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Abstract— In this paper we present a multiresolution-based
approach for direct trajectory optimization. We transcribe the
optimal control problem into a nonlinear programming (NLP)
problem and solve the resulting NLP problem on an adaptive
grid. The proposed algorithm automatically generates a grid
to accurately capture the discontinuities and switchings in the
state and control variables. The path constraints are handled
with ease using the proposed technique without any additional
computational complexity. The efficiency and accuracy of the
proposed algorithm is demonstrated with the help of several
examples.

I. INTRODUCTION

It is difficult to find an analytic solution to a general trajec-
tory optimization problem. Therefore, numerical techniques
have been proposed in the literature, a nice survey of which
can be found in [1]. In most numerical methods, one needs
to use a high resolution (dense) grid to accurately capture
any discontinuities or switchings in the state and/or control
variables. This requires a large amount of computational
resources, both in terms of CPU time and memory. Moreover,
a large number of NLP variables can lead to ill conditioning
of the discretized problem. In order to accurately capture
any irregularities in the solution one would like to refine the
mesh locally in the region close to the irregularity, instead
of refining the mesh uniformly over the whole domain.
Recently, some work has been done in this direction by Betts
et al. [2], [3], Ross and Fahroo [4], [5], Gong et al. [6],
Binder et al. [7], [8], [9], [10], and Schlegel et al. [11].

The method of Betts et al. [2], [3] selects the new grid
points by solving an integer programming problem that mini-
mizes the maximum discretization error (found by integrating
the dynamics of the system) by subdividing the current grid.
In [4], the authors use domain transformation techniques for
generating the adaptive grids. The pseudospectral knotting
method of Ross and Fahroo [5] generalizes the spectral
patching method [12] by exchanging information across the
patches in the form of event conditions associated with
the optimal control problem, hence removing the restriction
of continuity in the solution across the end points of the
phases. The phase boundaries, termed as “knots” by the
authors, can be fixed or free, with free knots constituting
the part of the optimization process. On each phase, the
problem is solved using the Legendre pseudospectral method
[13] or Chebyshev pseudospectral method [14]. In order to
improve the pseudospectral method, Gong et al. [6] present
an algorithm in which the user specifies the number of
nodes to be increased in a particular phase when the error
between the computed optimal control of the two successive
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iterations is greater than the prescribed threshold. They use
the gradient of the control to fix the location of the knots.
Binder et al. [7], [9], [10] use wavelets to achieve better
local resolution. They work in the wavelet space by using the
wavelet-Galerkin approach to discretize the optimal control
problem into an NLP problem and use a local error analysis
of the states and a wavelet analysis of the control profile to
add or remove wavelet basis functions. In [8] the authors
use a direct shooting approach, where the optimal control
problem is converted into an NLP problem by parameterizing
the control profiles, combined with a wavelet analysis of
the gradients of the Lagrangian function with respect to the
parametrization functions at the optimal points in order to
determine the regions that require refinement. For problems
with state and/or control path constraints Schlegel et al. [11]
use wavelet analysis of the control profile to determine the
regions that require refinement.

In our continued effort for solving optimal control prob-
lems numerically [15], [16], we propose in this paper a novel
multiresolution-based trajectory optimization technique us-
ing the ideas of [17] to solve the optimal control problem in
a quick and efficient way. The proposed technique allows
us to bypass solving any kind of secondary optimization
problem for adding points to the mesh and, moreover, the
criterion for deciding the mesh refinement regions is based
on simple interpolations as opposed to integrations. At one
go the proposed technique not only adds points to the grid
but also removes points from the grid. On top of all this,
the proposed multiresolution-based trajectory optimization
technique can handle the constraints on states with ease
without any further computational complexity.

The paper is organized as follows. We first formulate the
trajectory optimization problem and discretize the continuous
optimal control problem into an NLP problem. Next, we
briefly describe the mesh refinement algorithm of [17]. We
then present the multiresolution-based trajectory optimiza-
tion algorithm followed by several examples which show
the efficiency and accuracy of the proposed algorithm. We
conclude with a discussion on the advantages of the proposed
algorithm over other existing adaptive methods [2], [3], [5],
[6], [7], [8], [9], [10], [11] for solving the optimal control
problems.

