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Abstract— A multi-resolution path planning algorithm based  sections of this paper. Other applications of the wavelet

on the wavelet transform of the environment has been report#  transform to multi-resolution path planning schemes appea
previously in the literature. In this paper, we provide a proof [13]-[15].

of completeness of this algorithm. In addition, we present - .
an implementation of this algorithm that reuses information This work extends the wavelet-based path planning

obtained in previous iterations to perform subsequent iteations ~ Scheme of [11] with three new results: first, we provide
more efficiently. Finally, we extend this path planning algeithm  a proof of completeness of (a slightly modified version)

to dynamic environments by presenting a simple scheme for the path planning algorithm in [11]; second, we provide
updating the wavelet transform coefficients to reflect changs 5 ethod to efficiently recompute the multi-resolution cell
in the environment. L . . . .
decomposition and its associated topological graph by suit

|. INTRODUCTION ably modifying the graph computed in the previous iteration

Motion planning for autonomous mobile vehicles is thdas opposed to computing it from scratch at each iteration,

problem of finding control inputs that enable the vehicle’®S 1S done [11], [12]); and third, we provide a method to
motion to satisfy some pre-assigned task [1], [2]. Due t&fflClentIy ypdate the wavelet coefficients to match changes
its inherent complexity, the motion planning problem ig" the environment. _ _

usually solved over two levels of hierarchy. The higher !N the next section, we provide a cursory and informal
level, called the geometric path planning level, deals witfhtroduction to the wavellet transform; for further detalie
obstacle avoidance by finding an obstacle-frathfrom the réader may consult, for instance, [16].

initial point to the destination. The lower layer deals WithA
the kinematical and dynamical constraints of the vehicle by
generating a feasible referentrejectory based on the path Multi-resolution analysis of a scalar function involvegth
found by the geometric planner. construction of a hierarchy of approximations of the fuoicti

Geometric path planning based on cell decompositions [Py Projecting it onto a sequence of nested linear spaces. In
Ch. 5] is a widely used technique that involves partitioninghe context of the wavelet transform, these linear spaaes ar
the environment into convex, non-overlapping regionsechll the spans of translated and scaled versions of two functions
cells A graph is then associated with the cell decompositior¢alled, respectively, thecaling functiorandmother wavelet
where each obstacle-free cell is represented by a node Thediscrete wavelet transformf a functionF € £*(R) (or,
the graph, and the geometric adjacency relationships of tifethe 2-D case, a functioi € £L*(R?)) then refers to two
cells are represented by edges. A path in this graph thé&gllections of scalars, called, respectively, #pproximation
Corresponds to a sequence of obstacle-free cells from tﬁ@efﬁcients and théetail coefficients, defined, respectively,
initial cell to the goal cell. as the inner products df with translated and scaled versions

In this paper, we discuss a geometric path planning scherigthe scaling function and the mother wavelet.
based omulti-resolution cell decompositions. The quadtree  To apply the discrete wavelet transform for the multi-
method [3]-[5], which employs dyadic recursive decompotesolution analysis of the obstacle space, we define an
sitions, is one of the most extensively used multi-resotuti image as the pair(R, F), where R C R* is a compact,
cell decomposition techniques. Other path planning sceemgquare region and” : R — R, is an intensity mab
using multi-resolution cell decompositions have been prole assume thafz = [0,2”] x [0,2P], with D € Z.
posed in [6]; [7] (triangular cells); [8] (receding horizonWe also assume that the image intensity nfags known
path planning using multi-resolution estimates of objeckt a finite maximum resolutiom.x > —D, i.e., the
locations); [9] (multi-resolution potential field); and (L function F' is piecewise constant over each of the square
(hierarchy of imaginary spheres encapsulating the rolot, fcells [277maxk, 2 Tmax (k4 1)] x [27Imexf, 27 Imex (£ 4 1)],
collision avoidance). k,t=0,1,... 20 dme 1,

References [11], [12] report a new hierarchical path plan- A cell decompositionC of an image is a finite col-
ning algorithm using multi-resolution cell decomposition lection of disjoint, convex subsets,, of R called cells
obtained via the wavelet transform of the obstacle spacsuch that|J, C,, = R, and F is constant over the
We describe this algorithm in greater detail in subsequecetll C,,, for eachn = 1,2,..., N¢, where Nc € N. In

this paper, we consider square cells, and we denote by
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point (277k +277~1 277¢ 4 27¢=1). The collection of cells
¢; € {CG,kb) k£ =0,1,...,2P= — 1} is a uniform
cell decomposition of the imageR, F) at resolution leve}.

