
Multi-resolution Path Planning: Theoretical Analysis, Efficient
Implementation, and Extensions to Dynamic Environments

Raghvendra V. Cowlagi and Panagiotis Tsiotras

Abstract— A multi-resolution path planning algorithm based
on the wavelet transform of the environment has been reported
previously in the literature. In this paper, we provide a proof
of completeness of this algorithm. In addition, we present
an implementation of this algorithm that reuses information
obtained in previous iterations to perform subsequent iterations
more efficiently. Finally, we extend this path planning algorithm
to dynamic environments by presenting a simple scheme for
updating the wavelet transform coefficients to reflect changes
in the environment.

I. I NTRODUCTION

Motion planning for autonomous mobile vehicles is the
problem of finding control inputs that enable the vehicle’s
motion to satisfy some pre-assigned task [1], [2]. Due to
its inherent complexity, the motion planning problem is
usually solved over two levels of hierarchy. The higher
level, called the geometric path planning level, deals with
obstacle avoidance by finding an obstacle-freepath from the
initial point to the destination. The lower layer deals with
the kinematical and dynamical constraints of the vehicle by
generating a feasible referencetrajectory based on the path
found by the geometric planner.

Geometric path planning based on cell decompositions [1,
Ch. 5] is a widely used technique that involves partitioning
the environment into convex, non-overlapping regions called
cells. A graph is then associated with the cell decomposition,
where each obstacle-free cell is represented by a node in
the graph, and the geometric adjacency relationships of the
cells are represented by edges. A path in this graph then
corresponds to a sequence of obstacle-free cells from the
initial cell to the goal cell.

In this paper, we discuss a geometric path planning scheme
based onmulti-resolution cell decompositions. The quadtree
method [3]–[5], which employs dyadic recursive decompo-
sitions, is one of the most extensively used multi-resolution
cell decomposition techniques. Other path planning schemes
using multi-resolution cell decompositions have been pro-
posed in [6]; [7] (triangular cells); [8] (receding horizon
path planning using multi-resolution estimates of object
locations); [9] (multi-resolution potential field); and [10]
(hierarchy of imaginary spheres encapsulating the robot, for
collision avoidance).

References [11], [12] report a new hierarchical path plan-
ning algorithm using multi-resolution cell decompositions
obtained via the wavelet transform of the obstacle space.
We describe this algorithm in greater detail in subsequent

R. V. Cowlagi is a Ph.D. candidate at the School of Aerospace Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332, USA. e-mail:
rcowlagi@gatech.edu

P. Tsiotras is with the Faculty of Aerospace Engineering, Georgia Institute
of Technology, Atlanta, GA 30332, USA. e-mail: tsiotras@gatech.edu

sections of this paper. Other applications of the wavelet
transform to multi-resolution path planning schemes appear
in [13]–[15].

This work extends the wavelet-based path planning
scheme of [11] with three new results: first, we provide
a proof of completeness of (a slightly modified version)
the path planning algorithm in [11]; second, we provide
a method to efficiently recompute the multi-resolution cell
decomposition and its associated topological graph by suit-
ably modifying the graph computed in the previous iteration
(as opposed to computing it from scratch at each iteration,
as is done [11], [12]); and third, we provide a method to
efficiently update the wavelet coefficients to match changes
in the environment.

In the next section, we provide a cursory and informal
introduction to the wavelet transform; for further detailsthe
reader may consult, for instance, [16].

A. Multi-resolution Cell Decompositions

Multi-resolution analysis of a scalar function involves the
construction of a hierarchy of approximations of the function
by projecting it onto a sequence of nested linear spaces. In
the context of the wavelet transform, these linear spaces are
the spans of translated and scaled versions of two functions
called, respectively, thescaling functionandmother wavelet.
Thediscrete wavelet transformof a functionF ∈ L2(R) (or,
in the 2-D case, a functionF ∈ L2(R2)) then refers to two
collections of scalars, called, respectively, theapproximation
coefficients and thedetail coefficients, defined, respectively,
as the inner products ofF with translated and scaled versions
of the scaling function and the mother wavelet.

To apply the discrete wavelet transform for the multi-
resolution analysis of the obstacle space, we define an
image as the pair(R,F), whereR ⊂ R2 is a compact,
square region andF : R → R+ is an intensity map1.
We assume thatR =

[

0, 2D
]

×
[

0, 2D
]

, with D ∈ Z.
We also assume that the image intensity mapF is known
at a finite maximum resolutionjmax > −D, i.e., the
function F is piecewise constant over each of the square
cells

[

2−jmaxk, 2−jmax(k + 1)
]

×
[

2−jmaxℓ, 2−jmax(ℓ+ 1)
]

,
k, ℓ = 0, 1, . . . , 2D−jmax − 1.

A cell decompositionC of an image is a finite col-
lection of disjoint, convex subsetsCn of R called cells,
such that

⋃NC

n=1 Cn = R, and F is constant over the
cell Cn, for eachn = 1, 2, . . . , NC , whereNC ∈ N. In
this paper, we consider square cells, and we denote by
C(j, k, ℓ) a cell of size2−j units, with its center at the

1In the context of path planning, an image may represent, for instance, a
terrain elevation map, or a risk measure of the environment [11].

point (2−jk+2−j−1, 2−jℓ+2−ℓ−1). The collection of cells

Cj
def
=

{

C(j, k, ℓ) : k, ℓ = 0, 1, . . . , 2D−j − 1
}

is a uniform
cell decomposition of the image(R,F) at resolution levelj.

