Beamlet-like Data Processing for Accelerated Path-Planng Using
Multiscale Information of the Environment

Yibiao Lu, Xiaoming Huo, and Panagiotis Tsiotras

Abstract— We consider the deterministic path-planning prob- can reduce the order of computational complexity in the
lem dealing with the single-pair shortest path on a given greh. worst-case.

We p:opose_ amult!s_cale yersnomf_the well known A* algorithm The objective of the proposed m-A* algorithm is to
(m-A*), which utilizes information of the environment at . . .
distinct scales. This information is collected via a bottorup ~ CONStruct a smaller size graph on which the computational

fusion method. Comparing with existing algorithms such as complexity of searching for the shortest path is efficiently
Dijkstra’s or A* the use of multiscale information leads to an reduced. The intuition of the problem size reduction is give

improvement in terms of computational complexity. as follows. A direct implementation of Dijkstra’s or A*
algorithm searches through all free cells in the envirorimen
|. INTRODUCTION This can be overwhelmingly redundant: if the origin and

We consider path-planning problems in a deterministidestination vertice_s are i_n the upper-left and bottomirigh
2-D environment. Without loss of generality, we assumduadrants respectively, it is not necessary to scan thraligh

that the information about the environment is given vian€ free vertices in the upper-right and bottom-left quadra

ann x n square image, where is dyadic:n = 27 and Instead, one only needs to consider the boundary whitegixel
J is a positive integer., Note that such an image-base‘?f these two quadrants. (An illustration of this can be seen i
formulation is well-adopted in the path-planning literatu Fig. 1.) Armed with this intuition, we develop a new dynamic

In some publications, the image is called tyédworld [8].

For simplicity, we will assume squared images. We also
assume that the image contains two types of pixels: gray
pixels (representing non-traversable obstacles) andewhit
pixels (representing traversalitee cell3. The path-planning
problem is to find the shortest path between a given pair of
sourceand destinationcells. *

Two popular shortest-path search algorithms in a deter-
ministic setting are Dijkstra’s algorithm [5] and A* [9]. Blo
algorithms give the optimal path and can be considered as
special versions of dynamic programming [14]. A* operates
essentially the same as Dijkstra’s algorithm, except that i
uses a heuristic estimate to guide its search directionrttsva
the most promising states.

To apply either algorithm, one first needs to construct the
search graph. In this graph each free cell is defined to be a
vertex and, correspondingly, it is connected only to it®frerig. 1. The free cells that need to be considered in the nevdpgsed
four nearest-neighborsfalur-nearest-neighbor connectivity approach. Note that not all free cells need to be called inntindtiscale
assumptiop However, both Dijkstra’s and A* algorithms way of running the Dijkstra’s or A* algorithm. This is also dfustration

of the vertices in the beamlet graph, which will be defined éct®n 11-B.
have the tendency to be slow as the space that needs to

be sgarched increases. We proposautiscale A* _(m-A*) . programming algorithm for path planning in a cluttered envi

?"'90””‘"" that takes advantage of t.h.e sparse .'nformat'cfEnment, which takes advantage of preprocessed informatio
|nduged by the quadtree decomposmon in a hierarchy FPat is organized in a multiscale fashion, analogous to the
dyadic squares. We show (Section Ill) that such a Strate%adratic tree structure that has been used in beamlets [7].

Yibiao Lu is currently a PhD candidate in the H. Milton Stetv&chool of ThIS pape_r follows up O'.’ recent advances in the area of
Industrial and System Engineering, Georgia Institute ahf®logy, Atlanta, multl-resolujclon pa_th planning [1], [11], [15], [3], [4].1[7],
GA, 30332-0250, USA, e-mail: ylv3@gatech.edu [12]. In particular, in [15], [3] wavelets were used to extra
Professor Xiaoming Huo is with the H. Milton Stewart Schodl o tha gpatial information from the environment that is most
Industrial and System Engineering, Georgia Institute ahif®logy, Atlanta, . . .
GA, 30332-0250, USA, e-mail: huo@gatech.edu. relevant to the current location of the vehicle. While watel
Professor Panagiotis Tsiotras is with D. Guggenheim Sabioaérospace have proven to be very useful in this context, they exhibit a

Engineering, Georgia Institute of Technology, Atlanta, G8332-0250, small. fixed number of preferred orientations (horizonlaf-
USA, email:tsiotras@gatech.edu. ! ’

1In our setting, we consider path planning at the pixel leslj therefore tical, dmgonal)’ and are better described as roughlyoﬁmr
the free cell is an equivalent concept as white pixel. Beamlets, on the other hand, add two crucial elements

missing from wavelet processing that are crucial for path-
planning problems: orientation and elongation informatio
As a result, they offer optimal approximations of straight
lines in the plane [7]. The results of this paper stem from
this simple observation.