We associate with the cell decompositi6, .. a graph

G % (V,E), such that each node i corresponds to a

unique cell inC;,.... Two nodes inV are adjacentif the
corresponding cells iff;___are geometrically adjacentThe
edge setE consists of all pairu, ), wherew,v € V
are adjacent nodes. We usdl(@;C;,_,.) to denote the cell
in C,,... corresponding to the node € V; conversely,
we denote bynode(C; G) the node inV corresponding to
the cellC' € C;,,.. Finally, we use(z(a),y(u)) for the
coordinates of the center of the cell corresponding to node
u. We introduce an edge cost functign : E — R,,
which assigns to each edge ¢f a non-negative cost of
transitioning this edge. For given initial and terminal red

20 40 60 80 100
(a) Intermediate iteration

us, i € V, apath 7(is, ic) < (af,al,...,ua%) in G
is such thatuf € V, (af_,,uf) € E, k =1,..., P, with
uf = us, up = ua, anduj # ay, for p,r € {0,..., P},

with p # r. For brevity, and when there is no ambiguity,
henceforth we will suppress the argumentstinThe cost of

a path7 is defined as7(z) % S g((@g_y,ap)). The
path planning problenis to find a patht*(ug, i) such that
J(7*) < J(7) for every pathr in G.

Algorithms such as Dijkstra’s algorithm and the Al-
gorithm [2] can efficiently solve the path planning problem s
described above. However, the graplassociated with large 20 40 60 80 100 120
environments (i.e., withD large) consists of a very large (b) Terminal iteration
number of nodes. For practical, real-time applications, th
execution of standard search algorithms on the gGphay
be time-consuming; it may also be unnecessary, because the
vehicle’s path needs to be known accurately only in the
immediate vicinity of the vehicle. In light of this obseriat,

[11] proposes a path planning algorithm based ronlti-  Shown that foru € V,
resolution cell decompositions, constructed as follows. . S(u)

Let a coarse resolution level,;, € Z be specified, and mr L omryy —uL

for j = junin, let aj,, ke andd:, , (i = 1,2,3) be the 2- PP (eell(uiC™) = gr 11 mz::OF (cell(@rn; Cin))-

D discrete wavelet transform coefficients of the mfaplLet (1)

A Y (G, km, £m)} be a set of triplets of integers such Finally, two nodesu, v € V are said to be adjacent i@,

that jin, > jmin, m € N. An approximation(R, F™") is the i.e., (u,v) € E, if and only if there existu € W (u, V') and
image obtained by the coefficients,,, «.¢ andd§7k7é, where @ € W (v,V) such that(a,v) € E.

Fig. 1. lllustration of the path planning algorithm.

Ji dﬁf{ d;'.,k,e 1=1,2,3; (4,k,0) € A, [I. MULTI-RESOLUTIONPATH PLANNING
LA 0 otherwise.

Informally, the multi-resolution path algorithm of [11]

In what follows, we will refer to the approximatiafi™ of  operates as follows: at each iteration, a multi-resolutieth
F by its associated set of detail coefficieptsEach approx- decomposition is constructed. This decomposition retains
imation F™* uniquely corresponds to a cell decompositiorhigh resolution in the immediate vicinity of the vehicle's
C™* that consists of cells of different sizes. We associateurrent location, and approximates the environment in re-
with ¢™ a graphG = (V, E) such that each node il  gions farther away. A standard search algorithm may then
corresponds to a unique cell #"*. Each node: € V also be executed quickly on the graghbecausgV| < |V|.
corresponds to a s&t (u, V) def {wg, o, ... @g(u)} cV, Figyre 1(a) i.IIustrates an intermediate ite_rati.on in th{hpa
such that{W (u,V)}.cy is a partition of V. The multi- planning algorithm: the_blacl_< colorgd cells indicate thé-op
resolution cell decomposition grapéi approximates the _ma_l path found at that |terat|on,_wh|le t_he bl_ue col_oreds:ell
graphG by representing each set of nodé&(u, V) C V indicate the path recorded until that iteration. Figure)1(b

with a single node: € V. For the Haar wavelet, it can be illustrates the final step, with a cell decomposition caisis
' of high resolution cells in the vicinity of the goal. The blue

2Here we assume 4-connectivity, i.e., cells with two vestize common cells indicate the path found by the algorithm from the aliti
are said to be adjacent. This assumption implies Rat< 4|V|. node to the goal node.