We associate with the cell decompositionCjmax
a graph

Ḡ
def
= (V̄ , Ē), such that each node in̄V corresponds to a

unique cell inCjmax
. Two nodes inV̄ are adjacent if the

corresponding cells inCjmax
are geometrically adjacent2. The

edge setĒ consists of all pairs(ū, v̄), where ū, v̄ ∈ V̄
are adjacent nodes. We usecell(ū; Cjmax

) to denote the cell
in Cjmax

corresponding to the nodēu ∈ V̄ ; conversely,
we denote bynode(C; Ḡ) the node inV̄ corresponding to
the cell C ∈ Cjmax

. Finally, we use(x(ū), y(ū)) for the
coordinates of the center of the cell corresponding to node
ū. We introduce an edge cost function̄g : Ē → R+,
which assigns to each edge of̄G a non-negative cost of
transitioning this edge. For given initial and terminal nodes
ūS, ūG ∈ V̄ , a path π̄(ūS, ūG)

def
= (ūπ̄

0 , ū
π̄
1 , . . . , ū

π̄
P̄
) in Ḡ

is such thatūπ̄
k ∈ V̄ , (ūπ̄

k−1, ū
π̄
k) ∈ Ē, k = 1, . . . , P̄ , with

ūπ̄
0 = ūS, ūπ̄

P̄
= ūG, and ūπ̄

p 6= ūπ̄
r , for p, r ∈ {0, . . . , P̄},

with p 6= r. For brevity, and when there is no ambiguity,
henceforth we will suppress the arguments inπ̄. The cost of
a pathπ̄ is defined asJ̄ (π̄)

def
=

∑P̄

k=1 ḡ((ū
π̄
k−1, ū

π̄
k)). The

path planning problemis to find a path̄π∗(ūS, ūG) such that
J̄ (π̄∗) 6 J̄ (π̄) for every pathπ̄ in Ḡ.

Algorithms such as Dijkstra’s algorithm and the A∗ al-
gorithm [2] can efficiently solve the path planning problem
described above. However, the graphḠ associated with large
environments (i.e., withD large) consists of a very large
number of nodes. For practical, real-time applications, the
execution of standard search algorithms on the graphḠ may
be time-consuming; it may also be unnecessary, because the
vehicle’s path needs to be known accurately only in the
immediate vicinity of the vehicle. In light of this observation,
[11] proposes a path planning algorithm based onmulti-
resolution cell decompositions, constructed as follows.

Let a coarse resolution leveljmin ∈ Z be specified, and
for j > jmin, let ajmin,k,ℓ and dij,k,ℓ (i = 1, 2, 3) be the 2-
D discrete wavelet transform coefficients of the mapF . Let
A

def
= {(jm, km, ℓm)} be a set of triplets of integers such

that jm > jmin, m ∈ N. An approximation(R,Fmr) is the
image obtained by the coefficientsajmin,k,ℓ andd̂ij,k,ℓ, where

d̂ij,k,ℓ
def
=

{

dij,k,ℓ i = 1, 2, 3; (j, k, ℓ) ∈ A,
0 otherwise.

In what follows, we will refer to the approximationFmr of
F by its associated set of detail coefficientsA. Each approx-
imation Fmr uniquely corresponds to a cell decomposition
Cmr that consists of cells of different sizes. We associate
with Cmr a graphG = (V,E) such that each node inV
corresponds to a unique cell inCmr. Each nodeu ∈ V also
corresponds to a setW (u, V)

def
= {w̄u

0 , w̄
u
1 , . . . , w̄

u
S(u)} ⊂ V̄ ,

such that{W (u, V)}u∈V is a partition of V̄ . The multi-
resolution cell decomposition graphG approximates the
graph Ḡ by representing each set of nodesW (u, V) ⊂ V̄
with a single nodeu ∈ V . For the Haar wavelet, it can be

2Here we assume 4-connectivity, i.e., cells with two vertices in common
are said to be adjacent. This assumption implies that|Ē| < 4|V̄ |.

S G

0

0

20

20

40

40

60

60

80

80

100

100

120

120

(a) Intermediate iteration

S G

0

0

20

20

40

40

60

60

80

80

100

100

120

120

(b) Terminal iteration

Fig. 1. Illustration of the path planning algorithm.

shown that foru ∈ V ,

Fmr(cell(u; Cmr)) =
1

S(u) + 1

S(u)
∑

m=0

F (cell(w̄u
m; Cjmax

)).

(1)
Finally, two nodesu, v ∈ V are said to be adjacent inG,

i.e., (u, v) ∈ E, if and only if there exist̄u ∈ W (u, V) and
v̄ ∈ W (v, V) such that(ū, v̄) ∈ Ē.

II. M ULTI -RESOLUTIONPATH PLANNING

Informally, the multi-resolution path algorithm of [11]
operates as follows: at each iteration, a multi-resolutioncell
decomposition is constructed. This decomposition retains
high resolution in the immediate vicinity of the vehicle’s
current location, and approximates the environment in re-
gions farther away. A standard search algorithm may then
be executed quickly on the graphG because|V | ≪ |V̄ |.

Figure 1(a) illustrates an intermediate iteration in the path
planning algorithm: the black colored cells indicate the opti-
mal path found at that iteration, while the blue colored cells
indicate the path recorded until that iteration. Figure 1(b)
illustrates the final step, with a cell decomposition consisting
of high resolution cells in the vicinity of the goal. The blue
cells indicate the path found by the algorithm from the initial
node to the goal node.