II. PROBLEM FORMULATION

The problem is to determine the state x(·) and the control
u(·) that minimize the Bolza cost functional,

J = e(x(τf ), τf ) +
∫ τf

τ0

L(x(τ),u(τ), τ)dτ, (1)

where e : R
Nx × R+ → R, τ ∈ [τ0, τf ], x : [τ0, τf ] → R

Nx ,
u : [τ0, τf ] → R

Nu , L : R
Nx × R

Nu × [τ0, τf ] → R, subject



to the state dynamics

ẋ(τ) = f [x(τ),u(τ), τ ], (2)

the boundary conditions

x(τ0) = x0, ef (x(τf ), τf ) = 0, (3)

where ef : R
Nx × R+ → R

Ne , and the state and control
constraints

C(x(τ),u(τ), τ) ≤ 0, (4)

where C : R
Nx ×R

Nu × [τ0, τf ] → R
Nc . The initial time τ0

is assumed to be given and the final time τf can be fixed or
free.

As stated above, it is very difficult to find an analytic
solution to the trajectory optimization problem (1)-(4). In
order to find a numerical solution to this problem, we
transcribe the continuous optimal control problem into an
NLP problem as described in the next section.

III. NLP FORMULATION

Consider a set of dyadic grids of the form

Vj = {tj,k ∈ [0, 1] : tj,k = k/2j , 0 ≤ k ≤ 2j}, (5)

Jmin ≤ j ≤ Jmax, where j denotes the resolution level, k
the spatial location, and Jmin, Jmax ∈ Z

0
+. We denote by

Wj the set of grid points belonging to Vj+1 \Vj . Therefore,

Wj = {t̂j,k ∈ [0, 1] : t̂j,k = (2k + 1)/2j+1, 0 ≤ k ≤ 2j−1},
(6)

Jmin ≤ j ≤ Jmax − 1. An example of a dyadic grid
with Jmin = 0 and Jmax = 5 is shown in Fig. 1. For
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Fig. 1. Example of a dyadic grid.

simplicity, we denote x and u evaluated at tj,k by xj,k and
uj,k respectively.

The transformation τ = ∆τ · t + τ0, where ∆τ =
τf − τ0, can be used to express the trajectory optimization
problem stated in Section II from any interval [τ0, τf ] to
t ∈ [0, 1]. Hence, the trajectory optimization problem reduces
to minimizing the following cost functional

J = e(x(1), τf ) + ∆τ

∫ 1

0

L(x(t),u(t), t)dt, (7)

subject to the state dynamics

1
∆τ

ẋ(t) = f [x(t),u(t), t], (8)

where x : [0, 1] → R
Nx , u : [0, 1] → R

Nu , the boundary
conditions x(0) = x0, ef (x(1), τf ) = 0, and constraints
C(x(t),u(t), t) ≤ 0.

Now we convert the above mentioned optimal control
problem into an NLP problem using a Runge-Kutta (RK)
discretization. To this end, let a nonuniform grid of the form

G = {tji,ki
: tji,ki

∈ [0, 1], 0 ≤ ki ≤ 2ji ,

Jmin ≤ ji ≤ Jmax, for i = 1, . . . , Nt, and

tji,ki
< tji+1,ki+1 , for i = 1, . . . , Nt − 1}. (9)

Then a q-stage RK method for discretizing (8) is given by
[1], [18]

xji+1,ki+1 = xji,ki
+ hji,ki

∆τ

q∑
�=1

β�f �
ji,ki

, (10)

where f �
ji,ki

= f(x�
ji,ki

,u�
ji,ki

, t�ji,ki
), x�

ji,ki
, u�

ji,ki
, t�ji,ki

are the intermediate state, control, and time variables on the
interval [tji,ki

, tji+1,ki+1 ], given by

x�
ji,ki

= xji,ki
+ hji,ki

∆τ

q∑
m=1

α�,mfm
ji,ki

, (11)

where hji,ki
= tji+1,ki+1 − tji,ki

, t�ji,ki
= tji,ki

+ hji,ki
ρ�,

u�
ji,ki

= u(t�ji,ki
), for 1 ≤ � ≤ q, and q is referred to as the

stage. In these expressions ρ�, β�, α�,m are known constants
with 0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ 1. The scheme is explicit if
α�,m = 0 for m ≥ � and implicit otherwise.