Il. MULTISCALE PATH PLANNING STRATEGY WITH
PREPROCESSEONFORMATION

A. Recursive Dyadic Partition of the Environment

We describe two types of recursive dyadic partitioning
(RDP) schemes used in the sequel. The first one is the
completeversion of RDP. We then introducepath-planning
reducedRDP (PFR-RDP), which will play an important role
in defining thebeamlet graph-the graphical structure that
we will rely on.

The complete recursive dyadic partition can be described
in a top-down fashion: a squared image is partitioned nto
2 smaller d-squares, repeating the partitioning until thedin
resolution of the image is reached. For future convenience,
let s (1 < s < J) denote thescale A dyadic square (called a
d-squarefrom this point on) at scale, indexed bya, b (1 <
a, b < 2%) will be denoted by;(s; a, b). We havey(s; a,b) =
{(i,7): 27 % (a—1)+1<i <277%a,275(b—1)+1 < j <
27-5p}. A d-squareq(s;a,b) at scales can be partitioned
into four scales + 1 d-squares; i.e., we havgs;a,b) =
q(s+1;2a—1,2b—1)Uq(s+1;2a—1,2b)Uq(s+1; 2a, 2b—
1)Ugq(s + 1;2a,2b). We say that the d-squartgs; a, b) has \ \ a@e4)

four children. The family of d-squares at all scales forms a - - ‘F -1-- - -
quadratic tree. 8 ‘ @

In the path-planning problem, for a given pair of origin 1 2 3 4 5 6 71 8

and destination cells, only a part of the complete RDP is (b) The corresponding partition of a squared image
needed. We call this thpath-planning reduced RDFPFR- _ _ . . .

he PFR-RDP is generated as follows. The ima Fig. 2. (a) A partial recursive dyadic partition and the esponding PFR-
RDP) T e_] - g : . Ofuadtree (b) a partial recursive dyadic partition on a sinfpk 8 image.
is first partitioned into2 x 2 smaller d-squares. If either The black cells are the source and destination. The gray agdl obstacles.
the origin cell or the destination cell is in a smaller d-The d-squares shown in figure are from the third layer in (a).
square, the quadratic (i.2x 2) partition of this d-square will
continue, unless the finest resolution is reached. If a @wsqu : ' :
contains neither the origin nor the destination, no further The beamlet graphis now defined as follows. First of all,

P ; : e a PFR-RDP of the: by n image is obtained. All the free
partition is done to this d-square. The resulting partition . i . i
a partial recursive dyadic partition—not all d-squares ar%e”S on the boundaries of each d-square in the PFR-RDP

partitioned to the finest resolution—and corresponds to e defined to be the vertices in the beamlet graph. Two

partial quadtree. Figure 2 shows a simple example of PF ertices are connected under two conditions: (a) they are
RDP and the co.rrespondierR-quadtree nearest neighbors; or (b) they are in a d-square in the PFR-

RDP and there is a beamlet (i.e. a feasible path) that cosinect
them. Within each d-square, the weight of an edge is the
. . length of the shortest path connecting the two vertices. An

In the nearest neighbor graph, only the nearest neighbqfgample is shown in Fig. 1. The red grid is the partial dyadic
are connected by edges. Here we introduce another type Qfitition of the environment corresponding to the PFR-RDP.

connectivity that takes advantage of connections betwaren fThe red circles are the free boundary cells, i.e. the vestice
away cells. We will see that such a connectivity, togethénwi iy the beamlet graph.

the aforementioned PFR-RDP, can reduce the computationalye need to compute the weights of the edges within all

complexity of the algorithm. For a fixed d-square, we onlthe d-squares in a PFR-RDP. This can be achieved by the
consider the free cells on the boundary of this d-square. fyllowing bottom-up fusion algorithm.

pair of free cells on the boundary of the d-square are said .)