Next, we present a modification of the multi-resolution
path planning algorithm of [11], and we prove that this
modified algorithm is complete. To this end, we assume that
the environment consists of free space and insurmountable
obstacles, i.e.,F (cell(ū; Cjmax

)) = 0 if ū represents free
space, andF (cell(ū; Cjmax

)) = M if ū represents an obstacle,
whereM ≫ |V̄ |. We define the transition cost of an edge
(ū, v̄) ∈ Ē by

ḡ((ū, v̄)) = F (v̄) + 1, (ū, v̄) ∈ Ē. (2)

To the multi-resolution approximation of the environment
constructed at iterationn of the algorithm, we letA(n)
denote the associated set of detail coefficients,Cmr(n) de-
note the associated multi-resolution cell decomposition,and
G(n) = (V (n), E(n)) denote the associated topological
graph. We define the goal nodeuG,n ∈ V (n) as the (unique)
node that satisfies̄uG ∈ W (uG,n, V (n)).

For each nodēu ∈ V̄ , the proposed algorithm maintains
an estimateJ(ū) of the least cost of any path in̄G from
the nodeū to the goal nodēuG, and a recordK(ū) of the
least cost of any path in̄G from the initial nodeūS to the
nodeū. The algorithm also associates with each nodeū ∈ V̄
another nodeB(ū) ∈ V̄ called thebackpointerof ū. At each
iteration, the algorithm performs a computation (specifically,
in Line 17 or Line 19 of procedure MAIN below) whose
result is a unique node in̄V . We refer to this computation as
a visit to this node, and we denote bȳun the node visited by
the algorithm at iterationn ∈ N, with ū0

def
= ūS. Let un

def
=

node(cell(ūn; C
mr(n));G(n)), i.e., un is the node inV (n)

corresponding to the cell at the finest resolution represented
by the nodēun ∈ V̄ .

A path πn(un, uG,n) = (uπn

0 , uπn

1 , . . . , uπn

P (n)) in G(n)
is such thatuπn

p 6= node(cell(B(ūn); C
mr(n));G(n)), and

uπn

p 6= wm for each p ∈ {0, . . . , P (n)}, and for each
m = 0, 1, . . . , n − 1, where wm ∈ V (n) is the unique
node that satisfies̄um ∈ W (wm, V (n)). Note that this
definition precludes cycles in the path inG(n) obtained by
the concatenation of the path(w0, w1, . . . , wn−1) with πn.
The costJn(πn) of the pathπn(un, uG,n) is

Jn(πn)
def
=

P (n)
∑

m=1

gn((u
πn

m−1, u
πn

m)). (3)

The transition cost functiongn : E(n)→ R+ in (3) is

gn(u, v)
def
= Mδ(Fmr(Cv)−M) + |W (v, V (n))|, (4)

where(u, v) ∈ E(n), Cv def
= cell(v; Cmr(n)), andδ(x) = 1

if x = 0 andδ(x) = 0 otherwise. Note that, by (4), the cost
of an obstacle-free path inG(n) is less than or equal to the
number|V̄ | of nodes in the graph̄G, and hence a pathπn

in G(n) is obstacle-free if and only ifJn(πn) < M.
The algorithm associates with each nodeū ∈ V̄ a

binary value VISITED(ū), which records whether the node
ū has previously been visited by the algorithm, i.e., at
any iteration of the algorithm’s execution, and for any
ū ∈ V̄ , V ISITED(ū) = 0 indicates that the algorithm
has never visitedū in any previous iteration, whereas
V ISITED(ū) = 1 indicates that the algorithm has visited̄u
at least once during previous iterations. The algorithm also

maintains a cumulative cost̄J (π̄) of the pathπ̄(ūS, ūn) in
Ḡ. Finally, to construct approximations that retain the detail
coefficients in a “window” centered at the agent’s location,
we introduce a function̺ : Z → N that associates with each
resolutionj the size of the “window” at that resolution. The
multi-resolution path planning algorithm is then described
as follows.

procedure MR-Approx(ū)

1: A ←
{

dij,k,ℓ : jmin 6 j < jmax, i = 1, 2, 3,

⌊2jx(ū)⌋ − ̺(j) 6 k 6 ⌊2jx(ū)⌋+ ̺(j),

⌊2jy(ū)⌋ − ̺(j) 6 ℓ 6 ⌊2jy(ū)⌋+ ̺(j)
}

.

procedure Main()
1: π̄ ← ūS, ū0 ← ūS, n ← 0, reachedGoal← 0, J̄ (π̄) ←

0
2: For eachū ∈ V̄ , V ISITED(ū)← 0
3: while !reachedGoal and J̄ (π̄) < M and J(ūn) < M

do
4: A(n)← MR-APPROX(ūn),
5: G(n)← MR-GRAPH(A(n))
6: if V ISITED(ūn) = 1 then
7: π∗

n ← argmin {Jn(π) : π obstacle-free inG(n)},
subject toJn(π∗

n) > J(ūn) + 1
8: J̄ (π̄)← K(ūn)
9: else

10: π∗
n ← argmin {Jn(π) : π obstacle-free inG(n)}

11: K(ūn)← J̄ (π̄)
12: V ISITED(ūn)← 1
13: if π∗

n does not existthen
14: if ūn = ūS then
15: Report failure
16: else
17: ūn+1 ← B(ūn)
18: else
19: ūn+1 ← node(cell(u

π∗

n

1 ;G(n)); Ḡ)
20: B(ūn)← ūn−1

21: J(ūn)← Jn(π
∗
n)

22: reachedGoal← (J(ūn) = 0),
23: π̄ ← (π̄, ūn)
24: J̄ (π̄)← J̄ (π̄) + ḡ(ūn, ūn+1)
25: n← n+ 1
26: if J̄ (π̄) > M or J(ūn) > M then
27: Report failure

Before proving the completeness of the preceding algo-
rithm, we make a few comments regarding its execution.

