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Abstract— Path planning techniques based on hierarchical
multiresolution cell decompositions are suitable for online
implementation due to their simplicity and speed of imple-
mentation. We present an efficient multiresolution cell de-
composition scheme based on the Haar wavelet transform.
The decomposition approximates the environment using high
resolution close to the agent and coarse resolution elsewhere.
We demonstrate an algorithm to extract the adjacency and
transition cost relations of the cells directly from the wavelet
transform coefficients.

I. INTRODUCTION

The problem of planning a path for an autonomous mobile
robot in a given workspace, while avoiding obstacles, has
been studied for several years (see [1], [2], and more recently,
[3]). Solution methods fall into three broad categories: cell
decomposition, roadmap methods, and artificial potential
field methods. The first two approaches transform the path
planning problem into a graph search problem. In partic-
ular, cell decomposition methods partition the free space
into convex, non-overlapping regions, called cells, and then
employ techniques, such as the Dijkstra algorithm, to search
the connectivity graph for a sequence of adjacent cells from
the initial point to the goal [1, Ch. 5 and 6]. Exact cell
decomposition methods create partitions such that the union
of cells is equal to the free space. Approximate methods
decompose the free space into cells of simple shapes, usually
rectangles, and classify them as FREE or FULL, based on
whether they belong to the free space or obstacle space
respectively. Iterative decomposition schemes classify cells
obtained in intermediate iterations as MIXED if they inter-
sect both the obstacle space and the free space. Hierarchical
path planning techniques may allow paths to travel through
MIXED cells and refine them in subsequent iterations [4],
[5], [6]. The iterations continue until all MIXED cells are
decomposed into FREE or FULL cells. One of the most
extensively used approximate cell decomposition techniques
is the quadtree method [4], [7], [8], which employs recursive
decompositions of MIXED cells into four square subcells
(children) until all cells are either FREE or FULL.

Although several sophisticated approaches for path plan-
ning have been reported in the literature, approaches based
on cell decompositions of the environment are most com-
mon and are widely used in applications because of their
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simplicity. Note that it is also advantageous to decompose
the free space into as few cells as possible, in order to
make search of the corresponding graph faster. Working
with multiresolution cell decompositions is beneficial when
one is primarily interested in online implementation. A
multiresolution scheme can keep the size of the resulting
graph search tractable so that its search can be achieved with
the limited on-board computational resources, while keeping
the required accuracy. Multiresolution schemes have been
proposed recently by Behnke [6] and Tsiotras [9]. Hwang et
al [10] describe a multiresolution technique using triangles,
instead of rectangles, as cells. Other implementations of
multiresolution techniques include Prazenica et al [11], who
present a model-predictive (receding horizon) control for-
mulation of the path planning problem using multiresolution
estimates of object locations; Kim and Lee [12] present a
multiresolution potential field approach to path planning; and
Verwer [13] describes the use of a hierarchy of imaginary
spheres encapsulating the robot for collision avoidance.

In this paper, we propose the use of wavelet transforms
in order to perform fast cell decomposition with varying
levels of resolution. The application of the wavelet trans-
form to path planning has been studied in the past, albeit
in a somewhat different context than our work. Pai and
Reissell [5] present an algorithm for path planning over
a rough terrain. They iteratively refine the path based on
successively finer approximations of the terrain elevation
map. At each iteration, the wavelet transform coefficients of
the elevation map are used to compute the approximation
errors, which are then included in the cost function that
should be minimized by the optimal path. Sinopoli et al [14]
describe a similar approach for vision-based path planning
for autonomous UAVs. Carrioli [15] describes the use of the
Haar wavelet for reducing computations, while manipulating
images representing the environment. In a slightly different
application, Narayanswami and Pang [16] describe a path
planning algorithm for NC machining that uses successively
finer approximations to the required contour as the cutting
tool approaches the contour.

