), we need to explore the connection between the sets
ℓt(ȳ

i) and∂R≤t(ȳ
i). The following proposition, which is a

direct consequence of Pontryagin’s Maximum Principle, will
prove useful for the subsequent discussion [12, pp. 336-337].

Proposition 6: ℓt(ȳ
i) ⊆ ∂R≤t(ȳ

i)

Proposition 6 implies that all points in the interior of
R≤t(ȳ

i) correspond necessarily tōθi ∈ (Θi
∗(t))

c. The
following theorem provides us with a necessary and sufficient
condition to determine whether a control lawui

∗ will drive
the system (4) to∂R≤t(ȳ

i) after t units of time.

Theorem 1: A control law ui
∗, will steer system (4) from

ȳi at τ = 0 to ∂R≤t(ȳ
i) at τ = t if and only if the following

equation
dpi

dτ
= −(Ai

T )T(τ)pi, (21)

admits a non-trivial solutionpi
∗, such that

〈pi
∗, u

i
∗〉 ≥ 〈pi

∗, v〉, for all |v| ≤ 1, (22)

for almost allτ ∈ [0, t].

Proof: The proof follows readily from Theorem 2 in
[17, p. 73-75].

Remark 2: Note that the proof of Theorem 1 is contingent
upon the assumption thatwi admits the structure given in
(5). In particular, as it was highlighted in [17], Theorem 1
can be interpreted as follows: Letwi be given by (5); then
Pontryagin’s Maximum Principle is both a necessary and
sufficient condition for the controlui

∗ to drive the system
(4) from ȳi at τ = 0 to ∂R≤t(ȳ

i) at τ = t.

Corollary 1: Let yi
∗ be a strong minimizing extremal of

the ith MTP generated by the control lawui
∗ for τ ∈ [0, t].

Then

yi
∗(t) ∈ ∂R≤t(ȳ

i). (23)

Proof: It can be shown [16, p. 370-373] that a solution
pi
∗ of equation (21), satisfies, for almost allτ ∈ [0, t],

pi
∗(τ) = ω(τ)[cos θi

∗(τ), sin θi
∗(τ)]T, (24)

whereω(τ) has the same sign asI[yi
∗(τ), ui

∗(τ), τ ], provided
that I[yi

∗(τ), ui
∗(τ), τ ] 6= 0. Because, by hypothesis,yi

∗ is a
strong minimizing curve, it follows thatI[yi

∗(τ), ui
∗(τ), τ ] >

0 for all τ ∈ [0, t], which implies thatω(τ) > 0 for all
τ ∈ [0, t]. Furthermore, forui = [cos θi

∗, sin θi
∗]

T and in
light of (24), condition (22) gives

ω ≥ ω〈[cos θi
∗, sin θi

∗]
T, v〉, for all |v| ≤ 1, (25)



for almost allτ ∈ [0, t]. Sinceω(τ) > 0 for all τ ∈ [0, t],
condition (25) always holds true by virtue of the Cauchy-
Schwartz inequality.

Corollary 2: If ui
∗ corresponds to an abnormal extremal

of the ith MTP, then the trajectoryyi
∗ generated byui

∗ for
τ ∈ [0, t], satisfiesyi

∗(t) ∈ ∂R≤t(ȳ
i), if and only if there

exists a non-trivial solutionpi
∗ of (21), such that

−〈pi
∗, w

i(yi
∗, τ)〉

|wi(yi
∗, τ)|2 ≥ 〈pi

∗, v〉, for all |v| ≤ 1, (26)

for almost allτ ∈ [0, t].

Proof: It suffices to note that ifui
∗ corresponds to an

abnormal extremal forτ ∈ [0, t], thenI[yi
∗, u

i
∗, τ ] = 0, which

furthermore implies that

ui
∗(t) = − wi(yi

∗, t)

|wi(yi
∗, t)|2

. (27)

By plugging equation (27) in (22) then condition (26) follows
readily.

The only case that needs to be further investigated is
when there exists a pointy = ϕ(t; ȳi, θ̄i) ∈ ∂R≤t(ȳ

i) but
y /∈ ℓt(ȳ

i). This situation appears when the boundary of
R≤t(ȳ

i) consists of points that can be reached in timet
as well as in time shorter thant. The following proposition
provides a necessary condition that will allow us to complete
the characterization ofℓt(ȳ

i).

Proposition 7: y ∈ ℓt(ȳ
i) only if y /∈ ℓτ (ȳi) for all τ ∈

[0, t).

The complete characterization ofℓt(ȳ
i) can therefore be

achieved by characterizing only the level setsℓτ (ȳi) for τ ∈
[0, t], which requires, in turn, the computation of∂R≤t(ȳ

i)
for τ ∈ [0, t]. This can be carried out by making use of
Corollaries 1-2.

B. Topological Properties of the OP-DVD

In this section we examine a fundamental topological
property of the OP-DVD, namely the relative position ofx̄i

T

with respect to its associated Voronoi cellVi. The following
two propositions present sufficient conditions forx̄i

T to be,
respectively, an interior and a boundary point of its associated
Voronoi cell Vi.

Proposition 8: Let the setT (0) consisting of distinct
points in R

2, and let the system (4) be small-time locally
controllable at the origin. Then̄xi

T ∈ int(Vi).

