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Abstract— In this paper, we study the scheduling problem
arising from refuelling multiple satellites in a constellation. It
is assumed that there is no fuel delivered to the constellation
externally. Instead, the satellites in the constellation are assumed
to be capable of refuelling each other. The cost of the rendezvous
maneuver between two satellites conducting a fuel transfer is
taken into consideration in the formulation of the problem.
The goal of the refuelling problem is to equalize the fuel stored
among all satellites in the constellation after a refuelling period.
It is shown that the problem of equalizing the fuel among the
satellites can be formulated and solved as a maximum-weight
matching problem.

I. INTRODUCTION

In this and a companion paper [4] we address the problem
of a satellite constellation in Low Earth Orbit (LEO). It is
assumed that no extra fuel is delivered to the constellation
by an external spacecraft. In order to keep the constellation
operational we require that the fuel is equally distributed
between all the satellites in the constellation. We assume that
refuelling is performed by the satellites themselves. We call
this the Peer-to-Peer (P2P) refuelling scenario. In such a P2P
refuelling scenario satellites with excess fuel can deliver fuel
to the satellites depleted or low on fuel. Thus, the lifespan of
the satellite constellation (dictated by the fuel stored among
all satellites) is kept to its full potential. The goal of the P2P
refuelling problem is thus to achieve fuel equalization among
all satellites in the constellation within a given time period.

In [4] we formulated and solved the P2P refuelling prob-
lem when the rendezvous cost (i.e., the fuel expended for
the two satellites to meet) is negligible. This is a realistic
scenario only when the satellites in the constellation are close
together or when the allowed rendezvous periods are long.
Otherwise the fuel expenditure to perform the rendezvous
cannot be ignored and has to be accounted for in the problem
formulation.

The (time-constrained) P2P refuelling problem has com-
binatorial complexity. In order to obtain a solution we
formulate the P2P refuelling problem as a sequence of fuel
transactions between sellers (i.e., satellites high on fuel)
and buyers (i.e., satellites low on fuel). The activity of two
satellites transferring fuel is called a fuel transaction. Within
a given refuelling period, if two satellites conduct a fuel
transaction, these two same satellites cannot conduct fuel
transactions with any other satellites. Therefore, the objective

of the P2P refuelling problem is to find independent seller-
buyer pairs such that the fuel is equalized among all satellites
after a fuel transaction is conducted between a pair of
satellites. As in [4], the P2P refuelling problem is formulated
and solved as a maximum-weight matching problem.

II. PROBLEM FORMULATION

The following notation is adopted from [4]. We assume
that there are n ≥ 3 satellites within a constellation. Then
I = {1, 2, · · · , n} denotes the index set of the n satellites.
f−i and f+

i , i ∈ I, denote the fuel owned by satellite i before
and after refuelling. f̄− and f̄+ denote the average amount
of fuel among all satellites before and after refuelling. gj

i
denotes the amount of fuel that is transferred from satellite i
to satellite j when they conduct a fuel transaction. Among all
satellites, fuel-sufficient satellites (i.e., sellers( are the ones
with more than the average amount of fuel, and fuel-deficient
satellites (i.e., buyers) are the ones with less than the average
amount of fuel.

It is assumed that for a pair of satellites, say i and j,
only one of the two can be active (i.e., it initiates the fuel
transaction). For example, if satellite i is active, it applies
thrust to travel to j and conducts a fuel transaction with
j, before returning to its original orbital slot. During this
process, satellite j remains at its pre-assigned orbital slot.
Thus, only the active satellite consumes fuel during a fuel
transaction.

Let pj
i denote the fuel consumed by satellite i to ren-

dezvous with satellite j and then return to its original orbital
slot. One may expect the active satellite to always be the
seller because a seller has more fuel at its disposal. However,
this is not necessarily true because in general it is possible
that less fuel can be consumed if the buyer initiates the fuel
transaction. If this is the case, the buyer can be selected to be
active provided that the buyer has enough fuel to complete
the go-and-return rendezvous maneuvers.

Let pij denote the cost for the fuel transaction between
satellites i and j. That is, if satellite i is active, then pij = pj

i ,
but if satellite j is active, then pij = p i

j . In addition, it is
assumed that when two satellites perform a fuel transaction,
the fuel is redistributed such that the two satellites have the
same amount of fuel. That is, if satellites i and j conduct a



fuel transaction, then

f+
i = f+

j =
f−i + f−j − pij

2
.