Next, we present a modification of the multi-resolutiormaintains a cumulative cosf (7) of the pathz (s, @,) in
path planning algorithm of [11], and we prove that thisG. Finally, to construct approximations that retain the deta
modified algorithm is complete. To this end, we assume thabefficients in a “window” centered at the agent’s location,
the environment consists of free space and insurmountable introduce a function : Z — N that associates with each
obstacles, i.e.F(cell(w;C,,..)) = 0 if @ represents free resolutionj the size of the “window” at that resolution. The
space, and’(cell(w;C;,,....)) = M if u represents an obstacle, multi-resolution path planning algorithm is then descdibe
where M > |V|. We define the transition cost of an edgeas follows.

(w,v) € E by
_ d MR-A T
@) = Fo)+1 (moel (g Procsre MRApOX(
. . . . . 1:~A<_{d;]€g:jmin<]<]mdxa =1,2,3,
To the multi-resolution approximation of the environment "2.’7- _ <
constructed at iteratiom of the algorithm, we letA(n) i _I(%)J —0() <k < [Ze(@)] + o),
denote the associated set of detail coefficieGt&;(n) de- [27y(a)] — o(j) < €< [27y(w)] + Q(J)} :

note the associated multi-resolution cell decompositém  procedure Main()

G(n) = (V(n_),E(n)) denote the associated topo_logical 1 7 4s, Uy < Gs, n + 0, reachedGoal < 0, J(7) «
graph. We define the goal nodg, ,, € V(n) as the (unique) 0

node that satisfiesg € W (ug,n, V(n)). _ o 2 For eachi € V, VISITED (1)
For each node: € V, the proposed algorithm maintains 3. \yhile !reachedGoal and J(7) < M and J(@,) < M
an estimate/(u) of the least cost of any path ig from do

the nodeu to the goal nodeiq, and a record< (u) of the
least cost of any path ig from the initial nodeus to the
nodeu. The algorithm also associates with each nadeV if V|S|TED(%) — 1 then

another node3(u) € V called thebackpointerof 4. At each 7% ¢ argmin {J,(r) : 7 obstacle-free irg(n)},
iteration, the algorithm performs a computation (spedifica subject 0T, (7%) = J (i) + 1

in Line 17 or Line 19 of procedure MN below) whose T(7) « K(un)

result is a unique node . We refer to this computationas 4. g|se
avisit to this node, and we denote lay, the node visited by . 7 < argmin {J,(7) : 7 obstacle-free irg(n)}

def

the algorithm at iteratiom € N, with g def ug. Letu, = 11: K () + J (%)

node(cell(t,;C™ (n)); G(n)), i.e., u, is the node inV(n)  12:  VISITED(dy,) + 1
corresponding to the cell at the finest resolution represent 13:  if 7 does not existhen

A(n) + MR-APPROX 1y, ),
G(n) + MR-GRAPH(A(n))

No gk

©

by the nodei, € V. 14: if @, = ug then

A path m, (un, ucn) = (ug",ui", .., upp,)) in G(n) 15 Report failure
is such thatuj» # node(cell(B(tu,);C™ (n));G(n)), and  16: else
upr # wy, for eachp € {0,...,P(n)}, and for each 17 Upt1 < B(un)
m = 0,1,...,n — 1, wherew,, € V(n) is the uniqgue 18: else i
node that satisfiesi,, € W(wy,V(n)). Note that this 19 U1 < node(cell(u;™;G(n)); G)
definition precludes cycles in the path ¢i{n) obtained by 20:  B(ay) + tn-1
the concatenation of the patlwy, w1, ..., w,—1) With m,. 21 J(@,) < Tu(7)
The cost 7, (m,) of the pathm, (un,ug ) iS 22:  reachedGoal < (J(u,) = 0),

23. T (T, Up)
dof <= 24:  J(7) < T (F) + g(tn, Uns1)
TIn(mn) = Z In((upy—y,upr)). 3 25 nen4+1 ’
m=t 26: if J(7) > M or J(u,) > M then

