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Abstract— In this paper we apply the robust redesign for
transient performance recovery of nonlinear systems with input
uncertainties developed in [2] to a spacecraft attitude tracking
problem with actuator uncertainties. We first extend the robust
design of [2] to a generalized uncertainty structure. Next, we
show that when the spin and transverse axis directions and/or
the gains of the flywheel actuators are uncertain, the kinematic
model of a spacecraft can be expressed in this structure. We
apply the extended design to this spacecraft model, illustrate
it with a simulation example, and numerically compute the
permissible range of the uncertainties for which this design
guarantees stability.

I. INTRODUCTION

Most of the adaptive control designs for attitude tracking
problems of spacecraft with parametric model uncertainties
are based on the assumption that an exact model of the
spacecraft actuator is available [1], [11]. Recent papers such
as [13] and [12] have argued that such exact actuator models
are rarely available in practice, due to the misalignment of
the actuators during installation, aging of the mechanical
and electrical components, etc. If the exact directions of the
torque axes are not known with sufficient accuracy, then large
output torque errors will cause inaccuracy in tracking a refer-
ence attitude. Because the control input must compensate for
the angular momenta of the flywheels, it is also necessary to
know the actuator gains accurately. To address the problems
arising from such actuator uncertainties, Yoon and Tsiotras
in [13] have proposed a projection-based adaptive control
design for a spacecraft whose moment of inertia as well
as gimbal axis directions are unknown, and implemented it
using Variable Speed Control Moment Gyros (VSCMGs) [8].
However, the closed loop transient responses due to the adap-
tive design, irrespective of the adaptation gain, can drastically
differ from the nominal design, as the parameter estimates
are updated dynamically. Since precision in performance is
an important factor in spacecraft attitude control, such a loss
of nominal performance may be undesirable.

In this paper, we not only achieve reference attitude
tracking for the uncertain spacecraft model but also recover
the transient trajectories of the nominal model. The approach
is to build two sets of high-gain filters - one for estimating the
input signal to the plant over a fast time-scale and the other to
force this estimate to converge to the nominal input over an
intermediate time-scale. Using singular perturbation theory
[6], [7], we prove that the trajectories of the redesigned

system approach those of the nominal system as the filter
gains are increased.

The rest of the paper is organized as follows. In Section
2 we extend the robust design of [2] to a generalized
uncertainty structure. In Section 3 we review the nominal
dynamic model of a spacecraft and the nominal design as
presented in [13]. In Section 4 we characterize the parametric
uncertainties in the directions of actuator axes and in the
spacecraft inertia matrix, and show that the uncertain model
can be expressed in the form studied in Section 2. In Section
5 we apply the robust design of Section 2 to this uncertain
model and illustrate the results with a simulation example.
We then numerically compute the range of perturbations for
which this design guarantees stability. Conclusions are drawn
in Section 6.

II. EXTENSION OF THE ROBUST REDESIGN [2] TO A
GENERALIZED UNCERTAINTY STRUCTURE

We consider systems of the form

ẋ = f(x) + g(x)ρ(u, x), (1)

where x ∈ R
n is the state, u ∈ R

m is the control input, f :
R

n → R
n and g : R

n → R
n×p are known functions, and ρ :

R
m ×R

n → R
p is an unknown nonlinear function restricted

by Assumption 3 below. We assume that all functions are
continuously differentiable and m ≥ p. In [2] and [3] we
studied the special case m = p and functions ρ(u, x) of the
form ρ(u, x) = ρ(u) and ρ(u, x) = u + δ(x), respectively,
where δ(x) is an unknown smooth function of the state.