to be connected by heamletif and only if there exists a C- Bottom-Up Fusion Algorithm

feasible path between the two. The beamlet is defined to beThe proposed multiscale path planning strategy requires
the shortest path connecting these two free cells. Note thifie precomputed inter-distance between any pair of free
such a definition is similar to the beamlets defined in [6]. boundary cells in each d-square. Whea: J or J —1, there

q(212,1) [[[
e

B. Beamlet-like Connectivity

are one or four pixels in the d-square, respectively. Heitice,its path length to the destinatioh(v, vgesin). The cell that

is straightforward to compute these distances. In the génehas the minimum such sum is at the front of the priority
case, recall that a d-squagés; a,b) can be partitioned into queue. The heuristié (v, vgestin) Should underestimate the
four smaller d-squares of scale+ 1. If we already know cost of the optimal path from to vgesn. In Our algorithm,
the inter-distances between the free boundary cells withthe heuristic estimate is the usua] distance.

each of the smaller d-squares, and after considering the o

connectivity of free boundary cells that belong to neighbof- Optimality of m-A*

d-squares, we can treat all free boundary cells of the four The optimal path is identified by m-A* by running the
scales+ 1 d-squares as vertices in a “fused” graph, and ruA* algorithm on the beamlet graph. Recall that a search
Dijkstra’s or A* algorithm on it. The distance between freealgorithm is complete if, given a search graph that has a
cells from neighboring d-squares can be defined by diredestination, that algorithm always finds the destination; a
neighbors. Since there are no more tha2?—* of these search algorithm is optimal if it always finds the optimal
pixels, the search algorithm can be run efficiently. Figure Bath, if there exists one. We have the following theorem.
shows how this “fusion” of distance is conducted recursivel

Theorem 1 The m-A* algorithm, using an admissible
heuristic, is complete and optimal.

D-square q(3,2,1)

Proof: To show completeness, notice that the first step
of m-A* computes the PFR-RDP and guarantees that the
source and destination vertices are in the beamlet graph.
Recall that the beamlet graph is assumed to have beamdet-lik
connectivity besides the four-nearest-neighbor convigcti

N
Ii.
-]

L.

_— - - - =+ =

Therefore in the search tree, the number of children for each
vertex will still be finite. According to the property of A*

R | e © search algorithm [16], if an admissible heuristic functien
o . used, m-A* is complete.
fffff o Bl e To show optimality, letp* and p** denote the shortest
! © paths identified by running the A* algorithm on the nearest
. l l . 5 neighbor graph and the beamlet graph respectively. By def-
inition, the optimal path has length*|. It suffices to show
1 2 3 4 5 6 7 8

that|p**| = |p*|. To this end, letSy n¢ and Sp¢ be the sets

of paths between the source and destination in the nearest
neighbor graph and the beamlet graph, respectively. Becaus
p** € Snng andp* = argminges, vo [P, it follows that

Ip*| < [p**|. On the other hand, imagine that the same PFR-
RDP is embedded on the nearest neighbor graph. Fen
can be regarded as the chain of “path segments” on each
d-square it passes through, and hempéec Spg. Since

p** = argmin,e s, |pl, it follows that |p**| < |p*|. [|

Fig. 3. Magnified view of the fusion in the d-square q(3,2,1)F@. 1.
The fusion is conducted in a complete dyadic partition. &that the solid
red grid stands for the partition corresponding to the sédager of the
associated quadtree and the dashed red grid correspondie feaittition
with respect to the third layer. The green arrow means ther-listance
between free boundary cells. The blue lines show the fusiongss.

D. Multiscale A* Algorithm on the Beamlet Graph

Let BG = (V,E) denote the beamlet graph, wheve
denotes the vertices, i.e. the free boundary cells of all
the d-squares in the PFR-RDP, ait denotes the edges A. Complexity of Fusion Algorithm
representing the shortest distance paths between pairseof f \ye would like to derive an upper bound of the algorithmic
boundary cells. _ _ complexity, i.e., we consider the worst case. To this end,