Using (10) the defects of the discretization are given by

ζi = xji+1,ki+1 − xji,ki
− hji,ki

∆τ

q∑
�=1

β�f �
ji,ki

, (12)

for i = 1, . . . , Nt − 1.
For discretizing the cost functional (7), we introduce a

new state y(t) such that

ẏ(t) = ∆τL(x(t),u(t), t)dt, y(0) = 0. (13)

Then, using a q-stage RK method for discretizing (13) yields

yjNt ,kNt
= ∆τ

Nt−1∑
i=0

hji,ki

q∑
�=1

β�L�
ji,ki

, (14)

where L�
ji,ki

= L(x�
ji,ki

,u�
ji,ki

, t�ji,ki
). Hence, the cost

functional (7) written in the discretized form is as follows

J = e(xjNt ,kNt
, τf ) + ∆τ

Nt−1∑
i=1

(
hji,ki

q∑
�=1

β�L�
ji,ki

)
.

(15)
Let us now define the following sets

X = {xj1,k1 , . . . ,xjNt ,kNt
}, U = {uj1,k1 , . . . ,ujNt ,kNt

},
G = {t�ji,ki

∈ [0, 1] : t�ji,ki
/∈ G, 0 ≤ i < Nt, 1 ≤ � ≤ q},

X = {x�
ji,ki

: t�ji,ki
∈ G}, U = {u�

ji,ki
: t�ji,ki

∈ G}.
As a result of the discretization the optimal control prob-
lem reduces to the NLP problem of finding the variables
X, U, U, τf , that minimize (15) subject to the following
constraints

ζi = 0, i = 1, . . . , Nt − 1,(16)

xj0,k0 = x0, (17)

ef (xjNt ,kNt
, τf ) = 0, (18)

C(X,X,U,U, G,G) ≤ 0. (19)



We use SNOPT [19] to solve (15)-(19). SNOPT is an NLP
solver which is based on a sequential quadratic programming
(SQP) algorithm.

Since the trajectory optimization problem can have dis-
continuities and switchings in the states and the controls,
one way to accurately capture these discontinuities and
switchings in the solution is to solve the NLP problem
on a very fine mesh. However, this will require a lot of
computational resources in terms of both CPU time and
memory. Moreover, a large number of NLP variables can
lead to ill-conditioning of the discretized problem. There-
fore, in order to accurately capture the irregularities in the
solution and alleviate these problems, we will only refine
the mesh locally in the region of the irregularity using the
multiresolution-based mesh refinement algorithm described
in the next section. For more details on the mesh refinement
algorithm the reader is referred to [17].

IV. THE MESH REFINEMENT ALGORITHM

Consider a set of dyadic grids Vj and Wj as described
in equations (5) and (6) before. Assume we are given a
nonuniform grid Gridold of the form (9) (that is, Gridold =
G), with any function φ : [0, 1] → R specified on Gridold,
Φold = {φj,k : tj,k ∈ Gridold}, where φj,k = φ(tj,k).

Our aim now is to find a new grid Gridnew, by adding or
removing points from Gridold. This stems from the require-
ment for capturing the irregularity in φ more accurately. To
this end, we initialize an intermediate grid Gridint = VJmin ,
with function values

Φint = {φJmin,k : φJmin,k ∈ Φold, 0 ≤ k ≤ 2Jmin}, (20)

and set j = Jmin. Then the mesh refinement algorithm
proceeds as follows:

1) Find the points that belong to the intersection of Wj

and Gridold

T̂ = {t̂j,ki
: t̂j,ki

∈ Wj ∩ Gridold, for i = 1, . . . , Nt̂}.
(21)

2) Set i = 1.
a) Compute the interpolated function value at point

t̂j,ki
∈ T̂ , φ̂(t̂j,ki

), from the points in Gridint

and their function values in the set Φint using an
interpolating polynomial of degree p1.

b) Calculate the interpolative error coefficient2 dj,ki
at

the point t̂j,ki
, dj,ki

= |φ(t̂j,ki
) − φ̂(t̂j,ki

)|. If the
value of dj,ki

is below the threshold ε/2(j−Jmin)/2,
then reject t̂j,ki

and goto Step 2f, otherwise add t̂j,ki

to the intermediate grid Gridint and move on to the
next step.

c) Add to Gridint N1 points on the left and N1 points
on the right neighboring to the point t̂j,ki

in Wj .
d) Add to Gridint 2N2 neighboring points at the next

finer level {t̂j+1,2ki+�}N2
�=−N2+1.

e) Add the function values at all the newly added
points to Φint. If the function value at any of the

1For details on the computation of interpolating polynomials, the reader
is referred to [17].