As in [4] we define a constellation graph consisting of
the satellites in the constellation as the vertices. If two
satellites are capable of conducting a fuel transaction, then
an edge exists between the two corresponding vertices on
the constellation graph. Clearly, if every pair of satellites
can conduct a fuel transaction, then the constellation graph
is a complete graph [1]. However, in reality, restrictions may
exist such that no fuel transactions can be performed between
some satellite pairs. For example, if two satellites are both
low on fuel, then these two satellites cannot perform a fuel
transaction. Consequently, there is no edge between the two
on the constellation graph.

In the following, let vi, i = 1, 2, · · · , n, denote the n
vertices in the constellation graph, and let 〈vi, vj〉 denote
the edge between vertices vi and vj .

In order to measure fuel equalization among the satellites
after refuelling, a deviation vector is defined as df = (f+

1 −
f̄ , f+

2 − f̄ , · · · , f+
n − f̄). That is, df denotes the difference

between the fuel among the satellites and the average amount
of fuel. Clearly, if the fuel is equalized, then df is a zero
vector. Therefore, equalizing fuel is equivalent to minimizing
the total variation of the fuel from the average. Thus, the
objective can be written as maximizing

max z = −
∑
i∈I

∣∣f+
i − f̄

∣∣ = −‖df‖1. (1)

Ideally, f̄ should be the average fuel after refuelling; i.e.,
f̄ = f̄+. However, since the fuel consumption associated
with the rendezvous maneuvers is not negligible, the total
fuel stored in the satellites after refuelling is less than the
fuel before refuelling. By defining the objective as in Eq. (1)
with f̄ = f̄+ the sole concern of the objective function is
the equalization of fuel after refuelling, and no consideration
is taken in regards to the amount of fuel spent during the
rendezvous maneuvers. This could create a situation where
too much fuel is spent during the rendezvous maneuvers just
to achieve better fuel equalization. Therefore, in order to
penalize too much fuel consumption during the refuelling
maneuvers we set f̄ = f̄− in Eq. (1). Notice that f̄+ < f̄−.
Thus, setting f̄ = f̄− in Equation (1) imposes the condition
that the fuel after refuelling should not deviate from f̄− too
much. That is, it penalizes solutions where too much fuel is
consumed during a refuelling period.

As mentioned in [4], the search for satellite pairs to
conduct fuel transactions can be formulated as a search for
a maximum-weight matching in the constellation graph. To
this end, suppose that there are m edges in the constellation
graph, and let L = {1, 2, · · · , m} be the index set of the
edges. In order to formulate the maximum-weight matching

problem, a binary variable x� is defined for each edge e�,
� ∈ L, as

x� =
{

1 if edge e� is in the matching,
0 otherwise.

Assuming f̄ = f̄− and following the derivations in
[4], the maximum-weight matching problem considering the
rendezvous cost can be written as

(MP-IP-WC): Maximize z =
m∑

�=1

π� x� (2a)

Subject to
m∑

�=1

ai�x� ≤ 1, ∀ i ∈ I (2b)

x� ∈ {0, 1}, ∀ � ∈ L (2c)

Here, the weight π� for edge e� is given by

π� =
∣∣f−i − f̄−

∣∣+ ∣∣f−j − f̄−
∣∣− ∣∣f−i + f−j − pij − 2f̄−

∣∣ ,
(3)

where � is the index for edge 〈vi, vj〉. In addition, ai�, i ∈
I and � ∈ L, are the elements of the incidence matrix [1]
of the constellation graph. In the incidence matrix, ai� = 1
if the vertex vi and the edge e� are incident, and ai� = 0
otherwise.

The number of edges in the constellation graph can be
reduced according to the signs of the weights π�. Namely,
the edges with the weights π� ≤ 0 can be removed from
the constellation graph because any optimal solution to the
(MP-IP-WC) does not contain those edges. Doing so could
potentially reduce the effort to solve the (MP-IP-WC). The
resulting graph is called the reduced constellation graph.
For an edge e� = 〈vi, vj〉, if f−i ≤ f̄− and f−j ≤ f̄−,
then from Eq. (3) we can see that π� ≤ 0. Therefore, the
reduced constellation graph does not contain edges between
satellites which are either fuel-deficient or have precisely
the average amount of fuel. This is the same as in the P2P
refuelling problems where the rendezvous fuel expenses are
not considered [4].