Remark 1:The constrained optimization problem in
Line 7 can be solved by an algorithm that finds thek shortest
paths in a graph. Such algorithms have been reported, for
instance, in [17]. We implicitly assume that thek shortest
paths will be of strictly increasing costs. This assumptionis
not required for the algorithm’s successful execution, butit
enables a concise statement of the algorithm.

Remark 2: In [18], we describe in detail the proce-
dure MR-GRAPH used in Line 4.

Remark 3:Due to Line 8, the cost of “back-tracking” is
not added to the cumulative cost̄J (π̄). Also, it follows from
(3) and Line 21 thatJ(ū) = 0 if and only if ū = ūG.

We associate with each pathπn(un, uG,n) in G(n) the set

Wn(πn) defined by

Wn(πn)
def
=

P (n)
⋃

m=0

W (uπn

m , V (n)). (5)

The algorithm is said tomeet a setbackat iterationn if there
exists no obstacle-free pathπn(un, uG,n) in G(n) satisfying
Wn(πn) ⊆ Wn−1(π

∗
n−1). We are now ready to state and

prove the main result of this section.

Proposition 4: The proposed algorithm is complete: if
there exists an obstacle-free path inḠ from ūS to ūG, then
the algorithm finds an obstacle-free path in a finite number
of iterations. Otherwise, the algorithm reports failure after a
finite number of iterations.

Proof: Note that because the set of nodes in̄V
is finite, it follows by Proposition A.4 that the algorithm
terminates after a finite numberN ∈ N of iterations. To show
completeness, first suppose that there exists an obstacle-free
path in Ḡ from ūS to ūG. We consider several cases.

First, suppose that the algorithm never visits any node in
V̄ more than once, and that the algorithm does not meet any
setbacks. By Proposition A.3,J(ūn−1) − J(ūn) > 1 and
the sequenceJ(ūn) decreases strictly monotonically. Since
J(ūn) > 0 for eachn ∈ N, and sinceJ(ū1) is finite (by
Corollary A.2), there existsQ 6 N , such thatJ(ūn) = 0
for eachn > Q. It follows by Line 22 that the algorithm
terminates afterQ iterations, and sinceJ(ūQ) = 0, the
algorithm visits the goal nodēuG at iterationQ.

Next, suppose that the algorithm visits some nodes in
V̄ multiple times and that the algorithm never meets any
setbacks. Note that the number of multiply visited nodes is
finite because the algorithm terminates in a finite number
of iterations. Then either of the following statements hold:
(a) the algorithm terminates at iterationQ 6 N such that
ūQ is a multiply visited node, or (b) there existsQ < N
such that for eachn = Q + 1, Q + 2, . . . , the nodeūn

is visited exactly once by the algorithm. If Statement (a)
holds, thenūQ 6= ūG due to by Lines 3 and 22, which in
turn implies that the algorithm reports failure in Line 15. It
follows by Line 14 that̄uQ = ūS. Then, by Proposition A.1
and Proposition A.5, there exists no admissible path inḠ
from ūS to ūG, which is a contradiction. On the other hand,
if Statement (b) holds, then by the monotonicity arguments
in the preceding paragraph, the algorithm visits the goal in
a finite number of iterations after iterationQ.

Next, suppose that the algorithm never visits any node
in V̄ more than once, and suppose that the algorithm meets
some setbacks. The number of setbacks met by the algorithm
is finite because the algorithm terminates in a finite number
of iterations. Then either of the following statements hold:
(c) the algorithm terminates at iterationQ 6 N such that
the algorithm meets a setback at iterationQ or (d) there
existsQ < N such that for eachn = Q + 1, Q + 2, . . . ,
such that the algorithm does not meet any setbacks after
iteration Q. Statement (c) leads to the same contradiction
that follows Statement (a), whereas Statement (d) leads to
the same conclusion that follows Statement (b) above.

Finally, suppose that the algorithm visits some nodes inV̄
multiple times and that algorithm meets some setbacks. We
may combine the arguments in the two preceding paragraphs

to either conclude that the algorithm visits the goal in a finite
number of iterations, or to arrive at the contradiction that
there exists no obstacle-free path inḠ from ūS to ūG.

Now consider the case when there exists no obstacle-free
path in the graphḠ from the initial nodeūS to the goal
node ūG. The set of nodes̄V is finite, hence it follows by
Proposition A.4 that the algorithm terminates after a finite
number of iterations. Suppose, for the sake of contradiction,
that the algorithm erroneously finds a pathπ̄ from the initial
node ūS to the goal nodēuG. Then J̄ (π̄) > M , since π̄
is not obstacle-free. It follows by Line 24 that̄J (π̄) > M
at some intermediate iteration of the algorithm. However,
by Line 3, the algorithm terminates wheneverJ̄ (π̄) > M ,
thus leading to a contradiction. Thus, the algorithm does not
erroneously find a path from the nodeūS to the nodēuG if
no obstacle-free path exists, and by Line 26, it reports failure
in this case.

