
Beamlet-like Data Processing for Accelerated Path-Planning Using
Multiscale Information of the Environment

Yibiao Lu, Xiaoming Huo, and Panagiotis Tsiotras

Abstract— We consider the deterministic path-planning prob-
lem dealing with the single-pair shortest path on a given graph.
We propose amultiscale versionof the well known A* algorithm
(m-A*), which utilizes information of the environment at
distinct scales. This information is collected via a bottom-up
fusion method. Comparing with existing algorithms such as
Dijkstra’s or A*, the use of multiscale information leads to an
improvement in terms of computational complexity.

I. I NTRODUCTION

We consider path-planning problems in a deterministic
2-D environment. Without loss of generality, we assume
that the information about the environment is given via
an n × n square image, wheren is dyadic:n = 2J and
J is a positive integer. Note that such an image-based
formulation is well-adopted in the path-planning literature.
In some publications, the image is called thegridworld [8].
For simplicity, we will assume squared images. We also
assume that the image contains two types of pixels: gray
pixels (representing non-traversable obstacles) and white
pixels (representing traversablefree cells). The path-planning
problem is to find the shortest path between a given pair of
sourceanddestinationcells. 1

Two popular shortest-path search algorithms in a deter-
ministic setting are Dijkstra’s algorithm [5] and A* [9]. Both
algorithms give the optimal path and can be considered as
special versions of dynamic programming [14]. A* operates
essentially the same as Dijkstra’s algorithm, except that it
uses a heuristic estimate to guide its search direction towards
the most promising states.

To apply either algorithm, one first needs to construct the
search graph. In this graph each free cell is defined to be a
vertex and, correspondingly, it is connected only to its free
four nearest-neighbors (four-nearest-neighbor connectivity
assumption). However, both Dijkstra’s and A* algorithms
have the tendency to be slow as the space that needs to
be searched increases. We propose amultiscale A* (m-A*)
algorithm that takes advantage of the sparse information
induced by the quadtree decomposition in a hierarchy of
dyadic squares. We show (Section III) that such a strategy

Yibiao Lu is currently a PhD candidate in the H. Milton Stewart School of
Industrial and System Engineering, Georgia Institute of Technology, Atlanta,
GA, 30332-0250, USA, e-mail: ylv3@gatech.edu

Professor Xiaoming Huo is with the H. Milton Stewart School of
Industrial and System Engineering, Georgia Institute of Technology, Atlanta,
GA, 30332-0250, USA, e-mail: huo@gatech.edu.

Professor Panagiotis Tsiotras is with D. Guggenheim Schoolof Aerospace
Engineering, Georgia Institute of Technology, Atlanta, GA30332-0250,
USA, email:tsiotras@gatech.edu.

1In our setting, we consider path planning at the pixel level,and therefore
the free cell is an equivalent concept as white pixel.

can reduce the order of computational complexity in the
worst-case.

The objective of the proposed m-A* algorithm is to
construct a smaller size graph on which the computational
complexity of searching for the shortest path is efficiently
reduced. The intuition of the problem size reduction is given
as follows. A direct implementation of Dijkstra’s or A*
algorithm searches through all free cells in the environment.
This can be overwhelmingly redundant: if the origin and
destination vertices are in the upper-left and bottom-right
quadrants respectively, it is not necessary to scan throughall
the free vertices in the upper-right and bottom-left quadrant.
Instead, one only needs to consider the boundary white pixels
of these two quadrants. (An illustration of this can be seen in
Fig. 1.) Armed with this intuition, we develop a new dynamic

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 1. The free cells that need to be considered in the newly proposed
approach. Note that not all free cells need to be called in themultiscale
way of running the Dijkstra’s or A* algorithm. This is also anillustration
of the vertices in the beamlet graph, which will be defined in Section II-B.

programming algorithm for path planning in a cluttered envi-
ronment, which takes advantage of preprocessed information
that is organized in a multiscale fashion, analogous to the
quadratic tree structure that has been used in beamlets [7].

This paper follows up on recent advances in the area of
multi-resolution path planning [1], [11], [15], [3], [4], [17],
[12]. In particular, in [15], [3] wavelets were used to extract
the spatial information from the environment that is most
relevant to the current location of the vehicle. While wavelets
have proven to be very useful in this context, they exhibit a
small, fixed number of preferred orientations (horizontal,ver-
tical, diagonal), and are better described as roughly isotropic.
Beamlets, on the other hand, add two crucial elements

missing from wavelet processing that are crucial for path-
planning problems: orientation and elongation information.
As a result, they offer optimal approximations of straight
lines in the plane [7]. The results of this paper stem from
this simple observation.