The common characteristic of most previous works is
that they employ the multiresolution approximation property
of the wavelet transform sequentially, that is, the path
planning algorithm is executed over several iterations. At
each iteration the resolution is increased and/or the searched
area of the workspace is reduced accordingly. Each iteration
thus results in a refinement of the path obtained in the
previous iteration. In this paper, we revisit the multireso-
lution decomposition scheme of [9] that represents different



regions of the workspace at different resolutions simultane-
ously. In [9] the authors demonstrate the effectiveness of a
wavelet-based decomposition scheme in which the robot’s
immediate environment is approximated finely, while the
distant locations coarsely so. In particular, we complement
the work in [9] by presenting an algorithm for computing
the adjacency and transition cost matrices directly from the
wavelet decomposition. It is shown that, as expected, this
speeds up the whole path-planning process.

The rest of the paper is organized as follows: Section II
provides a brief introduction to the discrete wavelet trans-
form, while concentrating on its application to multiresolu-
tion cell decomposition. The reader is referred to [17], [18],
and [19] for more detailed expositions on the mathematical
theory of the wavelet transform. Section III describes the
computation of the locations, dimensions, and average in-
tensities of the cells using the information provided by the
nonzero wavelet detail coefficients. Section IV presents sam-
ple results of the proposed method, along with a comparison
against the standard quadtree decomposition.

II. CELL DECOMPOSITION USING WAVELETS

A. The Wavelet Transform

The discrete wavelet transform provides a framework for
multiresolution analysis (MRA) of a function, that is, the
construction of a hierarchy of functional approximations by
projecting the function onto a sequence of nested linear
spaces. Such a sequence of nested linear spaces is generated
by translated and scaled versions of two functions φ : R→R

and ψ : R→R of unit energy, called the scaling function and
wavelet respectively, satisfying the orthogonality equations

〈φ(t),φ(t−n)〉 = δ (n), (1)

〈ψ(t),ψ(t−n)〉 = δ (n), (2)

〈ψ(t),φ(t−n)〉 = 0. (3)

where 〈·, ·〉 denotes the inner product, and such that there
exist sequences h(n) and g(n) of scalars satisfying the
following relations, known as the dilation equations

φ(t) =
∞

∑
n=−∞

h(n)φ(2t−n), (4)

ψ(t) =
∞

∑
n=−∞

g(n)φ(2t−n). (5)

Defining Vj as the linear space spanned by {φ j,k} def=
{√2

jφ(2 jt− k) : k ∈ Z}, it can be shown (see, for instance,
[17, Ch. 3]) that {Vj} j∈Z is a sequence of nested subspaces,
such that . . .V−1 ⊂ V0 ⊂ V1 . . . ; that

⋃
Vj = L 2(R), j ∈ Z;

and that {ψ j,k} def= {√2
jψ(2 jt−k) : k ∈ Z} is a basis set for

Wj
def= Vj\Vj−1. The discrete wavelet transform of a function

f : R→ R, f ∈L 2(R), may be written as

c j0,k = 〈φ j0,k(t), f (t)〉, d j,k = 〈ψ j,k(t), f (t)〉.
The corresponding reconstruction equation is

f (t) =
∞

∑
k=−∞

c j0,kφ j0,k(t)+
∞

∑
j= j0

∞

∑
k=−∞

d j,kψ j,k(t).

The scalars c j0,k and d j,k are known as approximation and
detail coefficients respectively. The first term in (6) is the
approximation of f (t) at resolution j0, while the inner
summation of the second term is the difference between
approximations at two successive levels of resolution.

The simplest example of scaling and approximation func-
tions is the Haar family, defined as

φ(t) def=
{

1 0≤ t < 1
0 otherwise

, ψ(t) def=

⎧⎨
⎩

1 0≤ t < 1/2
−1 1/2≤ t < 1

0 otherwise.
(6)

For the Haar family, Vj corresponds to the set of piecewise-

constant functions over the regularly spaced intervals I j,k
def=

[2− jk,2− j(k + 1)] of length 2− j. The approximation coeffi-
cient c j,k, at a given resolution j, is equal to the average
value of the function over the kth interval.