To design a control input u which stabilizes the origin
x = 0 of (1) despite the unknown ρ(·, ·), we first consider
the nominal system with ρ(u, x) = v ∈ R

p considered as the
control input :

Assumption 1 : There exists a feedback control law v =
α(x) such that the origin of the nominal closed loop system

ẋ = f(x) + g(x)α(x) (2)

is globally asymptotically stable with a positive definite,
radially unbounded C2 Lyapunov function V1(x) satisfying

∂V1

∂x
[f(x) + g(x)α(x)] ≤ −β1(‖x‖), ∀x ∈ R

n, (3)

where β1(·) is a class-K∞ function, such that r2/β1(r) is
well-defined and continuous for r > 0, and there exists a



positive constant k̄ such that r2/‖β1(r)‖ ≤ k̄ on any interval
of the form (0, r0], r0 > 0. ¤

Assumption 2 : There exists a function h : R
n → R

p such
that the p × p matrix

γ(x) := Lgh(x) =
∂h

∂x
g(x)

is nonsingular for all x. ¤

Assumption 3 : There exists a known C1 function S :
R

p → R
m and a positive number k, independent of x and

χ, such that for all (χ, x) ∈ R
p × R

n,

∂ρ(S(χ), x)

∂χ
+

∂ρT (S(χ), x)

∂χ
≥ kIp×p, (4)

where Ip×p is the p × p identity matrix . ¤

When p = m = 1 and ρ(u, x) is strictly increasing in u
with a uniform lower bound on its slope, Assumption 3 holds
with S(χ) = χ. Likewise, if ρ(u, x) = ρ̄(x) + Ku where
K ∈ R

p×m is an unknown constant matrix, then Assumption
3 means that a known matrix S ∈ R

m×p exists, such that

KS + ST KT > 0. (5)

For example, if K is an uncertain row vector that is known
to lie in a cone, then selecting S to be a column vector in the
interior of the dual cone guarantees (5). Assumptions similar
to (5) are used in MIMO model reference adaptive control
as a generalization of the SISO condition that the sign of the
high-frequency gain K be known [4], [9].

It follows from [10, Theorem 5.4.5] that Assumption 3
guarantees the existence of the inverse of ρ(S(χ), x) with
respect to χ. Given x, and denoting this inverse function by
ϑ(·, x) : R

p → R
p, we note that χ = ϑ(v, x) implies

ρ(S(ϑ(v, x)), x) = v. (6)

This means that, if ρ(·, ·) was perfectly known, then the
design

u = S(ϑ(α(x), x)) (7)

would lead to the nominal closed-loop system (2). However,
since ρ(·, ·) is unknown, this design cannot be implemented.
We now present a design where we first estimate the signal
v = ρ(u, x) by the filtering technique of [2], and then design
another feedback loop that forces u to the manifold defined
by (7).

With Assumption 2 we note that the variable y = h(x)
satisfies

ẏ = Lfh(x) + γ(x)ρ(u, x). (8)

Mimicking (8), we build the filter

˙̂y = Lfh(x) −
ŷ − y

µ
, ŷ(0) = y(0), (9)

where µ > 0. Then the variable

` :=
ŷ − y

µ
(10)

satisfies

µ ˙̀ = −` − γ(x)ρ(u, x), `(0) = 0. (11)

When µ is small, ` evolves in a faster time-scale than x, and
reaches a small neighborhood of the manifold

` = −γ(x) ρ(u, x), (12)

which means that an estimate for the input signal v = ρ(u, x)
is given by v̂ = −γ(x)−1`. The following dynamic control
law makes use of this estimate and, as we prove in Theorem
1 below, guarantees recovery of nominal system trajectories
when the two small parameters µ > 0 and ε > 0 are tuned
appropriately:

ε χ̇ = α(x) + γ(x)−1 `, (13)
u = S(α(x) + χ). (14)

Since the filter in (13) makes use of the estimate generated
by the filter in (11), the speed of convergence of ` to a
neighborhood of the manifold (12) must be faster compared
to the speed of χ; that is, µ ¿ ε. Since the two time-scales
are dependent on each other, we assign

ε = ε1, µ = ε1ε2 (15)

where ε1 and ε2 are now independent small parameters.
The following theorem shows that this redesign recovers

the performance of the nominal system and enlarges the
region of attraction arbitrarily as (ε1, ε2) → 0.