II. M ULTISCALE PATH PLANNING STRATEGY WITH

PREPROCESSEDINFORMATION

A. Recursive Dyadic Partition of the Environment

We describe two types of recursive dyadic partitioning
(RDP) schemes used in the sequel. The first one is the
completeversion of RDP. We then introduce apath-planning
reducedRDP (PFR-RDP), which will play an important role
in defining thebeamlet graph—the graphical structure that
we will rely on.

The complete recursive dyadic partition can be described
in a top-down fashion: a squared image is partitioned into2×
2 smaller d-squares, repeating the partitioning until the finest
resolution of the image is reached. For future convenience,
let s (1 ≤ s ≤ J) denote thescale. A dyadic square (called a
d-squarefrom this point on) at scales, indexed bya, b (1 ≤
a, b ≤ 2s) will be denoted byq(s; a, b). We haveq(s; a, b) =
{(i, j) : 2J−s(a−1)+1 ≤ i ≤ 2J−sa, 2J−s(b−1)+1 ≤ j ≤
2J−sb}. A d-squareq(s; a, b) at scales can be partitioned
into four scales + 1 d-squares; i.e., we haveq(s; a, b) =
q(s+1; 2a−1, 2b−1)∪q(s+1; 2a−1, 2b)∪q(s+1; 2a, 2b−
1)∪ q(s+ 1; 2a, 2b). We say that the d-squareq(s; a, b) has
four children. The family of d-squares at all scales forms a
quadratic tree.

In the path-planning problem, for a given pair of origin
and destination cells, only a part of the complete RDP is
needed. We call this thepath-planning reduced RDP(PFR-
RDP). The PFR-RDP is generated as follows. The image
is first partitioned into2 × 2 smaller d-squares. If either
the origin cell or the destination cell is in a smaller d-
square, the quadratic (i.e.2×2) partition of this d-square will
continue, unless the finest resolution is reached. If a d-square
contains neither the origin nor the destination, no further
partition is done to this d-square. The resulting partitionis
a partial recursive dyadic partition—not all d-squares are
partitioned to the finest resolution—and corresponds to a
partial quadtree. Figure 2 shows a simple example of PFR-
RDP and the correspondingPFR-quadtree.

B. Beamlet-like Connectivity

In the nearest neighbor graph, only the nearest neighbors
are connected by edges. Here we introduce another type of
connectivity that takes advantage of connections between far-
away cells. We will see that such a connectivity, together with
the aforementioned PFR-RDP, can reduce the computational
complexity of the algorithm. For a fixed d-square, we only
consider the free cells on the boundary of this d-square. A
pair of free cells on the boundary of the d-square are said
to be connected by abeamletif and only if there exists a
feasible path between the two. The beamlet is defined to be
the shortest path connecting these two free cells. Note that
such a definition is similar to the beamlets defined in [6].

(a) A path-planning reduced quadtree

q(2;1,1)

q(2;1,2)

q(2;2,1)

q(2;2,2)

q(2;3,3)

q(2;3,4)

q(2;4,3)

q(2;4,4)

q(1;1,2)

q(1;2,1)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b) The corresponding partition of a squared image

Fig. 2. (a) A partial recursive dyadic partition and the corresponding PFR-
quadtree (b) a partial recursive dyadic partition on a simple 8 × 8 image.
The black cells are the source and destination. The gray cells are obstacles.
The d-squares shown in figure are from the third layer in (a).

The beamlet graphis now defined as follows. First of all,
a PFR-RDP of then by n image is obtained. All the free
cells on the boundaries of each d-square in the PFR-RDP
are defined to be the vertices in the beamlet graph. Two
vertices are connected under two conditions: (a) they are
nearest neighbors; or (b) they are in a d-square in the PFR-
RDP and there is a beamlet (i.e. a feasible path) that connects
them. Within each d-square, the weight of an edge is the
length of the shortest path connecting the two vertices. An
example is shown in Fig. 1. The red grid is the partial dyadic
partition of the environment corresponding to the PFR-RDP.
The red circles are the free boundary cells, i.e. the vertices
in the beamlet graph.

We need to compute the weights of the edges within all
the d-squares in a PFR-RDP. This can be achieved by the
following bottom-up fusion algorithm.