The two-dimensional wavelet transform is a simple exten-
sion of the 1-D transform presented above. The scaling and
wavelet functions for the 2-D case are defined as

Φ j,k,�(x,y) = φ j,k(x)φ j,�(y), (7)

Ψ1
j,k,�(x,y) = φ j,k(x)ψ j,�(y), (8)

Ψ2
j,k,�(x,y) = ψ j,k(x)φ j,�(y), (9)

Ψ3
j,k,�(x,y) = ψ j,k(x)ψ j,�(y). (10)

The linear spaces Vj are now defined as the span of
{Φ j,k,�(x,y) : k, � ∈ Z} and the difference Vj\Vj−1 is rep-
resented as the union of three mutually orthogonal spaces
W h

j ,W v
j ,W d

j , which are the spans of translations of the three
wavelet functions Ψ1

j,k,�(x,y),Ψ
2
j,k,�(x,y), and Ψ3

j,k,�(x,y), re-
spectively. Thus, the discrete wavelet transform of a function
f : R

2→ R, f ∈L 2(R2) is

c j0,k,� = 〈Φ j,k,�(x,y), f (x,y)〉, di
j,k,� = 〈Ψi

j,k,�(x,y), f (x,y)〉,
and the reconstruction equation is

f (x,y) =
∞

∑
k,�=−∞

c j0,k,�Φ j,k,�(x,y)+

3

∑
i=1

∞

∑
j= j0

∞

∑
k,�=−∞

di
j,k,�Ψ

i
j,k,�(x,y). (11)

B. Application to Cell Decompositions

An image of the environment is a compact, square region
R ⊂ R

2 with an associated intensity map F : R → R. In
the context of path planning, the image could represent an
elevation map of the terrain on which the robot is to move,
or a risk measure that represents the probability that the
corresponding location is occupied by an obstacle [9].

Let the coarse resolution level j0 be given, and let a j0,k,�

and di
j,k,� be the two-dimensional discrete wavelet transform

coefficients of the intensity map of the image F . Let A j0
def=

{( jp,kp, �p)} be a set of triplets of integers such that jp ≥ j0,
p = 0,1,2, . . .. An approximation of F , say F̂ , is any image
obtained by the reconstruction of aj0,k,� and d̂i

j,k,�, where

d̂i
j,k,� =

{
di

j,k,� i = 1,2,3; ( j,k, �) ∈A j0
0 otherwise.



In the rest of this paper, we denote an approximate image
by its associated set of non-zero detail coefficients A j0 , in a
minor abuse of notation.

A cell decomposition of the environment is achieved
through an appropriate selection of A j0 , along with the use
of a compactly supported scaling function and wavelet. The
Haar wavelet and the Daubechies, symlet, and coiflet families
of wavelets [20] are all examples of compactly supported
wavelets. Since the scaling function φ j,k and wavelet ψ j,k

are supported over the interval I j,k, the corresponding 2-
D functions, defined in (7)-(10), are supported over the
rectangle C j,k,�

def= I j,k×I j,�, known as a cell.
Consider the 2-D Haar scaling function and wavelets in

(7)-(10). The approximation of the environment at resolution
j0, namely, its projection on to the linear space Vj0 , is a
linear combination of the basis {Φ j0,k,�(x,y) : k, � ∈ Z}. For
instance, the approximation at resolution j0 is the first term
in the right-hand-side of (11). Clearly, such an approxi-
mation is piecewise constant over the cell decomposition
P j0 = {C j0,k,� :

⋃
k,�∈Z C j0,k,� = R}. The intensity of the

approximation over a cell is the average intensity over the
area of the cell. It is possible to construct a multiresolu-
tion approximation, Pµ

j≥ j0
by first constructing an approx-

imation at resolution j0, and then successively expressing
Φ j,k j ,� j , for some pairs (k j, � j), as a linear combination of
{Φ j+1,k j+1,� j+1(x,y) : k j+1, � j+1 ∈ Z}, similar to (5) for the
1-D case. A multiresolution approximation is a piecewise
constant function over a cell decomposition in which cells are
of different dimensions at different location, that is, Pµ

j≥ j0
=

{C j,k,� :
⋃

j,k,� C j,k,� = R, j≥ j0, k ∈K( j), �∈ L( j)}, where
K( j) and L( j) are some resolution-dependent index subsets
of Z.