Theorem 1: Given compact sets Ωx ⊂ R
n and

Ωχ ⊂ R
p, there exists a pair (ε∗

1
, ε∗

2
) > 0 such that

for all 0 < ε1 < ε∗
1
, 0 < ε2 < ε∗

2
and for all

x(0) ∈ Ωx, χ(0) ∈ Ωχ, the controller (9), (10), (13),
(14) guarantees boundedness of x(t), χ(t) and ŷ(t), and
convergence of x(t) to the origin. In addition, given any
ξ > 0, there exist ε∗∗

1
> 0, ε∗∗

2
> 0 such that for all

0 < ε1 < ε∗∗
1

, 0 < ε2 < ε∗∗
2

, x(0) ∈ Ωx and χ(0) ∈ Ωχ, the
solution x̄(t) of the nominal system (2) and x(t, ε1, ε2) of
the uncertain system (1) with the redesigned controller (9),
(10), (13), (14) satisfy

‖x(t, ε1, ε2) − x̄(t)‖ ≤ ξ, ∀t ≥ 0. (16)

Proof: The proof follows from the proof of Theorem 1 in
[2]. The only difference between the two is in the proof of
Lemma 1 which, in this case, follows from Assumption 3.

III. NOMINAL DYNAMIC MODEL FOR SPACECRAFT
ATTITUDE MOTION

We now apply the robust design of Section 2 to recover the
nominal closed loop trajectories of the uncertain spacecraft
model of [13]. We first describe the nominal dynamic model
for the motion of the spacecraft equipped with a VSCMG
cluster of N flywheels as discussed in [13]. Figure 1 shows
the spacecraft body with the ith VSCMG (i = 1, . . . , N).

Using the law of conservation of angular momentum, a
simplified equation for the spacecraft motion can be written
as

Jω̇ + C(γg,Ω)γ̇g + D(γg)Ω̇ + ω̂h̄ = 0, (17)
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Fig. 1. Spacecraft with a VSCMG configuration.

with

h̄ := Jω + AsIwsΩ, (18)
C(γg,Ω) := AtIwsΩ

d, D(γg) := AsIws, (19)

where ω = col(ω1, ω2, ω3) is the angular velocity vector of
the spacecraft, γg = col(γg1, ..., γgN ) is the vector of the
gimbal angles, Ω = col(Ω1, ...,ΩN ) is the vector of wheel
speeds of the flywheels with respect to the gimbals, and Ωd

is its diagonal representation. J is the total moment of inertia
of the spacecraft given by

J = IB + AsIcsA
T
s + AtIctA

T
t + AgIcgA

T
g , (20)

Icg, Ics, Ict are diagonal matrices of the inertias of the gim-
bal with flywheel along gimbal axis, spin axis and transverse
axis respectively, Iws is a diagonal matrix of the inertia of
the flywheel only along the spin axis. Ag, As, At are 3×N
matrices with columns as the directional unit vectors along
the gimbal, spin and transverse axis respectively, IB is the
combined matrix of inertia of the spacecraft platform and the
point masses of the VSCMGs, and ω̂ is the skew-symmetric
matrix

ω̂ =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 . (21)

The main assumptions in the model (17)-(19) are that the
inertia matrix J is constant, the gimbal acceleration is
negligible and the angular momentum is independent of the
gimbal angular rate. The matrices Ag, As and At depend on
the gimbal angles as

Ag = Ag0, (22)
As = As0[cos γg]

d + At0[sin γg]
d, (23)

At = At0[cos γg]
d − As0[sin γg]

d, (24)

where Ag0, As0 and At0 are the values of the respec-
tive matrices at γg = 0, and [cos γg]

d, [sin γg]
d denote

the diagonal representations of (cos γg1, ..., cos γgN ) and
(sin γg1, ..., sin γgN ) respectively.