However, for an edge e� = 〈vi, vj〉 with f−i > f̄ or
f−j > f̄ , it is not obvious whether π� > 0 or π� ≤
0. In general, it could be beneficial to have two fuel-
sufficient satellites conduct a fuel transfer. Thus, the reduced
constellation graph may contain some edges between fuel-
sufficient satellites. This is different from the case when the
rendezvous cost is not considered, where all edges between
fuel-sufficient satellites are removed from the constellation
graph [4]. Therefore, unlike the formulation in [4], where
the reduced constellation graph is a bipartite graph, for the
underlying P2P refuelling problem, the reduced constellation
graph is not a bipartite graph.

After the reduced constellation graph is obtained, the
solution to the P2P refuelling problem considering the ren-
dezvous cost can be obtained by solving the (MP-IP-WC)
defined on the reduced constellation graph. The solution to



the maximum-weight matching problem can be obtained us-
ing, for example, the algorithm by Edmonds and Johnson [2].

III. COST OF FUEL TRANSACTION

In order to solve the (MP-IP-WC) we first need to calculate
the fuel expenditure required for a satellite to rendezvous
with another satellite and then return to its designated orbital
slot. To this end, let us consider satellite i and satellite j. Let
the weights of the permanent structure of the satellites be msi

and msj , and let Ispi and Ispj denote the specific impulses
of the propulsion systems onboard the two satellites. In order
to calculate pij two cases need to be considered. In the first
case, satellite i is the active satellite, and in the second case,
satellite j is the active satellite.

Case 1, satellite i is active. In this case, satellite i initiates
the fuel transaction. Let ∆V i

ij be the velocity change required
for satellite i to rendezvous with satellite j, and ∆V i

ji be the
velocity change required for satellite i to depart from satellite
j and return to its designated orbital slot. Then the amount
of fuel spent for i to rendezvous with j is given by [3]

pti = (msi + f−i )

(
1 − e

− ∆V i
ij

g0Ispi

)

where g0 is the gravitational acceleration at sea level.

If pti > f−i , then satellite i does not have enough fuel to
complete the rendezvous with j and thus, it cannot initiate
the rendezvous. In this case, satellite j has to be the active
one. Otherwise, if pti ≤ f−i , then satellite i can complete the
rendezvous with j. In the latter case, after the rendezvous,
the fuel owned by the two satellites are

fi1 = f−i − pti, and fj1 = f−j (4)

After the rendezvous, fuel is transferred between the two
satellites. After the fuel transfer, the fuel stored in the two
satellites is

fi2 = fi1 − gj
i , and fj2 = fj1 + gj

i . (5)

Recall that gj
i denotes the amount of fuel that is transferred

from satellite i to satellite j. It has negative value if satellite
i receives fuel from satellite j.

Since satellite i has to return to its original designated or-
bital slot, it has to perform a second rendezvous maneuver for
the return trip. As mentioned earlier, the velocity change of
the returning maneuver is ∆V i

ji. Thus, the fuel consumption
for this returning maneuver is given by

pbi = (msi + fi1 − gj
i )

(
1 − e

− ∆V i
ji

g0Ispi

)
. (6)

Therefore, after satellite i returns, the amount of fuel onboard
each satellite is given by

f+
i = fi2 − pbi, and f+

j = fj2. (7)

It is required that the two satellites have the same amount
of fuel after the fuel transaction; i.e., f+

i = f+
j . This, along

with Eqs. (4), (5) and (7), allows us to solve for gj
i as

gj
i =

f−i − f−j − pti − pbi

2
. (8)

Substituting gj
i into Eq. (6), we get the explicit expression

for pbi as

pbi = (2msi + f−i + f−j − pti)
1 − e

− ∆V i
ji

g0Ispi

1 + e
− ∆V i

ji
g0Ispi

. (9)