Proof: Let A≤t(x̄
i
T )

△
=

⋃
τ∈[0,t],uP∈UP

{x̄P ∈ R
2 :

|xP(τ)−xi
T (τ)| ≤ ρ}. From small-time local controllability,

ȳi ∈ intR≤t(ȳ
i) for all t ≥ 0 [18, p. 34], which implies

that x̄i
T ∈ intA≤t(x̄

i
T ) for all t ≥ 0. Therefore, there exists

ε > 0, such thatBε(x
i
T )

△
= {x : |x − xi

T | < ε} ⊂ A(x̄i
T ).

Assume that̄xi
T ∈ A(x̄j

T ), for j ∈ J ⊂ I and i 6= j. Then
Bε(x̄

i
T ) ∩ A(x̄j

T ) 6= ∅, for j ∈ J . By hypothesis,T (0)
consists of distinct points, which implies that for sufficient
small ε x

j
T /∈ Bε(x

i
T ), for all j ∈ J . We wish to show that

there existsε > 0, such that for allx ∈ Bε(x
i
T ) ∩ A(x̄j

T ),
the minimum time-to-go fromx to any point xj

T , where
j ∈ J , is strictly greater than the minimum time-to-go to

xi
T . Let τ̄

△
= minj∈J inf{T j

f (x, x̄i
T ) : x ∈ Bε(x̄

i
T ) ∩A(x̄j

T )}.
From small-time local controllability it follows that for every
τ ′ < τ̄ , there exists sufficient smallε = ε(τ ′) > 0
such thatBε(x̄

i
T ) ⊂ A≤τ ′(x̄i

T ). Therefore, by construction,
T i

f (x, x̄
i
T ) < τ̄ for all x ∈ Bε(x̄

i
T ), thus completing the proof.

Proposition 9: Let xP(T i
f ) = xi

T (T i
f ), for all i ∈ I, in (6)

(equivalently, letρ = 0 in (6)), and letx̄i
T ∈ ∂A(x̄i

T ), then
x̄i
T ∈ ∂Vi.

Proof: The proof follows readily from the fact that
∂A(x̄i

T ) ∩ Vi ∋ x̄i
T is non-empty andVi ⊆ A(x̄i

T ).

Another fundamental topological property of a standard
Voronoi diagram is the connectedness of its Voronoi cells;
something which does not hold true, in general, for the
Voronoi cells of the OP-DVD as it will be demonstrated
in Section IV. The connectedness of the ZVD in the special
case when the winds/currents do not depend explicitly on
time is conjectured in [11].

IV. SIMULATION RESULTS

In this section we present simulation results to illustrate
the previous developments. First, we consider the OP-DVD
problem for a team ofn moving targets where each target
employs a feedback “evading” strategy of the formui

T =
−Ai

T (xP − xi
T ), where

Ai
T =

(
κi λi

−λi κi

)
, κi 6= 0, λi ∈ R,

and furthermore letvi
ref(t) ≡ 0. In this case equation (4)

admits a closed form solution. In particular,θi
∗(t) = θ̄i+λit,

which implies [19]

zi(T i
f ) = e(κi−jλiT i

f )
(
z̄i + e(jθ̄i)(1 − e(−κit))/κi

)
, (28)

wherez(t)
△
= yi

1(t) + jyi
2(t), z̄

△
= ȳi

1 + jȳi
2, and wherej

△
=√

−1. For yi(T i
f ) = 0, equation (28) implies that

z̄i + e(jθ̄i)(1 − e(−κit)/κi) = 0. (29)

Equation (29) defines a system of two equations forθ̄i

and T i
f . Note that neither̄θi nor T i

f depend onλi (this
would not be the case ifyi(T i

f ) 6= 0). After some algebraic
manipulations, it follows from (29) that

θ̄i = arctan(ȳi
2/ȳi

1), (30)

T i
f = −1/κi ln(1 ± |κi||ȳi|). (31)

Note that both equations (30)-(31) admit two solutions at
most. Therefore,T i

f is the least non-negative solution of (31)
and θ̄i is the corresponding solution of (30). It follows from
(31) that theith MTP is always feasible whenκi < 0, and
it is feasible if and only if|ȳi| < 1/|κi| whenκi > 0.

The OP-DVD diagram for a particular scenario is illus-
trated in Fig. 2. Here, we consider a team of ten moving
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Fig. 2. OP-DVD diagram ofT (t), for a set of ten moving targets
with different feedback “evading” strategies.

targets that are divided into three subgroups such that all
the targets that belong to the same subgroup employ the
same evading strategy. Figure 2(a) illustrates the OP-
DVD in the vicinity of the initial positions of the targets,
whereas Fig. 2(b) illustrates OP-DVD over a larger area. It
is interesting to note that the Voronoi cells of this OP-DVD
are disconnected sets.

V. CONCLUSION

In this article we have formulated a new dynamic partition-
ing problem for a finite set of moving targets, with respect
to the minimum time required for a pursuer to intercept each
of the moving targets. It is assumed that each moving target
employs a time-varying feedback “evading” control strategy
in response to its pursuer’s actions. In the special case when
all moving targets adopt the same “evading” strategy, the

problem reduces to the Zermelo-Voronoi diagram problem.
We have presented an efficient scheme for the construction
of the solution of this partition problem, by exploiting the
structure of the solution of a special case of Zermelo’s
navigation problem.
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