2The interpolative error coefficient is a measure of the local smoothness
of the function.

newly added points is not known, we interpolate the
function value at that point from the points in Gridold

and their function values in Φold using the method
described in [17].

f) Increment i by 1. If i ≤ Nt̂ goto Step 2a, otherwise
move on to the next step.

3) Increment j by 1. If j < Jmax goto Step 1, otherwise
move on to the next step.

4) Terminate the algorithm. The final nonuniform grid is
Gridnew = Gridint and the corresponding function
values are in the set Φnew = Φint.

It should be noted that the threshold ε/2(j−Jmin)/2 changes
with each level Wj . The threshold becomes increasingly
smaller as one goes from j = Jmin to j = Jmax − 1. This is
to account for the reduction in the interpolation error with
the decrease in the distance between the interpolating points.

Now we are ready to present the proposed multiresolution-
based trajectory optimization algorithm.

V. MULTIRESOLUTION TRAJECTORY OPTIMIZATION

ALGORITHM (MTOA)

We first transcribe the continuous trajectory optimization
problem into an NLP problem using a q-stage RK dis-
cretization and select the minimum resolution level Jmin, the
maximum resolution level Jmax, the threshold ε, the order
of the interpolating polynomial p, and the parameters N1,
N2 required for the mesh refinement algorithm based on
the problem and the desired accuracy. Next, we initialize
Gridold = VJmin , choose an initial guess for all NLP
variables, and denote the set of initial guesses by Guess.
The proposed multiresolution-based trajectory optimization
algorithm proceeds as follows:

1) Solve the NLP problem on Gridold with the initial
guess Guess.

2) Mesh refinement.
a) If the problem either has pure state constraints

or mixed constraints on states and controls: find
Gridnewi

, i = 1, . . . , Nu + Nxc, where Nxc is
the number of states involved in the constraints, by
setting Φold equal to the NLP solution of {un}Nu

n=1,
{xn}Nxc

n=1, in the mesh refinement algorithm men-
tioned in Section IV, set Nr = Nu + Nxc, and goto
Step 2c.

b) Find Gridnewi
by setting Φold equal to the NLP

solution of ui, for i = 1, . . . , Nu, in the mesh
refinement algorithm mentioned in Section IV. Set
Nr = Nu.

c) The new final mesh will be Gridnew =
∪Nr

i=1Gridnewi
.

3) Interpolate the NLP solution found in Step 1 on the
new mesh Gridnew, which will be our new initial guess
Guess, reassign the set Gridold to Gridnew, and goto
Step 1. The whole process is repeated until Gridold

has points from the finest level WJmax−1. Once Gridold

has points from the level WJmax−1 repeat Step 1 and
terminate.

Remark 1: For increased robustness of the algorithm, in
Step 2a) of MTOA, one can also perform mesh refinement



based on all the states (irrespective of whether the corre-
sponding states are involved in the constraints or not) and
the constraints C(x(τ),u(τ), τ) in addition to the mesh
refinement based on the states involved in the constraints
and the mesh refinement based on the controls.

It should be noted that since we first solve the problem
on a coarse grid the solution converges pretty fast as the
number of NLP variables is small. During the next iterations,
we provide the solution of the previous iteration as an
initial guess, and as we continue to iterate, our initial guess
becomes more and more accurate. As a result, the solution
to the NLP problem converges very fast even as the number
of NLP variables increases from the previous iteration.

VI. NUMERICAL EXAMPLES

Example 1: We consider the Moon landing problem,
taken from [14]. The control problem is formulated as max-
imizing the final mass, and hence minimizing J = −m(τf ).
The equations of motion are given by ḣ = v, v̇ = −g+T/m,
ṁ = −T/(Ispg), where the state variables h, v, m are
altitude, velocity, and mass respectively. Control is provided
by the thrust T , which is bounded by 0 ≤ T ≤ Tmax. The
final time τf is free. The other parameters in the problem
are g, the gravity of the Moon, and Isp, the specific impulse
of the spacecraft engine. The normalized parameters for the
problem were chosen the same as in [14]: Tmax/m0g =
1.1, Ispg/v0 = 1, h(0)/h0 = 0.5, v(0)/v0 = −0.05,
m(0)/m0 = 1, for any given set of initial conditions h0, v0,
and m0. Therefore, we have the following normalized initial
conditions: h(0) = 0.5, v(0) = −0.05, m(0) = 1.0. For
soft landing, we must have h(τf ) = 0, and v(τf ) = 0. In
addition, for a physical meaningful trajectory, we must have
m(τf ) > 0.