Our algorithm can be considered to Bemultiscale ex- consjder an environment represented by a grid of dimension
tension of the A* algorithm (m-Af)The main steps mimic 9., » 2. At the first level below, the environment is
the standard A* procedure. For convenience, we repeat tlgpdivided to four d-squares of dimensionx m. Let T'(m)
main steps of the algorithm below. In particular, m-A* plangjenote the amount of computation required to find the inter-
a path from the source cell,.ijin € V' to the destination gjstances between all pairs of free boundary cells within an

cell vgestin € V' in @an image, wheré” denotes all the free ., py 1, d-square. A recursive relationship can be written as
cells on the boundaries of d-squares in a PFR-RDP. To qgjjows,

this, one stores an estimatév) of the path length from
the source to each cell. Initially, we setg(v) = oo for
all cells in V. The algorithm begins by updating the pathwheref(m) denotes the effort for solving the all-pair shortest
length of the origin cell to be zero, then places this cell ippath problem in the fusion search graph. Note that there are
a priority queue known as th@PEN list. Each element 4(m — 1) boundary pixels per each of the four smaller d-
in this queue is ordered according to the sum of its curresguares. Hence we hay®| < 4 x 4(m — 1). Each edge
path length from the starg(v), and a heuristic estimate of belongs in either one of the following two categories:

IIl. COMPLEXITY ANALYSIS

T(2m) =4T(m) + f(2m) (1)

0] Edges connecting the free boundary cells within
each smaller d-square.

(i) Edges connecting the nearest-neighbor pixels be-
tween neighboring d-square.

In each d-square, there are at m@‘é’f;_‘*) edges; there
are at mostlm edges connecting free cells who are nearest
neighbors, however not in the same d-square. Hence we have
[E| <4(*%57) + 4m < 32m2.

Lemma 2 For the aforementioned’(m) in (1), we have
f(m) = O0(m?).

Proof: Johnson’s Algorithm [10] is the standard al-
gorithm for solving the all-pair shortest paths problem,
considering when the graph is sparse. If one assumes that an
intermediate step of Johnson's algorithm (an implemewmati ig. 4. iustration of a beamlet graph in32 x 32 grid. The PFR-RDP
of the Dijkstra’s algorithm) is done via Fibonacci heapsare plotted in red lines. Free cells are marked by circlesy thre free

i i 2 _ boundary cells of the d-squares in the PFR-RDP. If two fréls belonging
then the overall complexny IQ(V log(V) + VE) to different d-squares are nearest neighbors, they alscamected. All

O(m?log(m) +m?*) = O(m?). This is the complexity of free celis within the same d-square are considered comheaselong as a
f(m). B feasible path exists.
To evaluateT'(m), we will need the following Master

Theorem [2, Sect. 4.3].

are the free boundary cells in all the d-squares in the PFR-
Theorem 3 (Master Theorem) Consider a recurrent rela- RDP. For ann x n image, there are two scale-1 d-squares,

tion (of an algorithm) in the following form: and six scaler d-squares when > 2. For a scales d-square,
m there are at mosh22~* free boundary pixels. Hence the
T(m)=a T(z) +f(m), a>1b>1 upper bound of the total number of vertices in the beamlet
graphis2x2n+6 xn+6x 5 +6x 7 +---=4n+6n+

wherem is the size of the entire problem,is the number 3 -+ %n 4 --- < 16n. [V] = O(n). Therefore|E| cannot

of subproblems in the recursiomp/b is the size of each . 9
subproblem, (It is assumed that all subproblems are of thEzave order higher thafd(n"). On the other hand/| cannot

2 i -1 d-
same size.) Lef(m) be the cost of the work done outside € less tQa'O(”), sihee the two scale-1 d-squares already
haveO(n*) edges in the worst case.

the recursive calls, which includes the cost of dividing Recall that th lexity of ina Diikstra’s alaorith
the problem and the cost of merging the solutions to the ecall that the complexity of running Dijkstra’s algorithm

subproblems. If the following two conditions are satisfied: with Fibonacci heaps (| E] + V] log|V]). We therefore
B log, ate have the following theorem.
(@ f(m) = O (m'e %) for some constant > 0,

and
(b) af (%) < c¢f(m) for some constant < 1 and Theorem 5 The complexity of running A* or the Dijkstra’s
sufficiently largem. algorithm on the aforementioned beamlet graptOié?).

Then we havd' (m) = O (f (m)).
(m) (f (m) Proof: The previous calculation has given us the

Note that the above is just a special instance of the mofellowing estimates]V| = 16n and |E| ~ 8n?. Using the
general Master Theorem [2]. For our purpose, the abowvwmplexity of Dijkstra’'s algorithm, the upper bound of the

special case is sufficient. We therefore have complexity is O(n? + nlogn) = O(n?). Recall that A*
and the Dijkstra’s algorithm have the identical worst-case

Theorem 4 For the T(m) in (1), we haveT(m) = complexity [16]. []

O(f(m)) = O(m?). For comparison, in theearest-neighbor grapfNNG), (an

illustration of which is provided in Fig. 5) we hay&| = n?
and |E| = 4n?, and one can easily establish the following
theorem.

