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Abstract— We provide a new condition for testing the
stability of a single-parameter, polynomially-dependent linear
system of polynomial degree N of the form

ẋ = A(ρ)x, A(ρ) =
N∑

i=0

ρi Ai (1)

over a compact interval. The test is nonconservative and can
be cast as a convex feasibility problem in terms of a pair of
linear matrix inequalities (LMI’s).

I. INTRODUCTION

We consider single-parameter dependent linear systems
where the state matrix A depends polynomially on the
parameter ρ, as in (1). It is assumed that ρ belongs to a
compact set Ω, taken here without loss of generality as
Ω = [−1,+1]. The stability of (1) over a compact interval
has been investigated, for example, in [1], [2] where the
maximum interval of stability around the origin was given.
A few years later, Saydy et al. [3], [4] gave necessary and
sufficient conditions for the stability of (1) using guardian
maps. This method was later extended in [5] and [6] to LTI
systems with many parameters of the form:

ẋ =

(
A0 +

m∑
i=1

ρiAi

)
x

However, the stability conditions in [5] and [6] are only
sufficient. Despite the results of [3], [4], nonconservative
Lyapunov-based conditions for stability for (1) have re-
mained elusive thus far. The main obstacle in deriving
sufficient and necessary conditions using Lyapunov function
theory is the absence of the knowledge of the correct
functional dependence of the parameter-dependent quadratic
Lyapunov function V (x) = xTP (ρ)x that will lead to
necessary conditions. One is therefore content with the
derivation of sufficient conditions only, based on an a priori
postulate of the a Lyapunov matrix P (ρ); see Refs. [7], [8],
[9], [10]. In fact, by choosing a constant P one ensures
the so-called quadratic stability for (1). This notion of
stability is restrictive for most applications of interest, since
it ensures stability against arbitrary fast variations of ρ.

Recently, Bliman [11], [12], [13] developed Lyapunov-
based necessary and sufficient conditions for multi-variable,
affinely-dependent parameter linear systems. The results of
[11], [12] show that the search for Lyapunov functions for
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such systems can be restricted, without loss of general-
ity, within the class of polynomially-dependent quadratic
Lyapunov functions. The upper bound on the degree of
the Lyapunov function is not known a priori, however.
Moreover, the stability conditions can be formulated and
solved in terms of convex feasibility problems (LMI’s).
Similar results were reported in [14], [15] where also an
upper bound on the degree of the polynomial dependence
of the Lyapunov function was provided. Closely related to
this line of research is also the work of Chesi et al [16].
Therein the authors show that homogeneous polynomially
parameter-dependent quadratic Lyapunov functions can be
used to investigate the robust stability of polytopic linear
models. For systems affected by polynomial time-invariant
uncertainty Chesi [17] has also provided computationally
attractive LMI conditions, albeit these conditions are not
Lyapunov based.

In this paper we derive Lyapunov-type necessary and
sufficient conditions for the stability of the single-parameter
polynomially-dependent system in (1). Specifically, we first
show that the stability of (1) over [−1,+1] is equivalent to
the stability of an associated parameter-dependent system
with an affine (as opposed to polynomial) dependence on ρ.
In [14] necessary and sufficient conditions for the stability
of the system (1) where N = 1 are given in terms of linear
matrix inequalities. We may therefore use the results of [14]
to provide a necessary and sufficient condition for stability
for (1).

II. AUXILIARY SYSTEM

Consider the matrix A(ρ) of polynomial degree N in (1)

A(ρ) = A0 + ρA1 + ρ2A2 + · · · + ρNAN (2)

Let deg A denote the degree of A in terms of ρ. We thus
have from (2) that deg A = N . Decompose the matrix A(ρ)
in its even and odd polynomial parts

A(ρ) = Aa
0(ρ2) + ρAa

1(ρ2) (3)

where Aa
0(·) and Aa

1(·) are polynomial matrices in terms of
ρ2. For example, if N is odd, then

Aa
0(ρ2) := A0 + ρ2A2 + ρ4A4 · · · + ρN−1AN−1 (4a)

Aa
1(ρ2) := A1 + ρ2A3 + ρ4A5 · · · + ρN−1AN (4b)

whereas if N is even,

Aa
0(ρ2) := A0 + ρ2A2 + ρ4A4 + · · · + ρNAN (5a)

Aa
1(ρ2) := A1 + ρ2A3 + ρ4A5 + · · · + ρN−2AN−1 (5b)

Let C̄
+ denote the closed right-half of the complex plane.