C. Bottom-Up Fusion Algorithm

The proposed multiscale path planning strategy requires
the precomputed inter-distance between any pair of free
boundary cells in each d-square. Whens = J or J−1, there

are one or four pixels in the d-square, respectively. Hence,it
is straightforward to compute these distances. In the general
case, recall that a d-squareq(s; a, b) can be partitioned into
four smaller d-squares of scales + 1. If we already know
the inter-distances between the free boundary cells within
each of the smaller d-squares, and after considering the
connectivity of free boundary cells that belong to neighbor
d-squares, we can treat all free boundary cells of the four
scales+1 d-squares as vertices in a “fused” graph, and run
Dijkstra’s or A* algorithm on it. The distance between free
cells from neighboring d-squares can be defined by direct
neighbors. Since there are no more thann22−s of these
pixels, the search algorithm can be run efficiently. Figure 3
shows how this “fusion” of distance is conducted recursively.

D−square q(3,2,1)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 3. Magnified view of the fusion in the d-square q(3,2,1) of Fig. 1.
The fusion is conducted in a complete dyadic partition. Notice that the solid
red grid stands for the partition corresponding to the second layer of the
associated quadtree and the dashed red grid corresponds to the partition
with respect to the third layer. The green arrow means the inter-distance
between free boundary cells. The blue lines show the fusion process.

D. Multiscale A* Algorithm on the Beamlet Graph

Let BG = (V,E) denote the beamlet graph, whereV
denotes the vertices, i.e. the free boundary cells of all
the d-squares in the PFR-RDP, andE denotes the edges
representing the shortest distance paths between pairs of free
boundary cells.

Our algorithm can be considered to bea multiscale ex-
tension of the A* algorithm (m-A*). The main steps mimic
the standard A* procedure. For convenience, we repeat the
main steps of the algorithm below. In particular, m-A* plans
a path from the source cellvorigin ∈ V to the destination
cell vdestin ∈ V in an image, whereV denotes all the free
cells on the boundaries of d-squares in a PFR-RDP. To do
this, one stores an estimateg(v) of the path length from
the source to each cellv. Initially, we set g(v) = ∞ for
all cells in V . The algorithm begins by updating the path
length of the origin cell to be zero, then places this cell in
a priority queue known as theOPEN list. Each elementv
in this queue is ordered according to the sum of its current
path length from the start,g(v), and a heuristic estimate of

its path length to the destination,h(v, vdestin). The cell that
has the minimum such sum is at the front of the priority
queue. The heuristich(v, vdestin) should underestimate the
cost of the optimal path fromv to vdestin. In our algorithm,
the heuristic estimate is the usualL1 distance.

E. Optimality of m-A*

The optimal path is identified by m-A* by running the
A* algorithm on the beamlet graph. Recall that a search
algorithm is complete if, given a search graph that has a
destination, that algorithm always finds the destination; a
search algorithm is optimal if it always finds the optimal
path, if there exists one. We have the following theorem.

Theorem 1 The m-A* algorithm, using an admissible
heuristic, is complete and optimal.

Proof: To show completeness, notice that the first step
of m-A* computes the PFR-RDP and guarantees that the
source and destination vertices are in the beamlet graph.
Recall that the beamlet graph is assumed to have beamlet-like
connectivity besides the four-nearest-neighbor connectivity.
Therefore in the search tree, the number of children for each
vertex will still be finite. According to the property of A*
search algorithm [16], if an admissible heuristic functionis
used, m-A* is complete.

To show optimality, letp∗ and p∗∗ denote the shortest
paths identified by running the A* algorithm on the nearest
neighbor graph and the beamlet graph respectively. By def-
inition, the optimal path has length|p∗|. It suffices to show
that |p∗∗| = |p∗|. To this end, letSNNG andSBG be the sets
of paths between the source and destination in the nearest
neighbor graph and the beamlet graph, respectively. Because
p∗∗ ∈ SNNG and p∗ = argminp∈SNNG

|p|, it follows that
|p∗| ≤ |p∗∗|. On the other hand, imagine that the same PFR-
RDP is embedded on the nearest neighbor graph. Thenp∗

can be regarded as the chain of “path segments” on each
d-square it passes through, and hencep∗ ∈ SBG. Since
p∗∗ = argminp∈SBG

|p|, it follows that |p∗∗| ≤ |p∗|.