The transition cost functiop,, : £(n) — R, in (3) is 27:  Report failure

gn(u,v) & def M§(F™(C") — M)+ |W(v,V(n))|, (4 Before proving the completeness of the preceding algo-
rithm, we make a few comments regarding its execution.
where (u,v) € E(n), CV def cell(v;C™ (n)), and(z) = 1 Remark 1:The constrained optimization problem in
if =0 andd(z) = 0 otherwise. Note that, by (4), the costLine 7 can be solved by an algorithm that finds ihghortest
of an obstacle-free path iéi(n) is less than or equal to the paths in a graph. Such algorithms have been reported, for
number|V| of nodes in the grap, and hence a path,, instance, in [17]. We implicitly assume that tlieshortest
in G(n) is obstacle-free if and only if7,,(m,) < M. paths will be of strictly increasing costs. This assumpi®n
The algorithm associates with each node € V a not required for the algorithm’s successful execution, ibut
binary value sITED(u), which records whether the nodeenables a concise statement of the algorithm.
u# has previously been visited by the algorithm, i.e., at Remark 2:In [18], we describe in detail the proce-
any iteration of the algorithm’s execution, and for anydure MR-GRAPH used in Line 4.
u € V, VISITED(w) = 0 indicates that the algorithm Remark 3:Due to Line 8, the cost of “back-tracking” is
has never visitedz in any previous iteration, whereasnot added to the cumulative cq$t(7). Also, it follows from
VIsSITED(z) = 1 indicates that the algorithm has visitad (3) and Line 21 that/(a) = 0 if and only if & = 4.
at least once during previous iterations. The algorithm als We associate with each path (u,,, uc.,) in G(n) the set



Wh(m,,) defined by to either conclude that the algorithm visits the goal in adini
P(n) nhumber .of iteratigns, |0rft0 arrivte1g_ar1: the contradiction that
def _— there exists no obstacle-free pathdnfrom ugs to uc.

Walmn) = Q Wluz, V(n)). ®) Now consider the case when there exists no obstacle-free
m=0 path in the graphg from the initial nodeug to the goal
nodeiug. The set of node¥ is finite, hence it follows by
Proposition A.4 that the algorithm terminates after a finite
number of iterations. Suppose, for the sake of contradictio
that the algorithm erroneously finds a patfirom the initial

Proposition 4: The proposed algorithm is complete: if nodeus to the goal nodeic. Then J(7) > M, sincen
there exists an obstacle-free pathdrfrom g to @g, then is not obstacle-free. It follows by Line 24 thgk(7) > M
the algorithm finds an obstacle-free path in a finite numbest some intermediate iteration of the algorithm. However,
of iterations. Otherwise, the algorithm reports failureeas by Line 3, the algorithm terminates whenev@&(w) > M,
finite number of iterations. thus leading to a contradiction. Thus, the algorithm dods no
Proof: Note that because the set of nodes lin erroneously find a path from the node to the nodei if
is finite, it follows by Proposition A.4 that the algorithm no obstacle-free path exists, and by Line 26, it reportsifail

The algorithm is said toneet a setbacht iterationn if there
exists no obstacle-free path, (u,, ug,») in G(n) satisfying
Wh(mn) € Wy_1(m)_1). We are now ready to state and
prove the main result of this section.

terminates after a finite numbar € N of iterations. To show in this case. [ |
completeness, first suppose that there exists an obstaele-f
path inG from s to . We consider several cases. I1l. EFFICIENT CONSTRUCTIONS OF THEGRAPHSG(n)

_ First, suppose that the algorithm never visits any node in In this section, we describe a method to obtadiin)

V' more than once, and that the algorithm does not meet asfficiently by adding and removing elements frofiin — 1).
setbacks. By Proposition A.3](@,—1) — J(@,) > 1 and Specifically, we first determine the elements of the sets
the sequencd (u,,) decreases strictly monotonically. Sincep, 4f A(n) N A°(n — 1) and B_; def A(n — 1) N A°(n),
J(un) > 0 for eachn € N, and sinceJ (1) is finite (by  and then evaluated(n) = A(n — 1) U B;\B_1. In light
Corollary A.2), there exists) < N, such that/(i,) = 0 of the definition of.A(n) in the procedure MR-Approx, we
for eachn > Q. It follows by Line 22 that the algorithm opserve thapim=z (i) = | 2/ms<z ()| 4 0 and 2imsxy(z)
terminates after) iterations, and since/(ag) = 0, the PR def o_j 4 5o
algorithm visits the goal nodeg at iteration(. |27y ()| +0, whered = 2 foru € V. It can be