Lemma 1: Let the matrix A(ρ) in (2). Then the matrix
A(ρ) is Hurwitz for all ρ ∈ [−1,+1] if and only if the
matrix (

Aa
0(r) rAa

1(r)
Aa

1(r) Aa
0(r)

)
(6)

is Hurwitz for all r ∈ [0, 1], where Aa
0(r), Aa

1(r) as in (4)
or (5).

Proof: The matrix A(ρ) is Hurwitz for all ρ ∈
[−1,+1] if and only if det(sI − Aa

0(ρ2) − ρAa
1(ρ2)) �= 0

for all ρ ∈ [−1,+1] and for all s ∈ C̄
+, which holds if and

only if det(sI − Aa
0(ρ2) ± ρAa

1(ρ2)) �= 0 for all ρ ∈ [0, 1]
and for all s ∈ C̄

+.

From the identity(
I −ρI
0 I

)(
sI − Aa

0(ρ2) −ρ2Aa
1(ρ2)

−Aa
1(ρ2) sI − Aa

0(ρ2)

)(
I ρI
0 I

)

=
(

sI − Aa
0(ρ2) + ρAa

1(ρ2) 0
−Aa

1(ρ2) sI − Aa
0(ρ2) − ρAa

1(ρ2)

)

it follows that det(sI − Aa
0(ρ2) ± ρAa

1(ρ2)) �= 0 for all
ρ ∈ [0, 1] and for all s ∈ C̄

+ if and only if

det
(

sI − Aa
0(ρ2) −ρ2Aa

1(ρ2)
−Aa

1(ρ2) sI − Aa
0(ρ2)

)
�= 0 (7)

for all ρ ∈ [0, 1] and for all s ∈ C̄
+. The last condition is

equivalent to the statement that the matrix in (6) is Hurwitz
for all r ∈ [0, 1].

The following theorem is immediate.

Theorem 1: The matrix A(ρ) = Aa
0(ρ2) + ρAa

1(ρ2) is
Hurwitz for all ρ ∈ [−1,+1] if and only the matrix

A(1)(ρ) :=
(

Aa
0

(
ρ+1
2

)
ρ+1
2 Aa

1

(
ρ+1
2

)
Aa

1

(
ρ+1
2

)
Aa

0

(
ρ+1
2

) )
(8)

is Hurwitz for all ρ ∈ [−1,+1].

Proof: The result follows directly from Lemma 1 by
setting ρ = (r + 1)/2. Then ρ ∈ [−1,+1] if and only if
r ∈ [0, 1].

Notice that the matrix in (8) depends polynomially on the
parameter ρ. Hence the same procedure can be repeated for
this matrix as well. Moreover, from (4) and (5) it follows
that deg Aa

0 ≤ (N − 1)/2 and deg Aa
1 ≤ (N − 1)/2 if N

is odd, and deg Aa
0 ≤ N/2 and deg Aa

1 ≤ (N − 2)/2 if N
is even. Hence, deg A(1) ≤ max{deg Aa

0 ,deg Aa
1 + 1} =

�(N + 1)/2�. Therefore, the polynomial dependence of the
new matrix A(1)(ρ) has been reduced by a factor of two.

Specifically, one can rewrite explicitly the matrix in (8)
as

A(1)(ρ) = A
(1)
0 + ρA

(1)
1 + ρ2A

(1)
2 + · · · + ρN1A

(1)
N1

(9)

where N1 = �(N+1)/2� for some matrices A
(1)
j ∈ R

2n×2n

and j = 0, 1, 2, · · · , N1. This procedure will lead after at
most qmax := �log2 N� + 1 steps to an affine system

A(qmax)(ρ) = A
(qmax)
0 + ρA

(qmax)
1 (10)

for some constant matrices A
(qmax)
0 , A

(qmax)
1 ∈

R
2qmaxn×2qmaxn.