III. E FFICIENT CONSTRUCTIONS OF THEGRAPHSG(n)

In this section, we describe a method to obtainA(n)
efficiently by adding and removing elements fromA(n−1).
Specifically, we first determine the elements of the sets
B1

def
= A(n) ∩ Ac(n − 1) andB−1

def
= A(n − 1) ∩ Ac(n),

and then evaluateA(n) = A(n − 1) ∪ B1\B−1. In light
of the definition ofA(n) in the procedure MR-Approx, we
observe that2jmaxx(ū) = ⌊2jmaxx(ū)⌋+ d and2jmaxy(ū) =

⌊2jmaxy(ū)⌋+ d, whered
def
= 2−jmax−1 for ū ∈ V̄ . It can be

shown that

⌊2jx(ūn+1)⌋ = ⌊⌊2jx(ūn)⌋+ 2j−jmax∆x + rjx⌋, (6)

⌊2jy(ūn+1)⌋ = ⌊⌊2jy(ūn)⌋+ 2j−jmax∆y + rjy⌋, (7)

where rjx
def
= 2j−jmax

(

⌊2j−jmaxx(ūn)⌋+ d
)

− ⌊2jx(ūn)⌋.
The elements of the setsB1 andB−1 are then determined
from (6)-(7) as follows. We define the scalarDx as

Dx
def
=

−1, 0 > 2j−jmax∆x + rjx,

0, 0 6 2j−jmax∆x + rjx < 1,
1, 1 6 2j−jmax∆x + rjx,

(8)

and similarly forDy. We then define the setsBj,x
m by

Bj,x
m

def
=

{

(j, k, ℓ) : k = ⌊2jx(ūn)⌋+mDx,

⌊2jy(ūn)⌋ − ̺(j) 6 ℓ 6 ⌊2jy(ūn)⌋+ ̺(j)
}

,

wherem ∈ {−1, 1}, and the setsBj,y
m , analogously. Then

the setsB−1 andB1 are given by the following relation

Bm =
⋃

α={x,y}

⋃

jmin6j<jmax

Bj,α
m , m ∈ {−1, 1}. (9)

The modified procedures for determining the elements of
the setA(n) and the elements of the cell decomposition
Cmr(n) are then described as follows.

procedure Mod-MR-Approx (A(n− 1))

1: ComputeB−1 andB1 with (9)
2: A(n)← A(n) = A(n− 1) ∪ B1\B−1

procedure Mod-MR-Graph(Cmr(n− 1),B−1,B1)

1: Cmr
−1 ← ∅, Cmr

1 ← ∅

2: for all (j, k, ℓ) ∈ B1 do
3: Cmr

1 ← Cmr
1 ∪ {C(j + 1, k̂, ℓ̂) : 2k 6 k̂ 6 2k +

1, 2ℓ 6 ℓ̂ 6 2ℓ+ 1}

4: Cmr
−1 ← Cmr

−1 ∪ {C(ĵ, k̂, ℓ̂) : k̂ = ⌊2ĵ−jk⌋, ℓ̂ =

⌊2ĵ−jℓ⌋, jmin 6 ĵ 6 j}
5: for all (j, k, ℓ) ∈ B−1 do
6: Cmr

−1 ← Cmr
−1 ∪ {C(j + 1, k̂, ℓ̂) : 2k 6 k̂ 6 2k +

1, 2ℓ 6 ℓ̂ 6 2ℓ+ 1}
7: Cmr

1 ← Cmr
1 ∪ {C(j, k, ℓ)}

8: Cmr(n)← Cmr(n− 1) ∪ Cmr
1 \C

mr
−1

The advantage of computingA(n) using the modified
procedure MOD-MR-APPROX instead of the procedure MR-
APPROX arises from the fact that the number of elements
in the setA(n) is O(¯̺2), whereas the numbers of el-
ements in the setsB−1 and B1 are both O(¯̺), where

¯̺
def
= maxjmin6j6jmax

{̺(j)}. This observation also elicits
the advantage of computingCmr(n) via procedure MOD-
MR-GRAPH: the approach of directly computing3 from
A(n) executes inO(¯̺2) time, becauseO(¯̺2) iterations of
the constant-time operations similar to those described in
Lines 3-4 of procedure MOD-MR-GRAPH are performed.
On the other hand, the procedure MOD-MR-GRAPH exe-
cutes inO(¯̺) time, becauseO(¯̺) iterations of the constant-
time operations in Lines 3-4 and Lines 6-7 are performed.

Remark 5:The graphG(n) is obtained from the graph
G(n − 1) by adding and deleting a relatively small number
of nodes and edges. In light of this observation, the operation
of finding the shortest path inG(n) may be performed
using the so-calledincrementalalgorithms [19], which reuse
information about a previously known shortest path to find
a new shortest path corresponding to changes in the graph.

Table I shows the results of evaluating through numerical
simulations the ratio of the execution time required by
the combination of the procedures MR-APPROX and MR-
GRAPH to the execution time required by the combination of
the procedures MOD-MR-APPROX and MOD-MR-GRAPH

for computing the graphG(n). As predicted by the preceding
theoretical analysis, the execution time ratios increase as
the size ¯̺ of the high-resolution “window” increases. The
execution time ratios also increase with|V̄ | = 22D, because
we assumejmin = −D. The execution time ratios in Table I
were computed by averaging over30 simulations, for each
row of data in Table I.

Table II shows the results of evaluating through numerical
simulations the ratio of the execution time of the entire path
planning algorithm using procedures MR-APPROXand MR-
GRAPH to the execution time of the entire path planning
algorithm using procedures MOD-MR-APPROX and MOD-
MR-GRAPH. The multi-resolution path planning algorithm
with the modified procedures of construction ofA(n) and
G(n) executes up to10 times faster.

3The elements ofCmr(n) can be determined directly by Lines 2- 4 of
the procedure MOD-MR-GRAPH after replacingB1 in Line 2 with A(n)
and after appropriate initialization ofCmr

1
; see Ref. [18] for details.