~ Next, suppose that the algorithm visits some nodes %hown that
V' multiple times and that the algorithm never meets any |27x(t,,1)] = |[[2/2(t,)] 4+ 277 9==A, + 1|, (6)
setbacks. Note that the number of multiply visited nodes is L2jy(ﬂn+1” _ H2jy(ﬂn)J T 2j7jmaxAy T 7’@“’ @)

finite because the algorithm terminates in a finite number

of iterations._Then either of the _following statements hold, heare ri def o jmax (127 (@) | +0) — [20(iin) ).
(a) the algorithm terminates at iteratidgp < N such that
ug is a multiply visited node, or (b) there exisg < N

such that for eaclh = Q + 1,Q + 2,..., the nodeu,,

The elements of the sef8; and B_; are then determined
from (6)-(7) as follows. We define the scalar, as

is visited exactly once by the algorithm. If Statement (a) et =1, 0> 2 Imax A, 477,
holds, thenug # 4g due to by Lines 3 and 22, which in D, = 0, 027 max Ay + 1) <1, (8)
turn implies that the algorithm reports failure in Line 16. | 1, 1< 207 Imax Ay 47,

follows by Line 14 thatig = ug. Then, by Proposition A.1 . i -

and Proposition A.5, there exists no admissible patigin &nd similarly for®,. We then define the set$;;" by
from ug to uq, which is a contradiction. On the other hand, ... det . P

if Statement (b) holds, then by the monotonicity argumentsom — — {(y‘,k,ﬂ) tk = [ 2a(un) ] + mDy,

in the preceding paragraph, the algorithm visits the goal in 127y(un)] — 0(j) < < [27y(tn)] + 0())},
a finite number of iterations after iterati@p.

Next, suppose that the algorithm never visits any no
in ¥V more than once, and suppose that the algorithm med
some sethacks. The number of setbacks met by the algorithm 5~ _ U U Bl
is finite because the algorithm terminates in a finite number e
of iterations. Then either of the following statements hold
(c) the algorithm terminates at iterati@® < NN such that The modified procedures for determining the elements of
the algorithm meets a setback at iteratiOnor (d) there the setA(n) and the elements of the cell decomposition
exists Q < N such that for eacm = Q +1,Q +2,..., C™(n) are then described as follows.
such that the algorithm does not meet any setbacks after
iteration (). Statement (c) leads to the same contradictioprocedure Mod-MR-Approx (A(n — 1))
that follows Statement (a), whereas Statement (d) leads tq. Compute_; andB; with (9)
the same conclusion that follows Statement (b) above. 20 A(n) « A(n) = A(n — 1)U B;\B_;

Finally, suppose that the algorithm visits some node€k in
multiple times and that algorithm meets some setbacks. Viocedure Mod-MR-Graph (C™"(n — 1), B_1, B1)
may combine the arguments in the two preceding paragraphs C™} + &, C™ + &

gwherem € {-1,1}, and the set$37:¥, analogously. Then
%e setsB_; and3; are given by the following relation

m € {-1,1}. (9)

a={z,y} Jmin <J<Jmax




TABLE |
NUMERICAL COMPARISONS OF EXECUTION TIMES ILLUSTRATING
EFFICIENT COMPUTATION OF.A AND G

2: for all (j,k,¢) € B, do

3 O U {CG+1,k0) 2k < k < 2k + oD | 5 | Average exec[[ ,p | , [ Average exec.
1, 20< / <2+ 1} ) ° | time ratio ° | time ratio
4 C™ « C™MU{C(),k,0) : k = |2777k|, (¢ = 128 4 8.0671 256/ 1§ 13.446
- . s 128| 6 8.3114 2560 3 21.135
[27774], Jmin < J < 5} 128 | 15 12.552 512 18 18.886
s: forall (j,k,¢)€B_ydo X 256 | 4 9.9418 512 3Q 28.351
6 C™ o C™WU{CG+LED 2k < k < 2+
TABLE I