The following result is thus immediate from the previous
iterative procedure.

Corollary 1: The matrix A(ρ) in (2) is Hurwitz for all
ρ ∈ [−1,+1] if and only the matrices A(q)(ρ) are Hurwitz
for all ρ ∈ [−1,+1] and all q = 1, 2, . . . , qmax. Specifically,
the polynomial matrix A(ρ) in (2) is Hurwitz for all ρ ∈
[−1,+1] if and only if the affine matrix A(qmax)(ρ) in (10)
is Hurwitz for all ρ ∈ [−1,+1].

More to the point, the previous corollary allows one to
check the stability of the polynomial matrix A(ρ) for all
ρ ∈ [−1,+1] by checking the stability of the affine matrix
A(qmax)(ρ) for all ρ ∈ [−1,+1]. To this end, we make use
of the following recent result from [14]. The result provides
Lyapunov-based, necessary and sufficient conditions to test
the stability of a single-parameter affine matrix of the form
(10).

III. LMI STABILITY CONDITION

Theorem 2 ([14]): Given the matrices A0, A1 ∈ R
n×n

with rankA1 = �, let

m :=
{

1
2 (2n� − �2 + �), if � < n,
1
2n(n + 1) − 1, if � = n.

(11)

Then the following two statements are equivalent:
(i) A0 + ρA1 is Hurwitz for all ρ ∈ [−1,+1].

(ii) There exists a set of m+1 matrices {Pi}0≤i≤m, such
that the following two matrix inequalities are satisfied
for all ρ ∈ [−1,+1].

R(ρ) := (A0 + ρA1)TP(ρ) + P(ρ)(A0 + ρA1) < 0,

P(ρ) =
m∑

i=0

ρiPi > 0.

In order to find a nonconservative way of checking
the previous matrix inequalities we first notice that the
parameter-dependent matrix P(ρ) can be written as

P(ρ) =
(
ρ[k] ⊗ In

)T PΣ

(
ρ[k] ⊗ In

)
(12)

for some constant matrix PΣ = PT
Σ ∈ R

nk×nk, where
k = �m

2 � + 1 and where ρ[k] ∈ R
k is defined as ρ[k] :=

(1 ρ ρ2 . . . ρk−1)T ∈ R
k. Similarly, the matrix R(ρ) can

be expressed as

R(ρ) =
(
ρ[k′] ⊗ In

)T RΣ

(
ρ[k′] ⊗ In

)
(13)

where k′ = k if m is odd or k′ = k + 1 if m is even, and
where RΣ ∈ R

nk′×nk′
is given by

RΣ := HT
ΣPΣFΣ + F T

ΣPΣHΣ (14)

where HΣ := Ĵk ⊗ In, FΣ := Ĵk ⊗ A0 + J̌k ⊗ A1, and
Ĵk := [Ik 0k×1] and J̌k := [0k×1 Ik]. Specifically, note that
RΣ depends linearly on PΣ.

The following result can then be used to test the matrix
inequalities of Theorem 2.



Lemma 2 ([14],[18]): Let Θ ∈ R
nk×nk. Then the matrix

inequality (
ρ[k] ⊗ In

)T
Θ
(
ρ[k] ⊗ In

)
< 0 (15)

holds for all ρ ∈ [−1, 1] if and only if there exist matrices
D ∈ R

n(k−1)×n(k−1) and G ∈ R
n(k−1)×n(k−1) such that

D = DT > 0, G + GT = 0,

Θ <

[
Ĵk−1 ⊗ In

J̌k−1 ⊗ In

]T [−D G
GT D

] [
Ĵk−1 ⊗ In

J̌k−1 ⊗ In

]
.

The following is a direct consequence of Lemma 2 and
Theorem 2.