TABLE I

NUMERICAL COMPARISONS OF EXECUTION TIMES ILLUSTRATING

EFFICIENT COMPUTATION OFA AND G

2D ¯̺ Average exec.
time ratio

2D ¯̺ Average exec.
time ratio

128 4 8.0671 256 15 13.446
128 6 8.3114 256 30 21.135
128 15 12.552 512 15 18.886
256 4 9.9418 512 30 28.351

TABLE II

NUMERICAL COMPARISONS OF EXECUTION TIMES ILLUSTRATING

BENEFITS IN OVERALL PATH PLANNING

2D ¯̺ Sample exec.
time ratio

2D ¯̺ Sample exec.
time ratio

128 4 6.7002 256 15 7.9145
128 6 10.163 512 4 8.0774
256 6 7.6615

IV. PLANNING IN DYNAMIC ENVIRONMENTS

The path planning algorithm described in Section II and
the modifications of the algorithm described in Section III
assume a static environment, i.e., that the mapF does not
change. In this section, we describe an extension to the
algorithm described in Section II that accounts for changes
in the values ofF .

In the context of the wavelet-based path planning al-
gorithm, changes in the environment can be incorporated
efficiently by updating the wavelet transform coefficients of
F without recalculatingall the coefficients. In what follows,
we demonstrate a simple and efficient procedure for updating
the wavelet transform coefficients.

Let F and F̃ denote, respectively, the original and the
changed intensity maps. For the sake of simplicity, we
assume that̃F differs from F only in the value at(κ, λ),
κ, λ ∈ {0, 1, . . . , 2D−jmax − 1}, i.e.,

F̃ (k, ℓ) =

{

F (k, ℓ), k 6= κ or ℓ 6= λ,
F (k, ℓ) + ε, k = κ andℓ = λ,

where ε 6= 0 is a known scalar. For eachjmin 6 j 6

jmax, k, ℓ = 0, 1, . . . , 2D−j, we define ascaled average
intensity F by F(j, k, ℓ)

def
=

∑

(k̂,ℓ̂)∈K×L F (k̂, ℓ̂), where

K
def
=

[

2−jk, 2−j(k + 1)
)

, and L
def
=

[

2−jℓ, 2−j(ℓ+ 1)
)

We may similarly define the scaled average intensityF̃

corresponding to the intensity map̃F , and denote byǫ0j,k,ℓ
the differenceF̃(j, k, ℓ) − F(j, k, ℓ), for jmin 6 j 6 jmax,
k, ℓ = 0, 1, . . . , 2D−j . Also, we denote byǫij,k,ℓ the dif-
ferenced̃ij,k,ℓ − dij,k,ℓ, for i = 1, 2, 3, where d̃ij,k,ℓ are the
wavelet transform detail coefficients of the new intensity map
F̃ . It can be shown that

ǫ0j,k,ℓ
ǫ1j,k,ℓ
ǫ2j,k,ℓ
ǫ3j,k,ℓ

= E

ǫ0
j+1,k̂,ℓ̂

ǫ0
j+1,k̂,ℓ̂+1

ǫ0
j+1,k̂+1,ℓ̂

ǫ0
j+1,k̂+1,ℓ̂+1

, (10)

where E ∈ R4×4 is a constant, known matrix. For each
jmin 6 j 6 jmax, k ∈ {2⌊2jκ⌋, 2⌊2jκ⌋ + 1}, and ℓ ∈

{2⌊2jλ⌋, 2⌊2jλ⌋+ 1} we may write

ǫ0j,k,ℓ =

{

2jε, k = ⌊2j+1κ⌋ andℓ = ⌊2j+1λ⌋
0, otherwise. (11)

Equation (10) may be evaluated by substituting values in
the right hand side using (11) to obtain the values ofǫij,k,ℓ,
(i = 1, 2, 3), which are the differences between the wavelet
transform detail coefficients of̃F andF . Equation (11) may
be used to directly evaluate the approximation coefficients
ãjmin,k,ℓ corresponding toF̃ , sinceãjmin,k,ℓ = F̃(jmin, k, ℓ)
and ajmin,k,ℓ = F(jmin, k, ℓ), i.e., ãjmin,k,ℓ − ajmin,k,ℓ =
ǫ0jmin,k,ℓ

.
The coefficient update schemes (10)-(11) are particularly

beneficial when the number of cells for which the values of
F changes is small compared to the total number of cells.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have extended the results of [11], by
proposing a modification of the original multi-resolution
path planning algorithm, and have proved its completeness.
In addition, we have presented computational procedures
for efficient implementation of the algorithm, supported
by numerical simulation results that illustrate the benefits
of these procedures. Finally, we have presented a simple
scheme for updating the wavelet transform coefficients of the
map representing the environment (e.g., the obstacle space)
stemming from small changes in the map. This scheme
enables the application of the multi-resolution path planning
algorithm to dynamic environments.

Acknowledgement: This research was supported in part
by NASA (award no. NNX08AB94A).

REFERENCES

[1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun,Principles of Robot Motion: Theory,
Algorithms, and Implementations. The MIT Press, 2005.

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[3] H. Samet, “The quadtree and related hierarchical data structures,”
Computing Surveys, vol. 16, no. 2, pp. 187–260, June 1984.

[4] S. Kambhampati and L. S. Davis, “Multiresolution path planning for
mobile robots,”IEEE Journal of Robotics and Automation, vol. RA-2,
no. 3, pp. 135–45, September 1986.

[5] H. Noborio, T. Naniwa, and S. Arimoto, “A quadtree-basedpath
planning algorithm for a mobile robot,”Journal of Robotic Systems,
vol. 7, no. 4, pp. 555–74, 1990.

[6] S. Behnke, “Local multiresolution path planning,”Lecture Notes in
Artificial Intelligence, vol. 3020, pp. 332–43, 2004.