III. C OMPLEXITY ANALYSIS

A. Complexity of Fusion Algorithm

We would like to derive an upper bound of the algorithmic
complexity, i.e., we consider the worst case. To this end,
consider an environment represented by a grid of dimension
2m × 2m. At the first level below, the environment is
subdivided to four d-squares of dimensionm×m. Let T (m)
denote the amount of computation required to find the inter-
distances between all pairs of free boundary cells within an
m by m d-square. A recursive relationship can be written as
follows,

T (2m) = 4T (m) + f(2m) (1)

wheref(m) denotes the effort for solving the all-pair shortest
path problem in the fusion search graph. Note that there are
4(m − 1) boundary pixels per each of the four smaller d-
squares. Hence we have|V | ≤ 4 × 4(m − 1). Each edge
belongs in either one of the following two categories:

(i) Edges connecting the free boundary cells within
each smaller d-square.

(ii) Edges connecting the nearest-neighbor pixels be-
tween neighboring d-square.

In each d-square, there are at most
(

4m−4

2

)

edges; there
are at most4m edges connecting free cells who are nearest
neighbors, however not in the same d-square. Hence we have
|E| ≤ 4

(

4m−4

2

)

+ 4m < 32m2.

Lemma 2 For the aforementionedf(m) in (1), we have
f(m) = O(m3).

Proof: Johnson’s Algorithm [10] is the standard al-
gorithm for solving the all-pair shortest paths problem,
considering when the graph is sparse. If one assumes that an
intermediate step of Johnson’s algorithm (an implementation
of the Dijkstra’s algorithm) is done via Fibonacci heaps,
then the overall complexity isO(V 2 log(V) + V E) =
O(m2 log(m) + m3) = O(m3). This is the complexity of
f(m).

To evaluateT (m), we will need the following Master
Theorem [2, Sect. 4.3].

Theorem 3 (Master Theorem) Consider a recurrent rela-
tion (of an algorithm) in the following form:

T (m) = a T
(m

b

)

+ f(m), a ≥ 1, b > 1.

wherem is the size of the entire problem,a is the number
of subproblems in the recursion,m/b is the size of each
subproblem, (It is assumed that all subproblems are of the
same size.) Letf(m) be the cost of the work done outside
the recursive calls, which includes the cost of dividing
the problem and the cost of merging the solutions to the
subproblems. If the following two conditions are satisfied:

(a) f(m) = O
(

mlogb a+ǫ
)

for some constantǫ > 0,
and

(b) af
(

m
b

)

≤ cf(m) for some constantc < 1 and
sufficiently largem.

Then we haveT (m) = O (f (m)).

Note that the above is just a special instance of the more
general Master Theorem [2]. For our purpose, the above
special case is sufficient. We therefore have

Theorem 4 For the T (m) in (1), we have T (m) =
O(f(m)) = O(m3).

Proof: Take a = 4 and b = 2, and apply Theorem 3.

Therefore the complexity for preprocessing in an × n
gridworld isO(n3).

B. Complexity of Searching

We now consider the order of complexity for running A*
(or Dijkstra’s) algorithm on the beamlet graph and the4-
nearest-neighbor graph respectively. We consider the beamlet
graph first. The PFR-RDP and the corresponding beamlet
graph are shown in Fig. 4. The vertices in our beamlet graph

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 4. Illustration of a beamlet graph in a32 × 32 grid. The PFR-RDP
are plotted in red lines. Free cells are marked by circles: they are free
boundary cells of the d-squares in the PFR-RDP. If two free cells belonging
to different d-squares are nearest neighbors, they also areconnected. All
free cells within the same d-square are considered connected, as long as a
feasible path exists.

are the free boundary cells in all the d-squares in the PFR-
RDP. For ann × n image, there are two scale-1 d-squares,
and six scale-s d-squares whens ≥ 2. For a scale-s d-square,
there are at mostn22−s free boundary pixels. Hence the
upper bound of the total number of vertices in the beamlet
graph is2× 2n+6×n+6× n

2
+6× n

4
+ · · · = 4n+6n+

3n + 3
2
n + · · · ≤ 16n. |V | = O(n). Therefore,|E| cannot

have order higher thanO(n2). On the other hand,|E| cannot
be less thanO(n2), since the two scale-1 d-squares already
haveO(n2) edges in the worst case.

Recall that the complexity of running Dijkstra’s algorithm
with Fibonacci heaps isO(|E| + |V | log |V |). We therefore
have the following theorem.

Theorem 5 The complexity of running A* or the Dijkstra’s
algorithm on the aforementioned beamlet graph isO(n2).