The kinematic equations for the spacecraft are expressed
in terms of the modified Rodrigues parameters as

σ̇ = G(σ)ω, (25)

where

G(σ) = 0.5

(

I3×3 + σ̂ + σσT − 0.5(1 + σT σ)I3×3

)

, (26)

and σ̂ follows the structure in (21). Equations (25) and (17)
are combined into one second order equation as

σ̈ = F ∗(σ, σ̇) + G∗(σ, γg,Ω)u (27)

where,

F ∗(σ, σ̇) := H∗−1

(

G−T JG−1ĠG−1σ̇

−G−T ω̂RB
I (σ)HI

)
, (28)

H∗(σ) := G−T JG−1, (29)
G∗(σ, γg,Ω) := −GJ−1Q, (30)

Q(γg,Ω) := [C(γg,Ω) D(γg)], (31)

RB
I (σ) is the rotation matrix from the inertial frame to the

body frame, HI is the total angular momentum in the body
frame, and u := col(γ̇g, Ω̇) ∈ R

2N×1 is the control input
vector. Denoting x1 = σ, x2 = σ̇ and z := col(γg,Ω) ∈
R

2N×1, the nominal state space model for the spacecraft
motion can be written as

ẋ1 = x2, (32)
ẋ2 = F ∗(x1, x2) + G∗(x1, z)u, (33)
ż = u. (34)

Let the reference trajectory to be tracked by the spacecraft
be given in terms of the bounded functions σd, σ̇d, σ̈d where
σd denotes the MRP vector for the attitude of a desired frame
with respect to the inertial frame. Defining the error variables
e1 = x1−σd and e2 = x2−σ̇d, and denoting e = col(e1, e2),
we get the error dynamics as

ė1 = e2, (35)
ė2 = F ∗(e, σd, σ̇d) + G∗(e, σd, z)u − σ̈d, (36)
ż = u. (37)

Reference [13] assumes N ≥ 2 and G∗(e, σd, z) to be full
row rank, and applies the input-output linearization-based
nominal design

unom = G∗†(e, σd, z) (σ̈d − F ∗(e, σd, σ̇d) − Ke)
︸ ︷︷ ︸

(38)

ūn(e, σd, σ̇d, σ̈d)

for asymptotic tracking of the reference trajectory, where
G∗†(e, σd, z) denotes the pseudoinverse of the 3×2N matrix
G∗(e, σd, z), and the 3×6 constant matrix K is chosen such
that the eigenvalues of the closed loop system are placed in
the desired locations.

IV. UNCERTAINTY CHARACTERIZATION

Following [13], we assume that the exact values of the
axis directions at γg = 0 as well as the input scaling gains
are unknown, and we have

As0 = An
s0 + ∆As0, (39)

At0 = An
t0 + ∆At0, (40)

Iws = In
ws + ∆Iws, (41)



where the superscript n denotes the nominal value of the
respective matrices and the prefix ∆ denotes an unknown
deviation from this nominal value. It can easily be shown
that this leads to

At = An
t + ∆At, As = An

s + ∆As, (42)

where

An
t = An

t0[cos γg]
d − An

s0[sin γg]
d, (43)

∆At = ∆At0[cos γg]
d − ∆As0[sin γg]

d, (44)
An

s = An
s0[cos γg]

d + An
t0[sin γg]

d, (45)
∆As = ∆As0[cos γg]

d + ∆At0[sin γg]
d, (46)

and hence,

C(z) = Cn(z) + ∆C(z), D(z) = Dn(z) + ∆D(z),

where

∆C(z) = (An
t ∆Iws + ∆AtI

n
ws + ∆At∆Iws) Ωd, (47)

∆D(z) = (An
s ∆Iws + ∆AnIn

ws + ∆As∆Iws) . (48)