In Ref. [9] the authors describe path planning algorithm
based on multiresolution cell decomposition arising from the
2-D wavelet transform.

Figure 1 shows an example of the original environment
of dimension 16×16 pixels, and its approximation with the
following data (coarsest level j0 = 2):

A j0 = {(2,0,2),(2,3,2),(3,3,4),(3,4,2),(3,4,3),
(3,5,2),(3,6,5)}. (12)

III. ADJACENCY MATRIX

In this section we present a scheme for determining all el-
ements of the cell decomposition Pµ

j≥ j0
and their intensities

for a given approximation A j0 , for the Haar system directly
from the wavelet transform coefficients. The corresponding
adjacency matrix may then be computed using off-the-shelf
code.

A. Cell Locations and Dimensions

We note that the Haar scaling function defined in (6)
satisfies the following dilation equation [17, Sec. 2.3.2]

φ(t) = φ(2t)+φ(2t−1) (13)

Since φ(t) is defined over the closed unit interval, supports
of its translations do not overlap with each other, a property

(a)

(b)

Fig. 1. Example of an image and its approximation

which also holds true for the corresponding 2-D scaling
function. Further, (13) implies that the support of φ j,k(t) is
exactly equal to the union of the supports of φ j+1,k(t) and
φ j+1,k−1(t). In the 2-D case, this corresponds to a square
support of Φ j,k,�(t) being exactly equal to the union of
the supports of Φ j+1,k,�(t), Φ j+1,k−1,�(t), Φ j+1,k,�−1(t), and
Φ j+1,k−1,�−1(t). If the detail coefficients at level j and at
finer levels j + 1, j + 2, . . . are all zero, then c j,k,�Φ j,k,�(t)
represents the finest available approximation of the image
over that particular region of support, where c j,k,� is the
corresponding approximation coefficient. If any of the three
detail coefficients at level j is non-zero, then a finer ap-
proximation is possible. For the Haar wavelet system, this is
equivalent to a decomposition of the cell C j,k,� into the cells
{C j+1,k̂,�̂ : k−1≤ k̂ ≤ k, �−1≤ �̂≤ �}.

Since the translations of the wavelet and scaling functions
are orthogonal to each other, one may associate the detail
coefficients with specific regions in R

2, such that the values
of those coefficients affect the approximate image only in
that region. For the Haar system, due to the dilation equation
(13), we can make the following association

di
j,k,� ←→ {(x,y) ∈ R

2 : 2 j0Xk ≤ x < 2 j0(Xk +1),

2 j0Y� ≤ y < 2 j0(Y� +1)} (14)

where Xk = 
2 j0− jk� and Y� = 
2 j0− j��. The reason for
making this association will become apparent once the rules
for computing the elements of Pµ

j≥ j0
are detailed later on.

Roughly speaking, if coefficients at a finer level are non-
zero, while all the coarser-level coefficients associated with



(a) (b)

Fig. 2. (a) Rule 2) applied to level 2 coefficients, along with Rule 1); (b)
Rule 2) applied to level 1 coefficients.

(a) (b)

Fig. 3. (a) Rule 3) applied to level 1 coefficients; (b) Resultant cell
decomposition.

the same region are zero, a non-convex cell may result
(see, for instance, Fig. 2)(b). Any non-convex cells must be
decomposed further into cells of coarser resolutions.

We can formulate the following Rules upon which the
algorithm for determining the elements of Pµ

j≥ j0
are based.