Proof: The previous calculation has given us the
following estimates:|V | = 16n and |E| ≈ 8n2. Using the
complexity of Dijkstra’s algorithm, the upper bound of the
complexity is O(n2 + n logn) = O(n2). Recall that A*
and the Dijkstra’s algorithm have the identical worst-case
complexity [16].

For comparison, in thenearest-neighbor graph(NNG), (an
illustration of which is provided in Fig. 5) we have|V | = n2

and |E| = 4n2, and one can easily establish the following
theorem.

Theorem 6 If A* or the Dijkstra’s algorithm is run on
the nearest-neighbor graph, the worst-case complexity is
O(4n2 + n2 logn2) = O(n2 logn).

The proof is evident and is therefore skipped. Note (from
Theorems 5 and 6) the reduction by a factorlogn when
compared with the m-A* algorithm.

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 5. A 32 × 32 image with all free cells marked by circles. There
are aroundO(n2) circles. If two free cells are nearest neighbors, they are
connected.

IV. N UMERICAL SIMULATION STUDIES

We provide numerical experiments to compare the pro-
posed multiscale search algorithm (multiscale Dijkstra’sand
multiscale A*) with their single-scale counterparts. In the
first simulation, the probability of a certain cell (denotedas
(x, y) where1 ≤ x, y ≤ n,) to be a free cell is assigned
to be p(x, y) = exp(−γ|y − x2/n|), where the constantγ
will be specified later. The intuition of this model is that
pixels near the curvey = x2/n have higher probability to be
free cells than the pixels far away from the same curve. We
run Dijkstra’s algorithm on the beamlet graph, as a special
case of A* algorithm (i.e., setting the heuristic of the cost-
to-go to be zero). Table I contains our simulation results
whenγ = 1/15. Figure 6 shows the shortest paths from the
nearest-neighbor graph and the beamlet graph, respectively.
The two paths are different in this example. Both paths
have the same length nonetheless. A comparison of the
corresponding running times is given in Table I.

TABLE I

MULTISCALE DIJKSTRA’ S ALGORITHM COMPARED TOTRADITIONAL

DIJKSTRA IN SIMULATION I WITH γ = 1/15.

ImageSize 64× 64
GraphType NNG BeamletGraph Ratio

Exp1 0.616439 0.100009 6.17
Exp2 0.456536 0.126309 3.61
Exp3 0.466612 0.162247 2.88
Exp4 0.447084 0.112116 3.99
Exp5 0.433141 0.092936 4.66

ImageSize 128 × 128
GraphType NNG BeamletGraph Ratio

Exp1 1.315877 0.167777 7.84
Exp2 1.476583 0.283658 5.21
Exp3 1.374446 0.234752 5.86
Exp4 1.259515 0.175048 7.19
Exp5 1.728572 0.212332 8.14

The second simulation involves a more difficult situa-
tion. We generate the environment similarly to the previous
case, but now we change the parabolic curve to a circle.
Figures 7(a) and 7(b) show the shortest paths identified in

5 10 15 20 25 30

5

10

15

20

25

30

(a) A shortest path in the nearest neighbor graph

5 10 15 20 25 30

5

10

15

20

25

30

(b) A shortest path in the beamlet graph

Fig. 6. (a) The shortest path of NNG in a32×32 image; (b) The shortest-
path of in the beamlet graph for the same image.

the NNG and the beamlet graph respectively. This time the
two methods identified exactly the same optimal path. In
Fig. 7(b), the partial dyadic partition corresponding to the
PFR-quadtree is also shown, hoping that the reader would
get a more clear view on this type of partition. Table II
contains the computation times of the two algorithms for
this simulation.

In this simulation, the proposed algorithm outperforms
Dijkstra’s algorithm. When the image size becomes larger,
the computational time is reduced even more.

V. CONCLUSION

In this paper, we have discussed a newly-developed exten-
sion of the well-known A* path-planning algorithm based on
a multiscale decomposition of the environment. A bottom-up
fusion method is proposed as a multiscale strategy, which
preprocesses the information and formulates the beamlet
graph for the search algorithm. This multiscale A* algorithm
(m-A*) provides a significant reduction in terms of com-
putational time over the original A* algorithm. Incremental
versions of the proposed baseline algorithm, along the same
lines as in [13], as well as extensions to higher dimensions,
are possible and are currently under investigation.