Thus, it can be verified that gj
i is explicitly given by

gj
i =

(f−i − pti)e
− ∆V i

ji
g0Ispi − f−j − msi

(
1 − e

− ∆V i
ji

g0Ispi

)
1 + e

− ∆V i
ji

g0Ispi

,

(10)
and the amount of fuel onboard satellite i before it undocks
with j is given by

fi2 =
f−i + f−j − pti + msi

(
1 − e

− ∆V i
ji

g0Ispi

)
1 + e

− ∆V i
ji

g0Ispi

. (11)

If pbi > fi2, then satellite i does not have enough fuel
to return to its original orbital slot, which also implies that
satellite i cannot be the active satellite. On the other hand, if
pbi ≤ fi2, satellite i has enough fuel to return, and thus, can
be the active satellite. In that case, it can be verified that the
fuel stored in the two satellite after refuelling is given by

f+
i = f+

j =
(f−i + f−j − pti)e

− ∆V i
ji

g0Ispi − msi

(
1 − e

− ∆V i
ji

g0Ispi

)
1 + e

− ∆V i
ji

g0Ispi

.

If satellite i can be the active satellite, then the total fuel
expense for the fuel transaction is given by

pj
i = pti + pbi. (12)

Case 2, satellite j is active. Similar results can be derived
for the case where satellite j is the active satellite. In this
case, let ∆V j

ji be the velocity change required for satellite
j to rendezvous with satellite i, and ∆V j

ij be the velocity
change required for satellite j to depart from satellite i and
return to its designated orbital slot.

Suppose satellite j has enough fuel to complete the go-
and-return maneuvers. Then the amount of fuel that is
necessary for j to rendezvous with i is given by

ptj = (msj + f−j )

(
1 − e

− ∆V
j

ji
g0Ispj

)
.



The amount of fuel that is transferred from satellite j to i
can be calculated as

gi
j =

(f−j − ptj)e
− ∆V

j
ij

g0Ispj − f−i − msj

(
1 − e

− ∆V
j
ij

g0Ispj

)

1 + e
− ∆V

j
ij

g0Ispj

.

(13)
In addition, the amount of fuel needed for satellite j to return
to its original orbital slot can be calculated as

pbj = (2msj + f−i + f−j − ptj)
1 − e

− ∆V
j
ij

g0Ispj

1 + e
− ∆V

j
ij

g0Ispj

. (14)

It can be verified that the fuel stored in the two satellites
after refuelling is given by

f+
i = f+

j =
(f−i + f−j − ptj)e

− ∆V
j
ij

g0Ispj − msj

(
1 − e

− ∆V
j
ij

g0Ispj

)

1 + e
− ∆V

j
ij

g0Ispj

.

Thus, the total fuel expense for the fuel transaction when j
is active is given by

p i
j = ptj + pbj . (15)

Finally, the cost of the fuel transaction between satellites i
and j are selected as

pij =




pj
i , if i can be active, but j cannot;

p i
j , if j can be active, but i cannot;

min{pj
i , p i

j }, if both satellites can be active;
undefined, if neither satellite can be active.

(16)

IV. NUMERICAL EXAMPLES

In this section, we present two numerical examples to
demonstrate several characteristics of the P2P refuelling
problem.

A. Example 1

In the first example, we consider the circular constellation
of fourteen satellites shown in Figure 1. The satellites are
evenly distributed along the circular orbit at an altitude of
500 km. The fuel before refuelling is shown next to each
satellite in the figure. The value of f−i is shown as the weight
of the fuel onboard satellite i. It is assumed that a satellite
with a full tank of fuel has a weight of 100 units, and a
full tank of fuel weighs 40 units in this constellation. The
average fuel storage before refuelling is f̄− = 20.4 units.

We assume that all fourteen satellites have the same
structure. Specifically, if a satellite has a full tank of fuel,
the permanent structure weighs 60 units, and the fuel weighs
40 units. It is also assumed that the specific impulse of the
propulsion system onboard each satellite is 300 seconds. In
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Fig. 1. The refuelling scenario with fourteen satellites in Example 1.

addition, each satellite is allowed to pair up with any other
satellites.
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Fig. 2. The reduced constellation graph with the optimal matching for
Example 1.

The rendezvous between two satellites is assumed to be a
minimum-∆V two-impulse rendezvous maneuver. Thus, the
velocity change of a rendezvous can be calculated according
to the method presented in [5]. The total time for a fuel
transaction is assumed to be 12 (orbital periods of the circular
orbit). A total time of 6 is allotted to the portion where the
active satellites rendezvous with the inactive satellites, and
the remaining time of 6 is allotted to the maneuvers where
the active satellites return to their original locations.