If ( j,k, �) ∈A j0 , then:

Rule 1) {C j0,k̂,�̂ : 0 ≤ k̂, �̂ ≤ 2 j0−p − 1} ∈Pµ
j≥ j0

, where
p = log2 N, and N is the number of pixels in
each row or column of the image. When all the
detail coefficients are neglected, these cells form a
uniform grid due to the approximation coefficients
alone.

Rule 2) {C j+1,k̂,�̂ : 2k ≤ k̂ ≤ 2k + 1, 2� ≤ �̂ ≤ 2� + 1} ∈
Pµ

j≥ j0
. This is a consequence of the fact that the

support of the Haar scaling function at a given level
is equal to the union of the four supports of those
at the next finer level.

Rule 3) {C ˆj+1,k̂,�̂ : X̂k̂−1≤ k̂≤ X̂k̂, Ŷ�̂−1≤ �̂≤ Ŷ�̂, j0 ≤
ĵ < j} ∈ Pµ

j≥ j0
, where X̂k̂ = 
2 ĵ− jk� and Ŷ�̂ =


2 ĵ− j��. This rule is required to account for the
need to decompose non-convex cells, which may
arise when a finer level coefficient is non-zero,
while coarser coefficients associated with the same
region, as given by (14) are zero.

Rule 4) {C ĵ,k̂,�̂ : k̂ = 
2 ĵ− jk�, �̂ = 
2 ĵ− j��, j0 ≤ ĵ ≤ j} /∈
Pµ

j≥ j0
. This rule simply indicates that once a cell

C j,k,� is decomposed, it cannot belong to Pµ
j≥ j0

.
Clearly, Rules 3) and 4) conflict with each other since

some cells that are prescribed by Rule 3) for inclusion
in Pµ

j≥ j0
, are also prescribed for exclusion by Rule 4).

Furthermore, Rules 2) and 3) prescribe some of the same
cells for inclusion in Pµ

j≥ j0
. The algorithm for determining

elements of Pµ
j≥ j0

must hence account for this conflict
and possible redundancy. In particular, the redundancy may
be avoided by checking for non-zero coefficients at higher
(coarser) levels associated with the same region, as given by
the association (14).

B. Cell Values

In order to calculate the cell intensities, we use the single-
step reconstruction equation for the Haar wavelet repeatedly:

[a j+1,k̂,�̂] = 2 j− j0

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c j,k,�

d1
j,k,�

d2
j,k,�

d3
j,k,�

⎤
⎥⎥⎦ , (15)

where ak̂,�̂ are the intensities of the cells {C j+1,k̂,�̂ : 2k ≤
k̂ ≤ 2k + 1, 2� ≤ �̂ ≤ 2� + 1}, c j,k,� is the approximation
coefficient, while di

j,k,�, i = 1,2,3 are the detail coefficients.
The intensities of cells arising from Rule 1) are given by

a j0,k,� = 2 j0c j0,k,�. When a non-zero coefficient at level j is
detected, the largest index j1 < j associated with the same
region, as given by (14), is determined and the intensities
of the cells arising from Rule 2) are calculated using (15).
The intensities of cells arising from each application of
Rule 3) are the same, and are inherited from a previous
application of (15) that corresponds to the non-zero detail
coefficients (associated with the same region) of the finest
level of resolution that this coarser than the current one.

IV. EXAMPLES

Figures 2 and 3 illustrate the application of these Rules
for the example given in (12). Figure 2(a) shows the grid
due to the approximation coefficients alone, and the cells
due to the non-zero coefficients at the coarsest level, i.e.,
j = 2. The shaded cells in Fig. 2(b) illustrate the non-convex
regions that may arise due to non-zero coefficients at finer
levels, which need to be decomposed using Rule 3). The
shaded cells in Fig. 3(a) are those which arise twice: due
to Rule 2) for level j = 2 coefficients and due to Rule 3)
for level j = 3 coefficients. Figure 3(b) shows the final cell
decomposition, which should be compared with the actual
reconstructed approximate image in Fig. 1(b).