10 20 30 40 50 60

10

20

30

40

50

60

(a) A shortest path in the nearest neighbor graph

10 20 30 40 50 60

10

20

30

40

50

60

(b) A shortest path in the beamlet graph

Fig. 7. (a) The shortest path in the NNG; (b) The partial partition
corresponding to the PFR-RDP and the shortest path in the beamlet graph.
In both images, the gray cells means “obstacles”, and the black dots are the
starting point and destination.

TABLE II

MULTISCALE DIJKSTRA’ S ALGORITHM COMPARED TOTRADITIONAL

DIJKSTRA IN SIMULATION II WITH γ = 1/500.

ImageSize 64× 64
GraphType NNG BeamletGraph Ratio

Exp1 0.18965 0.022204 8.54
Exp2 0.163025 0.022509 7.24
Exp3 0.269925 0.026684 10.12
Exp4 0.217668 0.025778 8.44
Exp5 0.114686 0.016336 7.02

ImageSize 128 × 128
GraphType NNG BeamletGraph Ratio

Exp1 0.511047 0.054572 9.36
Exp2 0.548823 0.065516 8.38
Exp3 1.222879 0.066844 18.29
Exp4 1.175211 0.067509 17.41
Exp5 0.640812 0.079966 8.01

Acknowledgement: This research was supported in part
by NSF award no. CMMI-0856565 and NASA award no.
NNX08AB94A.

REFERENCES

[1] S. Behnke,Local Multiresolutin Path Planning, ser. Lecture Notes in
Computer Science. Berlin: Springer, 2004, vol. 3020, pp. 332–343.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms, 2nd ed. Cambridge, MA: MIT Press and McGraw-Hill,
2001.

[3] R. Cowlagi and P. Tsiotras, “Beyond quadtrees: Cell decomposition for
path planning using the wavelet transform,” in46th IEEE Conference
on Decision and Control, New Orleans, LA, Dec. 12–14 2007, pp.
1392–1397.

[4] ——, “Multiresolution path planning with wavelets: A local replan-
ning approach,” inAmerican Control Conference, Seattle, WA, June
11-13 2008, pp. 1220–1225.

[5] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[6] D. Donoho and X. Huo, “Beamlets pyramids: A new form of multires-
olution analysis, suited for extracting lines, curves and objects from
very noise image data,” inProceedings of SPIE, vol. 4119, no. 1, July
2000, pp. 434–444.

[7] ——, Multiscale and Multiresolution Methods. Spring, 2002, vol. 20,
ch. Beamlets and multiscale image analysis, pp. 149–196.

[8] D. Ferguson, M. Likhachev, and T. Stentz, “A guide to heuristic-
based path planning,” inProceedings of the International Workshop
on Planning under Uncertainty for Autonomous Systems, International
Conference on Automated Planning and Scheduling (ICAPS), June
2005.

[9] P. Hart, N. Nilsson, and B. Rafael, “A formal basis for theheuristic
determination of minimum cost paths,”IEEE trans. Sys. Sci. and Cyb.,
vol. 4, pp. 100–107, 1968.

[10] D. Johnson, “Efficient algorithms for shortest paths insparse net-
works,” Journal of the ACM, vol. 24, no. 1, pp. 1–13, 1977.

[11] D. Jung and P.Tsiotras, “Multiresolution on-line pathplanning for
small unmanned aerial vehicles,” inAmerican Control Conference,
Seattle, WA, June 11-13 2008, pp. 2744–2749.

[12] S. Kambhampati and L. S. Davis, “Multiresolution path planning for
mobile robots,” IEEE Journal of Robotics and Automation, vol. 2,
no. 3, pp. 135–145, 1986.

[13] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,”
Artificial Intelligence Journal, vol. 155, no. 1-2, pp. 93–146, 2004.

[14] S.M.LaValle, Planning Algorithms. Cambridge University Press,
2006.

[15] P. Tsiotras and E. Bakolas, “A hierarchical on-line path-planning
scheme using wavelets,” inEuropean Control Conference, Kos,
Greece, July 2–5 2007, pp. 2806–2812.

[16] P. Winston, “Search complexity,” inArtificial Intelligence Lecture
Notes, Fall 2003.

[17] A. Yahja, A. Stentz, S. Singh, and B. L. Brumit, “Framed-quadtree
path planning for mobile robots operating in sparse environments,” in
Proceedings of the 1998 IEEE International Conference on Robotics
& Automation. Leuven, Belgium: IEEE, May 1998, pp. 650–655.