Corollary 2: Let the parameter-dependent matrix
A(ρ) = A0 + ρA1, where A0,A1 ∈ R

n×n with
rank A1 = � and let k = �m

2 � + 1 where m as in
(11). Then, A(ρ) is Hurwitz for all ρ ∈ [−1, 1] if and
only if there exist symmetric matrices PΣ ∈ R

nk×nk,
D1 ∈ R

n(k−1)×n(k−1) and D2 ∈ R
nk×nk and skew-

symmetric matrices G1 ∈ R
n(k−1)×n(k−1), G2 ∈ R

nk×nk,
such that

D1 = DT
1 > 0, G1 + GT

1 = 0, (16)

−PΣ <

[
Ĵk−1 ⊗ In

J̌k−1 ⊗ In

]T [−D1 G1

GT
1 D1

] [
Ĵk−1 ⊗ In

J̌k−1 ⊗ In

]
, (17)

and

D2 = DT
2 > 0, G2 + GT

2 = 0, (18)

RΣ <

[
Ĵk ⊗ In

J̌k ⊗ In

]T [−D2 G2

GT
2 D2

] [
Ĵk ⊗ In

J̌k ⊗ In

]
, (19)

where RΣ = RΣ(PΣ) as in (14).

Remark 1 Notice that when A(ρ) is nominally stable, i.e.,
when the matrix A0 is Hurwitz, the inequality (17) is not
necessary. This is due to the fact that A0 Hurwitz along with
inequality (19) guarantees that P(0) > 0. Also, (19) ensures
that P(ρ) > 0 for all ρ ∈ [−1, 1]; see [19]. Assuming
therefore nominal stability, one can discard the inequality
(17), thus reducing considerably the number of variables in
the convex feasibility problem of Corollary 2.

IV. NUMERICAL EXAMPLE

Example 1: Consider the following polynomial matrix

A(ρ) =
[

1 − ρ2 − 2(ρ + 1)4 −1 + ρ2 + (ρ + 1)4
2 − 2ρ2 − 2(ρ + 1)4 −2 + 2ρ2 + (ρ + 1)4

]
(20)

The eigenvalues of A(ρ) can be easily computed as λ1(ρ) =
−1+ρ2 and λ2(ρ) = −(1+ρ)4. Therefore the matrix A(ρ)
is Hurwitz if and only if ρ ∈ (−1, +1). We will Corollary 2
to verify the stability domain1 of (20).

For the matrix in (20), we can compute according to (5),

Aa
0(ρ2) = A0 + ρ2A2 + ρ4A4, Aa

1(ρ2) = A1 + ρ2A3,

1Strictly speaking, we cannot use Corollary 2 for this example since
the domain is not compact. Nonetheless, the purpose of this example is
to show that the result of Corollary 2 is “tight”. That is, the LMI’s are
feasible but not strictly feasible on (−1, +1).

where,

A0 =
[−1 0

0 −1

]
, A1 =

[−8 4
−8 4

]
, A2 =

[−13 7
−14 8

]
,

A3 =
[−8 4
−8 4

]
, A4 =

[−2 1
−2 1

]

Then, A(ρ) can be written as

A(ρ) = Aa
0(ρ2) + ρAa

1(ρ2) .

According to equation (8) let

A(1)(ρ) =

⎡
⎣Aa

0

(
ρ+1
2

)
ρ+1
2 Aa

1

(
ρ+1
2

)
Aa

1

(
ρ+1
2

)
Aa

0

(
ρ+1
2

)
⎤
⎦

= A
(1)
0 + ρA

(1)
1 + ρ2A

(1)
2 ,

where,

A
(1)
0 =

⎡
⎢⎢⎢⎢⎣

−8 15/4 −6 3

−15/2 13/4 −6 3

−12 6 −8 15/4

−12 6 −15/2 13/4

⎤
⎥⎥⎥⎥⎦ ,

A
(1)
1 =

⎡
⎢⎢⎢⎢⎣

−15/2 4 −8 4

−8 9/2 −8 4

−4 2 −15/2 4

−4 2 −8 9/2

⎤
⎥⎥⎥⎥⎦ ,

A
(1)
2 =

⎡
⎢⎢⎢⎢⎣

−1/2 1/4 −2 1

−1/2 1/4 −2 1

0 0 −1/2 1/4

0 0 −1/2 1/4

⎤
⎥⎥⎥⎥⎦ .