When the angular momentum of the VSCMG cluster is
unknown due to the uncertainties in the spin axis directions
and rotational inertias, we can write

h̄(e, σd, σ̇d, z) = h̄n(e, σd, σ̇d, z) + ∆h̄(z), (49)

where ∆h̄(z) = (An
s ∆Iws + ∆AsI

n
ws + ∆As∆Iws)Ω, and

hence,

HI(e, σd, σ̇d, z) = Hn
I (e, σd, σ̇d, z)+∆HI(e, σd, z), (50)

where, ∆HI(e, σd, z) = (RB
I (e, σd))

−1∆h̄(z). Thus, fol-
lowing (35)-(36) the uncertain error dynamics can be written
as

ė1 = e2, (51)
ė2 = F ∗n(e, σd, σ̇d) − σ̈d + ∆F ∗(e, σd, σ̇d)

+

(

G∗n(e, σd, z) + ∆G∗(e, σd, z)

)

u, (52)

ż = u, (53)

where,

F ∗n(e, σd, σ̇d) := H∗−1

(

G−T JG−1ĠG−1σ̇

−G−T ω̂RB
IHn

I
)
, (54)

∆F ∗(e, σd, σ̇d) = −H∗−1
(
G−T ω̂RB

I∆HI
)
, (55)

G∗n(e, σd, z) := −H∗−1G−T Qn, (56)
∆G∗(e, σd, z) := −H∗−1G−T ∆Q, (57)

Qn(z) := [Cn(z) Dn(z)], (58)
∆Q(z) := [∆C(z) ∆D(z)]. (59)

We assume that the gimbals are small enough so that
the gimbal motions do not change the inertia matrix J
significantly, and, hence, there is no unknown component in
J . Next, we apply the redesign of Section 2 to (51)-(59) to
recover the closed loop performance of the nominal control
system (35)-(38).

V. NOMINAL PERFORMANCE RECOVERY

From equations (35)-(38) we can write the nominal closed
loop system as

ė = K̄e, (60)
ż = G∗n†(e, σd, z) ūn(e, σd, σ̇d, σ̈d), (61)

where K̄ is Hurwitz by design and, thus, Assumption 1
is satisfied with a quadratic Lyapunov function for the e-
subsystem. The nominal control input (38) is

unom(e, t) = G∗n†(e, σd, z(t)) ūn(e, σd, σ̇d, σ̈d), (62)

where z(t) is the solution of (61) for t ≥ 0.
Note that (62) is time-varying whereas the results derived

in the proof of Theorem 1 assume the plant (1) as well
as the nominal input α(x) to be time-invariant. A perusal
of the proof of Theorem 1 shows that the arguments for
recovery of trajectories (second part of Theorem 1) do not
change in the time-varying case. However, convergence of
the error e to the origin (first part of Theorem 1) must be
replaced by convergence to an O(ε1ε2) residual set around
e = 0. Likewise, a stability analysis for the z-subsystem is
not pursued here. We assume that the reference signal σd is
such that z remains bounded.

Assumption 2 is satisfied by considering the relative-
degree one output as e2. To satisfy Assumption 3 we write
(51)-(52) as

ė1 = e2,

ė2 = fn(e, σd, σ̇d, σ̈d) + ρ1(e, σd, σ̇d, z) + ρ2(e, σd, z)u,

where

fn(e, σd, σ̇d, σ̈d) = F ∗n(e, σd, σ̇d) − σ̈d (63)

is known, and the functions

ρ1(e, σd, σ̇d) = ∆F ∗(e, σd, σ̇d) (64)

and

ρ2(e1, σd, z) = G∗n(e, σd, z) + ∆G∗(e, σd, z) (65)

are unknown. Since by our time-scale separation design in
Section 2 we want to drive the estimate of

ρ = ρ1(e, σd, σ̇d, z) + ρ2(e, σd, z)u (66)

to G∗n(e, σd, z)unom as designed in (38), we define the
function S, required by Assumption 3, as:

S(χ) = G∗n†(e, σd, z)χ (67)

where the 2N ×3 matrix G∗n†(e, σd, z) is the pseudoinverse
of G∗n(e, σd, z). Therefore, from (65) and (67), condition
(4) becomes :