Proof: Takea = 4 andb = 2, and apply Theorem 3.
[]
Therefore the complexity for preprocessing innax n
gridworld is O(n?).
)] Theorem 6 If A* or the Dijkstra’s algorithm is run on
B. Complexity of Searching the nearest-neighbor graph, the worst-case complexity is
We now consider the order of complexity for running A* O(4n? + n?logn?) = O(n?logn).
(or Dijkstra’s) algorithm on the beamlet graph and the
nearest-neighbor graph respectively. We consider the lséam The proof is evident and is therefore skipped. Note (from
graph first. The PFR-RDP and the corresponding beaml&heorems 5 and 6) the reduction by a factogn when
graph are shown in Fig. 4. The vertices in our beamlet gragtompared with the m-A* algorithm.

Fig. 5. A 32 x 32 image with all free cells marked by circles. There
are aroundO(n?) circles. If two free cells are nearest neighbors, they are

connected.

O
Ol

OllosOOlB

IORROOBOOOMO

o © [ceeeele ©6000
OIBONOO

OO0
O O

IV. NUMERICAL SIMULATION STUDIES

We provide numerical experiments to compare the pro-
posed multiscale search algorithm (multiscale Dijksteaisl
multiscale A*) with their single-scale counterparts. Ireth
first simulation, the probability of a certain cell (denotasl
(x,y) wherel < x,y < n,) to be a free cell is assigned
to be p(z,y) = exp(—v|y — #?/n|), where the constant
will be specified later. The intuition of this model is that
pixels near the curve = 22 /n have higher probability to be
free cells than the pixels far away from the same curve. We

\anvamvamvan v
OO0

(63

run Dijkstra’s algorithm on the beamlet graph, as a special 5 10 15 20 25 30

case of A* algorithm (i.e., setting the heuristic of the eost
to-go to be zero). Table | contains our simulation result
when~ = 1/15. Figure 6 shows the shortest paths from th

(b) A shortest path in the beamlet graph

Eig. 6. (@) The shortest path of NNG in3a x 32 image; (b) The shortest-

@ath of in the beamlet graph for the same image.

nearest-neighbor graph and the beamlet graph, respgctivel
The two paths are different in this example. Both paths
have the same length nonetheless. A comparison of thiege NNG and the beamlet graph respectively. This time the
corresponding running times is given in Table I.

MULTISCALE DIJKSTRASALGORITHM COMPARED TO TRADITIONAL

TABLE |

DIJKSTRAIN SIMULATION | WITH v = 1/15.

ImageSize 64 x 64

GraphType NNG BeamletGraph Ratio
Expl 0.616439 0.100009 6.17
Exp2 0.456536 0.126309 3.61
Exp3 0.466612 0.162247 2.88
Exp4 0.447084 0.112116 3.99
Exp5 0.433141 0.092936 4.66

ImageSize 128 x 128

GraphType NNG BeamletGraph Ratio
Expl 1.315877 0.167777 7.84
Exp2 1.476583 0.283658 5.21
Exp3 1.374446 0.234752 5.86
Exp4 1.259515 0.175048 7.19
Exp5 1.728572 0.212332 8.14

two methods identified exactly the same optimal path. In
Fig. 7(b), the partial dyadic partition corresponding te th
PFR-quadtree is also shown, hoping that the reader would
get a more clear view on this type of partition. Table Il
contains the computation times of the two algorithms for
this simulation.

In this simulation, the proposed algorithm outperforms
Dijkstra’s algorithm. When the image size becomes larger,
the computational time is reduced even more.

V. CONCLUSION

In this paper, we have discussed a newly-developed exten-
sion of the well-known A* path-planning algorithm based on
a multiscale decomposition of the environment. A bottom-up
fusion method is proposed as a multiscale strategy, which
preprocesses the information and formulates the beamlet
graph for the search algorithm. This multiscale A* algamth
(m-A*) provides a significant reduction in terms of com-

The second simulation involves a more difficult situaputational time over the original A* algorithm. Incremeita
tion. We generate the environment similarly to the previougersions of the proposed baseline algorithm, along the same
case, but now we change the parabolic curve to a circlines as in [13], as well as extensions to higher dimensions,
Figures 7(a) and 7(b) show the shortest paths identified are possible and are currently under investigation.

Acknowledgement: This research was supported in part
by NSF award no. CMMI-0856565 and NASA award no.
NNXO08AB94A.