1, 20<i<20+1}
7. O CTU{C(, k,0)}
8 C™(n) + C™(n — 1) UCP\C™y

NUMERICAL COMPARISONS OF EXECUTION TIMES ILLUSTRATING
BENEFITS IN OVERALL PATH PLANNING

. . o _ | Sampl ) — | Sampl )

The advantage of computingl(n) using the modified 2P | e tiri';“?a‘iio FeCl 2P | o tiri';“?a‘iio exee
procedure MbD-MR-APPROXinstead of the procedure MR- 128 | 4 67002 56 19 - 9145
APPROX arises fr_om thg fact that the number of elements  5¢ | ¢ 10.163 512 4 80774
in the set.A(n) is O(g*), whereas the numbers of el- 256 | 6 7.6615
ements in the setd3_; and B, are both O(g), where
o & max;, . <i<imax 10(7)}. This observation also elicits
the advantage of computing™*(n) via procedure NbD- IV. PLANNING IN DYNAMIC ENVIRONMENTS

MR-GRAPH: the approach of directly computifigfrom The path planning algorithm described in Section Il and
A(n) executes inO(g®) time, because(g°) iterations of the modifications of the algorithm described in Section III
the constant-time operations similar to those described Essume a static environment, i.e., that the nkapoes not
Lines 3-4 of procedure MD-MR-GRAPH are performed. change. In this section, we describe an extension to the
On the other hand, the procedureo+MR-GRAPH exe-  algorithm described in Section Il that accounts for changes
cutes inO(p) time, becaus®(p) iterations of the constant- in the values ofF.
time operations in Lines 3-4 and Lines 6-7 are performed. In the context of the wavelet-based path planning al-
Remark 5:The graphG(n) is obtained from the graph gorithm, changes in the environment can be incorporated
G(n — 1) by adding and deleting a relatively small numbegefficiently by updating the wavelet transform coefficients o
of nodes and edges. In light of this observation, the opmrati /' without recalculatingll the coefficients. In what follows,
of finding the shortest path ig(n) may be performed we demonstrate a simple and efficient procedure for updating
using the so-callethcrementalalgorithms [19], which reuse the wavelet transform coefficients.
information about a previously known shortest path to find Let F' and F' denote, respectively, the original and the
a new shortest path corresponding to changes in the grapthanged intensity maps. For the sake of simplicity, we

. ._assume that" differs from F' only in the value at(x, \),
Table | shows the results of evaluating through numerlcqj xe {0,1 9D~jmax — 1}, ey s, )

simulations the ratio of the execution time required by’

the combination of the procedures MRPAROX and MR- Pk, ) = F(k,t), k#Kkorl#M\,
GRAPH to the execution time required by the combination of ’ F(k,0)+e, k=randl =),
the procedures KMD-MR-APPROX and MoD-MR-GRAPH : . .
. . . where 0 is a known scalar. For each,in < <
for computing the grapi(n). As predicted by the preceding - ,5;: 0.1.....20-i we define asgglled avérage

theoretical analysis, the execution time ratios increase . . e A
the sizep of theyhigh—resolution “window” increases. The Mensity § by §(j, k,¢) = 2k pexxc (k. £), where
execution time ratios also increase wjifi| = 222, because K ' [277k,277(k + 1)), and £ def [277¢,279 (0 + 1))
we assumgnin = —D. The execution time ratios in Table | We may similarly define the scaled average intensgjty
were computed by averaging ovei simulations, for each corresponding to the intensity map, and denote by?, ,
row of data in Table I. the difference§(j, k. £) — F(j. k. £), fOr jmin < J < Jmass
_Table_ Il shows the results of eva_luati_ng through nu_mericag,g = 0,1,...,2P-7. Also, we denote by&?',k,é the dif-
simulations the ratio of the execution time of the entirehpat, ancedi  — diy g fori=1,2,3, Where(fik , are the

. . . _ ],k,f Js . . . A
planning algorithm using procedures MRPAROXANd MR- 5,6t fransform detail coefficients of the new intensigpm
GRAPH to the execution time of the entire path plannin

9. It can be shown that
algorithm using procedures &-MR-APPROX and MoOD-

0

MR-GRAPH. The multi-resolution path planning algorithm eO._’k_’Z €6+1,1;,2
with the modified procedures of construction .dfn) and ei,k,l _ ¢ 66+1’k’2+1 (10)
G(n) executes up td0 times faster. € - e ’
NG 6+1,k+1,l
€hk L it 1,041