(G∗n + ∆G∗)G∗n† + (G∗n†)T (G∗n + ∆G∗)T ≥ k I3×3

or equivalently,

P (e, σd, z) + P (e, σd, z)T ≥ k I3×3, (68)



for all time t ≥ 0, where

P (e, σd, z) = GJ−1(Qn + ∆Q)
︸ ︷︷ ︸

3×2N

(GJ−1Qn)†
︸ ︷︷ ︸

2N×3

. (69)

The expression for P (e, σd, z) in (69) follows from (30). As
∆Q → 0 in (69), P (e1, σd, z) → I3×3, and (68) is satisfied
with k = 1. Therefore, it is fair to assume that (68) holds
for small ∆Q. In Section 6 we numerically investigate the
extent of this perturbation under which (68) holds.

To recover nominal performance we build the filter

˙̂e2 = fn(e, σd, σ̇d, σ̈d) −
ê2 − e2

ε1ε2
, ê2(0) = e2(0),

and define the variable ` = (ê2 − e2)/ε1ε2 so that ` satisfies

ε1ε2 ˙̀ = −` − ρ1(e, σd, σ̇d) − ρ2(e, σd, z)u, `(0) = 0.

We then build the second filter

ε2 χ̇ = −fn(e, σd, σ̇d, σ̈d) − Ke + `,

and redesign the control input as

u = unom + G∗n†(e, σd, z)χ, (70)

where K and unom follow from (38).

VI. SIMULATION RESULTS

In this section we present a numerical example of a
satellite with a VSCMG cluster with four flywheels (i.e.,
N = 4), to show the effectiveness of the time-scale separa-
tion design discussed in Section 2. As in [13] we assume
a standard four-VSCMG pyramid configuration with the
simulation parameters shown in Table 1.

We assume that the nominal axis directions at γg = 0 are
given by

An
s0 =





0 −1 0 1
1 0 −1 0
0 0 0 0



 , (71)

An
t0 =





−0.5774 0 0.5774 0
0 −0.5774 0 0.5774

0.8165 0.8165 0.8165 0.8165



(72)

while the actual axis directions at γg = 0 are

As0 =





0.0192 −0.9984 −0.0396 0.9984
0.9990 −0.0404 −0.9990 −0.0396
−0.0404 −0.0396 −0.0208 −0.0404



 ,

(73)

At0 =





−0.5438 −0.0101 0.5435 0.0556
0.0443 −0.5611 −0.0390 0.5598
0.8380 0.8277 0.8385 0.8268



(74)

which are obtained by slightly perturbing the nominal axis
directions. Hence, the uncertainties in these matrices are
characterized by

∆As0 = As0 − An
s0, ∆At0 = At0 − An

t0. (75)

In addition, the nominal and the actual values of the mo-
ments of inertia of the flywheels along their spin axis are
respectively assumed to be

In
ws = [2.0, 2.0, 2.0, 2.0]d kg m2 (76)

Iws = [1.98, 2.01, 2.02, 1.99]d kg m2 (77)

where the superscript d denotes the diagonal representation
of the respective vectors. The actual value of HI is given by

HI = [−194.6,−628.2,−885.9] kg m2/sec. (78)

The matrix K in (38) is chosen such that the closed loop
linear e-subsystem has eigenvalues

λ ∈ {−0.2
√

2,−0.2
√

2,−0.2
√

2,−0.3
√

2,−0.3
√

2,−0.3
√

2} .