REFERENCES

[1] S. Behnke,Local Multiresolutin Path Planningser. Lecture Notes in
Computer Science. Berlin: Springer, 2004, vol. 3020, p2-333.

[2] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stiitroduction
to Algorithms 2nd ed. Cambridge, MA: MIT Press and McGraw-Hill,
2001.

[3] R. Cowlagi and P. Tsiotras, “Beyond quadtrees: Cell deposition for
path planning using the wavelet transform,”46th IEEE Conference
on Decision and ControlNew Orleans, LA, Dec. 12-14 2007, pp.
1392-1397.

[4] ——, “Multiresolution path planning with wavelets: A lat replan-
ning approach,” inAmerican Control ConferenceSeattle, WA, June
11-13 2008, pp. 1220-1225.

[5] E. Dijkstra, “A note on two problems in connexion with giss,”
Numerische Mathematikol. 1, pp. 269-271, 1959.

[6] D.Donoho and X. Huo, “Beamlets pyramids: A new form of tirels-
olution analysis, suited for extracting lines, curves amjects from
very noise image data,” iRroceedings of SPIEvol. 4119, no. 1, July
2000, pp. 434-444.

[7] ——, Multiscale and Multiresolution MethodsSpring, 2002, vol. 20,
ch. Beamlets and multiscale image analysis, pp. 149-196.

[8] D. Ferguson, M. Likhachev, and T. Stentz, “A guide to hstic-
based path planning,” iProceedings of the International Workshop
on Planning under Uncertainty for Autonomous Systemsiriat®nal
Conference on Automated Planning and Scheduling (ICABP&)e
2005.

[9] P. Hart, N. Nilsson, and B. Rafael, “A formal basis for theuristic
determination of minimum cost pathdEEE trans. Sys. Sci. and Cyb.
vol. 4, pp. 100-107, 1968.

[10] D. Johnson, “Efficient algorithms for shortest pathssiparse net-
works,” Journal of the ACMvol. 24, no. 1, pp. 1-13, 1977.

[11] D. Jung and P.Tsiotras, “Multiresolution on-line pakanning for
small unmanned aerial vehicles,” ilmerican Control Conference
Seattle, WA, June 11-13 2008, pp. 2744-2749.

[12] S. Kambhampati and L. S. Davis, “Multiresolution patlarming for
mobile robots,”IEEE Journal of Robotics and Automatiomol. 2,
no. 3, pp. 135-145, 1986.

[13] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong plamg A*
Artificial Intelligence Journal vol. 155, no. 1-2, pp. 93-146, 2004.

Fig. 7. (a) The shortest path in the NNG: (b) The partial fiarti [14] ?(.)I\(;Iél._aValle, Planning Algorithms Cambridge University Press,

corresponding to the PFR-RDP and the shortest path in thaleegraph. [15] P. Tsiotras and E. Bakolas, “A hierarchical on-line fpptanning
In bqth Images, the gray c_eIIs means “obstacles”, and thekldats are the scheme using wavelets,” iI’European Control ConferenceKos
starting point and destination. Greece, July 2-5 2007, pp. 2806-2812. ’
[16] P. Winston, “Search complexity,” irArtificial Intelligence Lecture
Notes Fall 2003.
[17] A. Yahja, A. Stentz, S. Singh, and B. L. Brumit, “Framgdadtree
path planning for mobile robots operating in sparse envirents,” in
Proceedings of the 1998 IEEE International Conference obdios
TABLE II & Automation Leuven, Belgium: IEEE, May 1998, pp. 650-655.

(b) A shortest path in the beamlet graph

MULTISCALE DIJKSTRASALGORITHM COMPARED TO TRADITIONAL
DIJKSTRAIN SIMULATION Il WITH v = 1/500.

ImageSize 64 x 64

GraphType NNG BeamletGraph Ratio
Expl 0.18965 0.022204 8.54
Exp2 0.163025 0.022509 7.24
Exp3 0.269925 0.026684 10.12
Exp4 0.217668 0.025778 8.44
Exp5 0.114686 0.016336 7.02

ImageSize 128 x 128

GraphType NNG BeamletGraph Ratio
Expl 0.511047 0.054572 9.36
Exp2 0.548823 0.065516 8.38
Exp3 1.222879 0.066844 18.29

Exp4 1.175211 0.067509 17.41
Exp5 0.640812 0.079966 8.01