We solved this problem on a grid with Jmin = 3 and
Jmax = 9. The other parameters used in the simulation are
p = 1, ε = 10−2, and N1 = N2 = 1. For discretizing
this problem into an NLP problem, we used the fourth-order
explicit Runge-Kutta scheme (q = 4) with the following
parameters:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Since the problem does not have any state constraints
or the mixed constraints on states and controls, thrust T
was chosen to be the refinement criterion for constructing
the new mesh in MTOA. The algorithm terminated in 7
iterations. Because of the space constraints we show the
time history of the thrust T along with the grid point
distribution only for iterations 1, 3, 6, and 7 (Fig. 2). The
grid point distributions in Fig. 2 show that with each iteration
the algorithm adds points at finer resolution levels, and as
a result the solution is getting more and more accurate.
Moreover, as the solution gets more and more accurate, the
algorithm also removes points at the coarser levels from
the region where the solution is getting smoother. The grid
point distribution at iteration 7 (Fig. 2(h)) shows that the
regions where the solution is smooth are well represented by

the coarse resolution levels; the higher resolution levels are
needed only near the switching points in the thrust T , thus
illustrating the efficiency of the proposed algorithm. From
Fig. 2(g), we see that the algorithm was accurately able to
capture the switching in the control using only two points.
It should be noted that the algorithm used only 26 points
out of 513 points of the grid V9 for calculating the final
solution. One should also discern that the algorithm used 27
points at iteration 6 whereas used 26 points at iteration 7. At
iteration 7, the algorithm removed some points at the coarser
resolution levels and added points at the finer resolution level
W8. This clearly demonstrates that the proposed strategy uses
only the grid points that are actually necessary to attain a
given precision, and the algorithm is able to add and remove
points when and where is needed. The time history of mass
m along with the phase portrait of the velocity v vs. the
altitude h for the last iteration are shown in Fig. 3.

Example 2: Next we consider a minimum-energy problem
with path constraint [20]. The problem is to find the control
u(t) that minimizes the cost function J = 0.5

∫ 1

0
u2dτ ,

subject to the dynamics ẋ = v, v̇ = u, initial and final
conditions, x(0) = x(1) = 0, v(0) = −v(1) = 1, and the
path constraint, x(τ) ≤ 0.04.

This is a problem with a second-order state variable
inequality constraint and hence, the state x and the control u
were chosen as the refinement criterion for constructing the
new mesh. We solved this problem on a grid with Jmin = 3
and Jmax = 10. The other parameters used in the simulation
are p = 1, ε = 10−2, and N1 = N2 = 1. For discretizing
this problem into an NLP problem, we used an implicit
Hermite-Simpson scheme, the defects of discretization for
which can be found in [18]. It has been indicated in [21]
that the Hermite-Simpson scheme is equivalent to a 3-stage
Runge-Kutta scheme with the following parameters

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

The algorithm terminated in 8 iterations. The time histories
of states x, v, and the control u along with the grid point
distribution for the final iteration are shown in Fig. 4. The
grid point distribution (Fig. 4(d)) again shows that the regions
where the solution is smooth are well represented by the
coarse resolution levels; the higher resolution levels are
needed only near the points where the state x enters and
leaves the constraint. The number of grid points (Ng) used by
the algorithm along with the error in the computed optimal
cost (E = |Ja − Jn|, where Ja is the optimal cost found
analytically [20] and Jn is the optimal cost found using the
proposed algorithm) at each iteration are shown in Table I.
The optimal cost found numerically, using the proposed
technique, after the 8th iteration is 11.1111111, which is
accurate up to 7 decimal places compared to the analytic
solution (Ja = 4/0.36). One should note that the proposed
algorithm used only 51 points out of 1025 points of the grid
V10. Table I also illustrates that with each iteration, Jn is
converging to the analytic solution and the error is decreasing
roughly by an order of magnitude which again shows the
efficacy of the proposed algorithm.
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Fig. 2. Example 1. Time history of thrust T along with the grid point
distribution for iterations 1, 3, 6, and 7.