The reference trajectory is chosen so that the initial reference
attitude is aligned with the inertial frame, and the angular
velocity of the reference attitude is chosen as

ωd(t) := σ̇d = (0.04 sin(2πt/400), 0.04 sin(2πt/300),

0.04 sin(2πt/200))
T

rad/sec. (79)

The nominal design as well as the redesign are simulated
using Matlab. Figures 2(a), 2(b) show the tracking of the
first two components of the reference attitude σd(t) by the
nominal design (38). Figure 3 shows how the error e1 :=

0 50 100 150 200 250 300 350 400
−3

−2

−1

0

1

2

3

4

σ 1

Time (sec)

Nominal σ
1

Reference Attitude

(a) Nominal response of σ1

0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (sec)

σ 2

Nominal σ
2

Reference Attitude

(b) Nominal response of σ2

Fig. 2. Nominal tracking of σd

σ1 − σd1 for the uncertain system (51)-(59) approaches the
nominal error response when the three-time scale design is
applied and the filter gains are gradually increased. Similar
figures can be drawn for the other two components of the
attitude. Figures 4(a)-4(b) show the close matching between
the nominal tracking of the first two components of the
reference velocity ωd(t) and the redesigned tracking with
ε1 = ε2 = 0.1. Even finer matching can be obtained by
using smaller values of (ε1, ε2). Figures 5(a) and 5(b) show
the responses of the first and fifth component of the control
input vector for the redesigned system vs the nominal system,
for the first 20 seconds.

To investigate the extent of perturbations in the spin and
transverse axis directions for which the design is feasible for
this example, we multiply the direction matrices in (73) and
(74) by a constant number b while keeping the nominal axes
fixed, and compute the maximum value of b for each matrix
separately such that (68) holds. This is done algebraically
by setting up a numerical grid consisting of σdi

∈ [−4, 4]
in steps of 0.5 for i = 1, 2, 3, σi ∈ [−3, 3] in steps of 0.5
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Fig. 4. Recovery of the nominal velocity-tracking by using a small filter
gain (ε1 = ε2 = 0.1)
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Fig. 5. Comparison of nominal and redesigned control inputs for (ε1 =
ε2 = 0.1)

for i = 1, 2, 3, γgi ∈ [−0.2, 0.2] rad in steps of 0.1 rad for
i = 1, 2, 3, 4, and numerically computing the eigenvalues of
the symmetric part of P (e, σd, z) over each point in this grid.
For computational simplicity it is assumed that changes in Ω
is negligible compared to its initial high value. Computations
show that the eigenvalues of P are more sensitive to the
perturbations in At0 than As0. When the reference attitude is
given by (79) then b = 1.205 for As0, and b = 1.02 for At0.
These numbers, however, represent more than 20.5% and
2% perturbations in the respective nominal matrices since
the actual perturbation is given as

∆Ā∗0 = (An
∗0 + ∆A∗0)b − An

∗0 (80)
= (b − 1)An

∗0 + b∆A∗0 (81)

where ∆A∗0 = A∗0 − An
∗0 are the perturbations considered

in the respective matrices in (71)- (74), and ∗ = s, t.

VII. CONCLUSION

In this paper we applied a time-scale separation redesign
for nominal performance recovery of a spacecraft attitude
control problem when the exact directions of the spin and
transverse axes, the gains of the flywheel actuators and the
inertia matrix are unknown. As is typical to any high-gain
design, one demerit of this method is that the control input
might peak in transience, which comes as a trade-off between
the affordable control effort and the closeness of trajectories.

TABLE I
SIMULATION PARAMETER

Symbols Parameter Values Units
N 4 -

ω(0) [0, 0, 0]T rad/sec
ω̇(0) [0, 0, 0]T rad/sec2

e(0) [0.2153, 0.2153, 0.2153]T -
γ(0) [0, 0, 0, 0]T rad
Ω(0) 3.0 × 104[1, 1, 1, 1]T rpm

IB

2

4

15000 3000 −1000
3000 6500 2000
−1000 2000 12000

3

5 kg m2

Icg (0.7, 0.7, 0.7, 0.7)d kg m2

Iwt, Iwg (0.4, 0.4, 0.4, 0.4)d kg m2

Igs, Igt, Igg (0.1, 0.1, 0.1, 0.1)d kg m2
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