[7] J. Y. Hwang, J. S. Kim, S. S. Lim, and K. H. Park, “A fast path
planning by path graph optimization,”IEEE Transactions on Systems,
Man, and Cybernetics, vol. 33, no. 1, pp. 121–127, January 2003.

[8] R. J. Prazenica, A. J. Kurdila, R. C. Sharpley, and J. Evers, “Multires-
olution and adaptive path planning for maneuver of micro-air-vehicles
in urban environments,” inAIAA Guidance, Navigation, and Control
Conference and Exhibit, San Francisco, CA, 2005, pp. 1–12.

[9] C.-T. Kim and J.-J. Lee, “Mobile robot navigation using multi-
resolution electrostatic potential field,” in32nd Annual Conference
of IEEE Industrial Electronics Society, 2005, IECON 2005, 2005.

[10] B. J. H. Verwer, “A multiresolution workspace, multiresolution con-
figuration space approach to solve the path planning problem,” in
Proceedings of the 1990 IEEE International Conference on Robotics
and Automation, 1990, pp. 2107–12.

[11] P. Tsiotras and E. Bakolas, “A hierarchical on-line path planning
scheme using wavelets,” inProceedings of the European Control
Conference, Kos, Greece, July 2–5 2007, pp. 2806–2812.

[12] D. Jung, “Hierarchical path planning and control of a small fixed-
wing UAV: Theory and experimental validation,” Ph.D. dissertation,
Georgia Institute of Technology, 2007.

[13] D. K. Pai and L.-M. Reissell, “Multiresolution rough terrain motion
planning,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 1, pp. 19–33, February 1998.

[14] L. Carrioli, “Unsupervised path planning of many asynchronously self-
moving vehicles,” inIEEE/RSJ International Workshop on Intelligent
Robots and Systems IROS ‘91, 1991, pp. 555–59.

[15] B. Sinopoli, M. Micheli, G. Donato, and T. J. Koo, “Vision based
navigation for an unmanned aerial vehicle,” inProceedings of 2001
IEEE Conference on Robotics and Automation, 2001, pp. 1757–64.

[16] R. M. Rao and A. S. Bopardikar,Wavelet Transforms - Introduction
to Theory and Applications. Addison-Wesley, 1998.

[17] U. Huckenbeck,Extremal Paths in Graphs. Berlin, Germany:
Akademie Verlag, 1997.

[18] R. V. Cowlagi and P. Tsiotras, “Beyond quadtrees: Cell decompositions
for path planning using the wavelet transform,” inProceedings of the
46th IEEE Conference on Decision and Control, New Orleans, LA,
12–14 Dec. 2007, pp. 1392–1397.

[19] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic
search in AI,” Artificial Intelligence Magazine, vol. 25, pp. 99–112,
2004.

APPENDIX

Proposition A.1:Let ū ∈ V̄ , andA = MR-APPROX(ū).
Let Cmr andG = (V,E) be, respectively, the multi-resolution
cell decomposition and the topological graph associated with
A. If there exists an obstacle-free path in̄G from ū to
ūG, then there exists an obstacle-free path inG from u

def
=

node(cell(ū; Cmr);G) to uG, whereuG ∈ V is the unique
node that satisfies̄uG ∈ W (uG, V).

Proof: Let π̄(ū, ūG) = (ūπ̄
0 , ū

π̄
1 , . . . , ū

π̄
P̄
) be an

obstacle-free path inḠ from ūπ̄
0 = ū to ūπ̄

P̄
= ūG.

For eachm = 0, 1, . . . , P̄ , there exists a uniqueUm ∈
{W (u, V)}u∈V such that ūπ̄

m ∈ Um. Let wm ∈ V be
such thatUm = W (wm, V). Becauseπ̄ is a path in Ḡ,
(ūπ̄

m−1, ū
π̄
m) ∈ Ē for eachm = 1, 2, . . . , P̄ , and it follows

that eitherUm−1 = Um, or (wm−1, wm) ∈ E. Thus, the

pathπ(u, uG)
def
= {uπ

0 , u
π
1 , . . . , u

π
P }, whereP ≤ P̄ , is a path

in G.
To show that the pathπ is also obstacle-free inG, we note

that sinceπ̄ is obstacle-free in̄G, F (ūπ̄
m) = 0, for all m =

0, 1, . . . , P̄ . It follows from (1) thatFmr(cell(uπ
m; Cmr)) <

M for eachm = 0, 1, . . . , P , and from (3)-(4) thatJ(π) <
M , i.e., π is an obstacle-free path.

Corollary A.2: If there exists an obstacle-free path in̄G
from the initial nodeūS to the goal nodēuG, then the cost
of the initial pathπ∗

0 computed by the algorithm is finite.
Proof: By Proposition A.1, if there exists an obstacle-

free path inḠ from ū to ūG, then there exists an obstacle-
free path π∗

0(uS, uG,0) in G(0) from the nodeuS
def
=

node(cell(ūS; Cjmax
);G(0)) to the nodeuG,0, whereuG,0 ∈

V (0) is the unique node that satisfiesūG ∈W (uG,0, V (0)).
Becauseπ∗

0 is obstacle-free,J0(π∗
0) < M , i.e., J0(π∗

0) is
finite.

Proposition A.3:Suppose that the algorithm does not
meet a setback at iterationn ∈ N of its execu-
tion, and also suppose that VISITED(ūn) = 0. If
there exists a path in the graphG(n) from the node
un = node(cell(ūn; C

mr(n));G(n)) to the nodeuG,n, then
J(ūn−1) − J(ūn) > 1, whereuG,n ∈ V (n) is the unique
node that satisfies̄uG ∈ W (uG,n, V (n)).