3The elements of™"(n) can be determined directly by Lines 2- 4 of
the procedure MD-MR-GRAPH after replacing3; in Line 2 with A(n)
and after appropriate initialization ¢f"*; see Ref. [18] for details.

where ¢ € R*** is a constant, known matrix. For each
jmin < ] < jmaxa k € {2\_2JHJ,2\_2JFLJ + 1}, and ¢ €



{2|277],2|27A] + 1} we may write [13] D. K. Pai and L.-M. Reissell, “Multiresolution roughrtain motion
planning,” IEEE Transactions on Robotics and Automatienl. 14,

0 e, k= |2"1k| andl = [27F1)] no. 1, pp. 19-33, February 1998.
€k = 0 otherwise (11) [14] L. Carrioli, “Unsupervised path planning of many aslyranously self-
’ moving vehicles,” inlEEE/RSJ International Workshop on Intelligent

; P ; Robots and Systems IROS ,4DB91, pp. 555-59.
Equation (10) may be evaluated by substituting values s B, Sinopoli, v Michell, G, Donato?‘;nd T 7. Koo, “Visiobased

the right hand _Side using (11) to obtain the Va|ue$§9iz, navigation for an unmanned aerial vehicle,” foceedings of 2001
(: = 1,2, 3), which are the differences between the wavelet IEEE Conference on Robotics and Automati@01, pp. 1757-64.

; i i 3 i [16] R. M. Rao and A. S. BopardikakVavelet Transforms - Introduction
transform detail coefficients af' and F'. Equation (11) may o Theory and Applications Addison-Wesley, 1998

be used to direCtly evalu?'te the approxima;ion CoeﬁiCienﬁﬂ U. Huckenbeck,Extremal Paths in Graphs Berlin, Germany:

Gjin. k.0 COrresponding tar, sincea,, ., ke = §(Jmin, £, ¢) Akademie Verlag, 1997.
and a; . — min, k. 0), i.€e., @; . — a. . — [18] R.V.Cowlagi and P. Tsiotras, “Beyond quadtrees: Cedampositions
0 Jmin,k, §(Jmin, K, £) Jmin k. Jmin, K, forfath planning using the wavelet transform,”Rmoceedings of the

Jrain kL . . 46" IEEE Conference on Decision and Confrddew Orleans, LA,
The coefficient update schemes (10)-(11) are particularly 12-14 Dec. 2007, pp. 1392-1397.
beneficial when the number of cells for which the values dft9] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremtahheuristic

. search in Al,” Artificial Intelligence Magazinevol. 25, pp. 99-112,
F changes is small compared to the total number of cells. 550,

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have extended the results of [11], by
proposing a modification of the original multi-resolution Proposition A.1:Let @ € V, and A = MR-APPROX1).
path planning algorithm, and have proved its completenedset C™ andgG = (V, E) be, respectively, the multi-resolution
In addition, we have presented computational proceduresll decomposition and the topological graph associatéll wi
for efficient implementation of the algorithm, supportedA. If there exists an obstacle-free path ¢h from % to
by numerical simulation results that illustrate the besefity , then there exists an obstacle-free patiGifirom u %

of these procedures. Finally, we have presented a Simmﬁde(cell(a;cmr);g) to ug, whereug € V is the unique
scheme for updating the wavelet transform coefficients @f th,qge that satisfies € W (ug, V).

APPENDIX

map representing the environment (e.g., the obstacle ppace pyoof:  Let 7@, ag) = (af,a] a%) be an
. . . . 7 _ Y yc P
zt:;;gg]tghefrgm I_smgll changes m__the map. This sChemg,qiacie free path ig from @f = @ to @} = dc.
pplication of the multi-resolution path piagn For eachm = 0.1 P, there exists a uniqué/,, €
- ) y 1 m

algorithm to dynamic environments. (W (u,V)}uey such thati® € U,n. Let w, € V be
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by NASA (award no. NNX08AB94A). (af,_,,ur) € E for eachm = 1,2,..., P, and it follows
that eitherU,,—1 = U, OF (Wy,—1,w,,) € E. Thus, the
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the algorithm at Line 10. First, suppose that the cell depath inG from i, ., 1 to ug containsSB(t, ¢ 1) = Up.
compositionC™ (n) is identical to the cell decomposition Recall now that the cell corresponding to the second node
C™(n — 1) (in particular, ug,n—1 = ug,n). If there ex- in the path; is a cell at the finest resolutiogi,ax, and

ists a path inG(n) from u, to ugn, then there exists hence, W (u]",V(n)) = @n41. Then, by (5) and by the
an optimal path inG(n) from u, to ug,, becauseG(n) stated hypothesis, it follows that there exists an obstacle

is finite. Then, by Bellman’s prrnuple of optrmahty, the free path7(a,, iq) = (aj,...,a%) in G from @, to ig