Rewriting A(1) = A
(1),a
0 (ρ2) + ρ2A

(1),a
1 (ρ2) where

A
(1),a
0 (ρ2) = A

(1)
0 + ρ2A

(1)
2 and A

(1),a
1 (ρ2) = A

(1)
1 one

obtains,

A(2)(ρ) =

⎡
⎣A

(1),a
0

(
ρ+1
2

)
ρ+1
2 A

(1),a
1

(
ρ+1
2

)
A

(1),a
1

(
ρ+1
2

)
A

(1),a
0

(
ρ+1
2

)
⎤
⎦

=

⎡
⎣A

(1)
0 +

(
ρ+1
2

)
A

(1)
2

(
ρ+1
2

)
A

(1)
1

A
(1)
1 A

(1)
0 +

(
ρ+1
2

)
A

(1)
2

⎤
⎦

= A
(2)
0 + ρA

(2)
1 ,

where the numerical values of A
(2)
0 and A

(2)
1 are given

below,

A
(2)
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−33/4 31/8 −7 7/2 −15/4 2 −4 2

−31/4 27/8 −7 7/2 −4 9/4 −4 2

−12 6 −33/4 31/8 −2 1 −15/4 2

−12 6 −31/4 27/8 −2 1 −4 9/4

−15/2 4 −8 4 −33/4 31/8 −7 7/2

−8 9/2 −8 4 −31/4 27/8 −7 7/2

−4 2 −15/2 4 −12 6 −33/4 31/8

−4 2 −8 9/2 −12 6 −31/4 27/8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



A
(2)
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1/4 1/8 −1 1/2 −15/4 2 −4 2

−1/4 1/8 −1 1/2 −4 9/4 −4 2

0 0 −1/4 1/8 −2 1 −15/4 2

0 0 −1/4 1/8 −2 1 −4 9/4

0 0 0 0 −1/4 1/8 −1 1/2

0 0 0 0 −1/4 1/8 −1 1/2

0 0 0 0 0 0 −1/4 1/8

0 0 0 0 0 0 −1/4 1/8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

According to Corollary 1 the condition that A(ρ) in (20)
is Hurwitz for all ρ ∈ [−1,+1] is equivalent to the condition
that the matrix A(2)(ρ) = A

(2)
0 + ρA

(2)
1 is Hurwitz for all

ρ ∈ [−1,+1]. Applying the method suggested in [20], the
whole stability domain ΩS for A(2)(ρ) can be calculated as

ΩS = (−32.891477, −4.907828) ∪ (−1.226272, +1)

It can be readily checked that rankA
(2)
1 = 6. Applying

Corollary 2 to A(2) with n = 8 , � = 6, m = 1
2 (2n�− �2 +

�) = 33 and k = �m
2 � + 1 = 18 it can be verified that the

two LMI’s (17) and (19) are satisfied for all ρ ∈ (−1,+1).
In fact, a feasible solution exists even for k = 3. The LMI’s
(17) and (19) are not strictly feasible in this case, however
due to the loss of asymptotic stability at ρ = ±1; see also
footnote at the bottom of the previous page. Nonetheless,
it can be verified that the LMI’s (17) and (19) are strictly
feasible for all η > 0 such that [−η,+η] ⊂ (−1,+1).

V. CONCLUSIONS

A new necessary and sufficient condition for checking
robust stability of a linear time-invariant system with poly-
nomial dependence of a single parameter over a compact
interval is proposed. It is shown that robust stability of
the original polynomially-dependent matrix is equivalent
to the robust stability of an auxiliary system (of increased
dimension) that depends only affinely on the parameter. The
stability of the latter can be checked exactly by solving
a feasibility problem in terms of LMI’s. The proposed
condition competes with the recent result of Chesi [17]
for the scalar case. A direct comparison of computational
complexity with the approach in [17] is not straightforward,
since the dimension of the LMI conditions in [17] is not
known a priori. This situation is similar to the one in [11].
Our methodology does not suffer from this drawback, as it
provides an explicit bound on the LMI dimensions of the
problem. On the other hand, the results in [17] encompass
the multi-parameter case. The generalization of our results
to the multi-parameter case is not readily evident however.

Acknowledgment: The authors are indebted to X. Zhang
for performing the numerical example.
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