Figures 4 and 5 illustrate an implementation of wavelet-
based multiresolution path planning using the algorithm pro-
posed in this paper. The initial point and goal are indicated
by a square and diamond respectively. The image shown
in the figures corresponds to terrain height, where the red
shades indicate low terrain (favorable), and blue shades
indicate high terrain (unfavorable). The cost function used
was a weighted sum of terrain height and distance traveled.
Figure 4(a) shows the initial multiresolution approximation
of the intensity map with high resolution near the initial
point, while Fig. 4(b) shows the final path computed. It
can be seen that the path remains in the darker shades



of red throughout. Figure 5 shows an intermediate step of
multiresolution approximation with high resolution near the
current position of the agent, while Fig. 5 shows the history
of the path traversed by the agent until that point. The
original intensity map considered was of resolution 512×512
pixels. Whilst using this resolution throughout would have
given a cell decomposition with more than 250,000 nodes,
the multiresolution algorithm gives a decomposition with
only around 400 nodes in each iteration.

(a)

(b)

Fig. 4. Multi-resolution path planning

Figure 6 shows another example of an image (N = 32) and
its approximation, with the cell decomposition superimposed
for comparison. The following approximation has been used,
with j0 = 4:

A j0 = {(1,0,1),(2,1,2),(3,2,4),(3,2,5),(3,3,5),
(4,7,11),(4,8,11)}

Note that, in the “fourth quadrant” region {(x,y)∈R
2 : 16≤

x < 32, 16≤ y < 32}, only one coefficient, viz. (4,8,11) is
non-zero. Since this coefficient is at the finest resolution, it
necessitates cells of higher dimensions too, as shown.

Table I shows a comparison of execution times for the
computation of the adjacency matrix against the quadtree
method. The proposed algorithm shows an improvement of
roughly 30% to 40%, which is significant, since this savings
occurs at each iteration. Table I was obtained by executing
the code on the following family of approximate images:

A j0 = {( j,k, �) : 
q1

2 j �−δ ≤ k ≤ 
q1

2 j �+δ ,


q2

2 j �−δ ≤ �≤ 
q2

2 j �+δ , N ≥ j ≥ j0}

(a)

(b)

Fig. 5. Intermediate step in path planning

TABLE I

SAMPLE RESULTS

p j0 Nodes Quadtree t(s) Wavelet t(s) Difference (%)

3 2 35 0.0297 0.0115 61.40
3 0 34 0.0208 0.0083 60.00
4 1 54 0.0224 0.0125 44.19
6 5 1050 0.0723 0.0641 11.51
7 2 139 0.1010 0.0718 28.87
7 1 135 0.1016 0.0755 25.64
8 4 357 0.3411 0.2307 32.37
9 5 1129 1.4281 0.9505 33.44
10 3 238 5.8844 4.4078 25.09
11 5 1181 23.917 16.502 31.01

where (q1,q2) ∈ [0,N − 1]× [0,N − 1] is an random point
on the image. The decomposition is such that the approxi-
mate image resembles the original image accurately around
(q1,q2) and coarsely away from it, and δ ∈N is a parameter.
In the results of Table I the value of δ = 3 has been used.

V. CONCLUSIONS

In this paper we have proposed a computationally efficient
algorithm for constructing the connectivity matrix of cell
decompositions, and the associated intensity map arising
from multiresolution approximations of the environment us-
ing wavelet transforms. In particular, we have shown that
one is able to compute the connectivity (adjacency) matrix
of the cells directly from the discrete wavelet transform,
thus bypassing the direct computation of quadtree decom-
positions. Numerical examples confirm that the proposed
approach provides advantages in terms of computer memory
and speed. Wavelet-based cell decompositions thus offer a



(a)

(b)

Fig. 6. Example of an image and its approximation

computationally attractive alternative to quadtrees for on-line
path planning problems.
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