Iy T \ oY p .
path 7% | (up_1,ucn-1) = (ug" " ,uy" ", ... u Prznll) such thataf = u,41. Thus, there exists an obstacle-free
computed at iteration—1 of the aIgorrthm contalns the path path in G from un+1 to uc that does not contaim,: in
7, with P(n) = P(n—1)—1, andu’"_, = upy " for each particular,(af, ..., u7) is such a path. The implication of the

”_1 2,...,P(n), and hence7,, (r* )é Tno1 (). preceding paragraph contradicts this observation, andehen

the supposition that there exists> 1 such thatu,, = @,
Let is false, i.e., the algorithm does not visit the naggat any
future iteration. [ ]

Next suppose that the cell decomposmdﬁ”(n)
not identical to the cell decompositiof™ (n — 1).
T (Un, Ug,n) aNd w1 (Un—1,ucn—1) be paths in the
graphsG(n) and G(n — 1) respectively. If W, (m,) C
Wh-1(mn—1), then due to the second term in the right
hand side of (4)Jn(7rn) < Tn-1(mn=1). In particular, if
Wa(m5,) € Wha(m, ) thenjn( )<~7n (1)

Now supposeV, (m:) € Wy_1(m}:_;). Letﬂ'n(un,uG_’n)
be any path inG(n) from Up 10 ug,, satisfyingW, (m,) C
W, —1(m}_;). There exists at least one such pathin G(n)
because the algorithm does not meet a setback at iteration
n. By the arguments in the preceding paragra@h(r,,) <
Tn—1(m}_1). Furthermore, because; is an optimal path in
G(n) from up 10 uG,ns TIn(7}) < Tn(my), and it follows
thatjn( ) < jn 1( )

F|naIIy, note that the cell corresponding to the first node
ug” € V(n) in the pathz} is the same as the cell

correspondlng to the second node" e V(in—1)in
mr_q, and furthermore, this cell corresponds to the node

Un € V. ThenJ (t,—1)—J(tn) = Tn1(m}_1)—Tn(mk) =

g(ﬂn—laan) = 1! by (2) u

Proposition A.4:Let @ be an arbitrary node iV. Then
either the algorithm never visitg or the algorithm visitsi
finitely many times.

Proof: Suppose, for the sake of contradiction, that the
algorithm visits the nodei € V |nf|n|tely many times at
iterationsny, ne, ..., Nk ..., L&, Up, = Up, = ... = U.

By Line 7, J(ty, ) — J(tn,_,) = 1, and hence there exists
N e N, such that/(4,,) > M. It follows by Line 3 that
the algorithm terminates in at mos}y iterations, leading to
a contradiction. X l

Proposition A.5:Let 7 (un,ugn) = (ug”,..
be the path found by the algorithm either at Llne 7 orﬁ_lne 10
at iterationn € N, and suppose there exists an obstacle-free
path inG from u, to 4g that is contained within the set
W, (7). Then the algorithm does not visit the nodg at
any future iteration.

Proof: Suppose, for the sake of contradiction, that there
exists? > 1 such that the algorithm visits nodsg again at it-
erationn—+/¢, i.e.,t,, = Upye @nNdi, 11 = Upye—1. Then, due
to the definition of admissible paths in the graghs + k),

k € N, which precludes cycles, there exists< ¢ such that
for eachk = m,m+1,..., £, the algorithm executes Line 17
at iterationn + k, i.e. Gp4k+1 = B(Un+k). In particular,
for k = £ — 1, tpye = Up = Bllnte—1) = B(lnt1)-
Note that, by Lines 17 and 13 and by Proposition A.1,
tnte = B(un4e—1) implies either that there exists no path
in G from 4, ,_1 = 4,41 t0 iig, or that every obstacle-free