Proof: Let π∗
n(un, uG,n) = (u

π∗

n

0 , u
π∗

n

1 , . . . , u
π∗

n

P (n))

denote the optimal path in the graphG(n) computed by

the algorithm at Line 10. First, suppose that the cell de-
compositionCmr(n) is identical to the cell decomposition
Cmr(n − 1) (in particular, uG,n−1 = uG,n). If there ex-
ists a path inG(n) from un to uG,n, then there exists
an optimal path inG(n) from un to uG,n becauseG(n)
is finite. Then, by Bellman’s principle of optimality, the
path π∗

n−1(un−1, uG,n−1) = (u
π∗

n−1

0 , u
π∗

n−1

1 , . . . , u
π∗

n−1

P (n−1)),
computed at iterationn−1 of the algorithm, contains the path
π∗
n, with P (n) = P (n−1)−1, anduπ∗

n

m−1 = u
π∗

n−1

m for each
m = 1, 2, . . . , P (n), and henceJn(π∗

n) 6 Jn−1(π
∗
n−1).

Next, suppose that the cell decompositionCmr(n) is
not identical to the cell decompositionCmr(n − 1). Let
πn(un, uG,n) and πn−1(un−1, uG,n−1) be paths in the
graphs G(n) and G(n − 1) respectively. IfWn(πn) ⊆
Wn−1(πn−1), then due to the second term in the right
hand side of (4),Jn(πn) 6 Jn−1(πn−1). In particular, if
Wn(π

∗
n) ⊆ Wn−1(π

∗
n−1), thenJn(π∗

n) 6 Jn−1(π
∗
n−1).

Now supposeWn(π
∗
n) *Wn−1(π

∗
n−1). Let πn(un, uG,n)

be any path inG(n) from un to uG,n satisfyingWn(πn) ⊆
Wn−1(π

∗
n−1). There exists at least one such pathπn in G(n)

because the algorithm does not meet a setback at iteration
n. By the arguments in the preceding paragraph,Jn(πn) 6
Jn−1(π

∗
n−1). Furthermore, becauseπ∗

n is an optimal path in
G(n) from un to uG,n, Jn(π∗

n) 6 Jn(πn), and it follows
thatJn(π∗

n) 6 Jn−1(π
∗
n−1).

Finally, note that the cell corresponding to the first node
u
π∗

n

0 ∈ V (n) in the path π∗
n is the same as the cell

corresponding to the second nodeu
π∗

n−1

1 ∈ V (n − 1) in
π∗
n−1, and furthermore, this cell corresponds to the node

ūn ∈ V̄ . ThenJ(ūn−1)−J(ūn) = Jn−1(π
∗
n−1)−Jn(π

∗
n) >

ḡ(ūn−1, ūn) = 1, by (2).

Proposition A.4:Let ū be an arbitrary node in̄V . Then
either the algorithm never visits̄u or the algorithm visits̄u
finitely many times.

Proof: Suppose, for the sake of contradiction, that the
algorithm visits the nodēu ∈ V̄ infinitely many times at
iterationsn1, n2, . . . , nk . . ., i.e., ūn1

= ūn2
= . . . = ū.

By Line 7, J(ūnk
)− J(ūnk−1

) > 1, and hence there exists
N ∈ N, such thatJ(ūnN

) > M . It follows by Line 3 that
the algorithm terminates in at mostnN iterations, leading to
a contradiction.

Proposition A.5:Let π∗
n(un, uG,n) = (u

π∗

n

0 , . . . , u
π∗

n

P (n))
be the path found by the algorithm either at Line 7 or Line 10
at iterationn ∈ N, and suppose there exists an obstacle-free
path in Ḡ from ūn to ūG that is contained within the set
Wn(π

∗
n). Then the algorithm does not visit the nodeūn at

any future iteration.
Proof: Suppose, for the sake of contradiction, that there

existsℓ > 1 such that the algorithm visits nodēun again at it-
erationn+ℓ, i.e.,ūn = ūn+ℓ andūn+1 = ūn+ℓ−1. Then, due
to the definition of admissible paths in the graphsG(n+ k),
k ∈ N, which precludes cycles, there existsm < ℓ such that
for eachk = m,m+1, . . . , ℓ, the algorithm executes Line 17
at iterationn + k, i.e. ūn+k+1 = B(ūn+k). In particular,
for k = ℓ − 1, ūn+ℓ = ūn = B(ūn+ℓ−1) = B(ūn+1).
Note that, by Lines 17 and 13 and by Proposition A.1,
ūn+ℓ = B(ūn+ℓ−1) implies either that there exists no path
in Ḡ from ūn+ℓ−1 = ūn+1 to ūG, or that every obstacle-free

path in Ḡ from ūn+ℓ−1 to ūG containsB(ūn+ℓ−1) = ūn.
Recall now that the cell corresponding to the second node
in the pathπ∗

n is a cell at the finest resolutionjmax, and
hence,W (u

π∗

n

1 , V (n)) = ūn+1. Then, by (5) and by the
stated hypothesis, it follows that there exists an obstacle-
free pathπ̄(ūn, ūG) = (ūπ̄

0 , . . . , ū
π̄
P̄
) in Ḡ from ūn to ūG

such thatūπ̄
1 = ūn+1. Thus, there exists an obstacle-free

path in Ḡ from ūn+1 to ūG that does not contain̄un: in
particular,(ūπ̄

1 , . . . , ū
π̄
P̄
) is such a path. The implication of the

preceding paragraph contradicts this observation, and hence,
the supposition that there existsℓ > 1 such thatūn = ūn+ℓ

is false, i.e., the algorithm does not visit the nodeūn at any
future iteration.