VII. COMPARISON OF MTOA WITH EXISTING METHODS

One of the most well-known adaptive methods for solving
optimal control problems is the method of Betts et al. [2], [3],
[18] which requires the solution of an integer programming
problem in order to refine the mesh, in addition to the
solution of the NLP problem, which adds to the overall
computational overhead. The MTOA proposed in this paper
avoids the solution of any secondary optimization problem
for adding points to the mesh. Only simple interpolations
are needed to refine the mesh, which can be done on the
fly using, for instance, Neville’s algorithm. Furthermore, the
MTOA does not involve any integrations, as opposed to
the highly accurate integrations required in the method of
Betts et al. [3], [18]. This again can be computationally
expensive for nonlinear dynamics. Moreover, the algorithm
of [2], [3], [18] can only add points to the grid, whereas
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(c) Iteration 8: Time history of u.
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Fig. 4. Example 2. Time history of x, v, and u along with the grid point
distribution for iteration 8.

MTOA is capable of not only adding points to the grid
but also removing points from the grid when and where is
needed. Finally, MTOA can handle state constraints without
further computational complexity.

In a recent paper Ross and Fahroo [5] use the pseudospec-
tral knotting method to handle problems with discontinuities
and switches in states and control. However, as pointed
out by Ross [22] “Soft knots3 do not increase the speed
of the algorithm; they are expected to improve accuracy.
Consequently, the introduction of soft knots in the grid
might significantly slow the algorithm.” Moreover, in the
pseudospectral knotting method, one needs to know a priori
the approximate number and location of singularities in
the solution. In [6] Gong et al. use the gradient of the
control to fix the locations of the knots but incase the error
between the computed control of two successive iterations is
above the prescribed threshold, the number of nodes to be
added to a particular phase is still defined by the user even
before starting the algorithm. Moreover, the structure of the
pseudospectral grid for each phase is fixed, irrespectively of
the location of the knot. On the other hand, MTOA is fully
autonomous. The user need not know a priori the number

3The reader is referred to [5] for the definition of soft knots.



TABLE I

EXAMPLE 2: NO. OF GRID POINTS ALONG WITH THE ERROR IN THE

COMPUTED OPTIMAL COST AT EACH ITERATION.

Iteration Ng Jn E = |Ja − Jn|
1 9 11.1360 2.5 × 10−2

2 13 11.1168 5.7 × 10−3

3 17 11.1130 1.8 × 10−3

4 27 11.1115 4.5 × 10−4

5 33 11.1112 7.2 × 10−5

6 39 11.1111 6.6 × 10−6

7 45 11.1111 1.5 × 10−6

8 51 11.1111 4.0 × 10−8

of irregularities nor the locations of the irregularities in the
solution. MTOA will automatically detect the regions of
irregularities in the solution and autonomously add points
accordingly when and where is needed. Furthermore, in the
proposed MTOA, the grid for solving the NLP problem is
fully adaptive. The algorithm can add and remove points
anywhere in the grid, hence the grid can embrace any form
depending on the irregularities in the solution, thus providing
more flexibility in capturing any irregularities in the solution.

Finally, comparing MTOA to the third method [7], [9],
[10], we find that in wavelet-Galerkin approach multipli-
cation in the physical space becomes convolution in the
wavelet space, which is computationally costly. In [8] and
[11] the authors use wavelet analysis to determine the regions
of irregularities in the solution, which results in additional
computational overhead, as one needs to transform back and
forth between the physical and wavelet domain. In MTOA
we always work in the physical domain and operations like
multiplication and differentiation are therefore performed fast
compared to the wavelet domain. Furthermore, nonlinearities
can be handled with ease. In addition, in the wavelet method
of [8] and [11] one needs to interpolate the function values at
the finest level every time one needs to perform the wavelet
transform. This adds to the overall computational overhead.
The mesh refinement technique of MTOA on the other hand,
uses only the retained points in the grid to decide where to
add or remove points from the grid. Hence there is no need
of interpolating the function values at the finest level.

VIII. CONCLUSIONS

In this paper we have proposed a novel multiresolution-
based approach for direct trajectory optimization. The gener-
ated grid is able to automatically adapt to any irregularities
or discontinuities in the solution. The constraints on the
states are dealt with ease in a straightforward manner without
any additional computational overhead. The simplicity and
efficiency of the proposed method allows one to perform
rapid and accurate trajectory optimization. The proposed
multiresolution trajectory optimization algorithm has been
shown to have several advantages over the existing adaptive
methods for solving optimal control problems via direct
transcription.
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