With all these assumptions, pj
i , the fuel expense between

satellites i and j if satellite i is active and satellite j is
inactive, can be calculated according to Eqs. (12) and (15).
pj

i can be conveniently represented by a matrix, denoted by
P1. Specifically, P1 is defined such that P1(i, j) = pj

i . For
the underlying example, P1 is calculated as follows.



v1 v2 v3 v4 v5 v6 v7 v8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

P1 =




× 8.65 20.75 24.47 4.11 20.36 27.73 12.19
8.50 × 27.80 23.98 12.30 12.25 19.88 19.35

20.44 27.69 × 4.03 16.12 16.00 8.19 7.97
23.80 23.57 3.98 × 19.54 11.92 3.89 11.59
3.92 11.93 15.61 19.17 × 22.45 22.36 7.63

19.18 11.68 15.43 11.63 22.18 × 7.71 21.40
26.13 18.90 7.86 3.76 22.07 7.65 × 14.51
10.89 17.55 7.19 10.59 7.13 20.19 13.71 ×
13.76 6.97 16.95 13.61 16.54 3.30 10.12 21.76
9.84 3.18 CI 15.88 12.60 6.47 12.58

CI 12.72 9.74 6.51 CI 3.06 3.07 CI
6.63 12.81 9.57 12.53 3.08 CI CI 2.94

12.84 CI 3.10 6.34 9.42 CI 9.22 2.93
CI CI CI CI CI CI CI CI

v9 v10 v11 v12 v13 v14
↓ ↓ ↓ ↓ ↓ ↓

15.85 11.82 22.73 8.01 15.52 3.78
7.94 3.78 15.16 15.19 22.14 3.71

19.02 22.15 11.49 11.42 3.72 21.63
15.11 18.32 7.61 14.74 7.53 24.40
18.15 14.41 24.22 3.57 10.90 7.20
3.59 7.29 3.50 23.76 17.36 13.85

10.89 14.08 3.48 17.28 10.59 20.09
22.24 18.91 15.86 3.18 3.18 12.55
× 3.09 6.35 18.12 18.08 9.20

2.96 × 8.84 14.33 CI 5.82
6.03 8.74 × CI 11.44 CI

CI CI CI × 5.82 CR
CI CI CI 5.80 × CI
CI CI CI CI CI ×




← v1
← v2
← v3
← v4
← v5
← v6
← v7
← v8
← v9
← v10
← v11
← v12
← v13
← v14

(17)

In Eq. (17), the symbol ‘CI’ stands for ‘Cannot Initiate’,
and the symbol ‘CR’ stands for ‘Cannot Return’. Thus, in
P1, an entry of ‘CI’ implies that the satellite of the row
index cannot initiate the fuel transaction with the satellite of
the column index; an entry of ‘CR’ implies that the satellite
of the row index can rendezvous with the satellite of the
column index, but it cannot return to its original orbital
slot. For example, consider satellites 6, 12, and 14. Since
satellite 6 has a large amount of fuel, it can both rendezvous
with satellite 12 and return to its original location, and the
total fuel expense is 23.76. On the other hand, satellite 12
does not have enough fuel to rendezvous with satellite 6, so
P1(12, 6) = ‘CI’. However, satellite 12 has enough fuel to
rendezvous with satellite 14 (notice satellite 14 is closer to
satellite 12 than satellite 6), but the rendezvous costs so much
that it does not have enough fuel left in its tank. In addition,
satellite 14 has little fuel to spare when fuel is transferred
between them, so satellite 12 does not have enough fuel to
return. Therefore, P1(12, 14) = ‘CR’.

The fuel expense of a fuel transaction between two satel-
lites can then be calculated according to Eq. (16). Similar
to pj

i , pij can also be represented as elements of a matrix,
denoted by P2. Namely, P2(i, j) = pij . Since pij = pji, P2

is a symmetric matrix. Using the matrix P2 we can remove
the edges of satellite pairings where both of them are inactive
from the constellation graph.

The weight π� assigned to the edge e� is calculated
according to Eq. (3). The weights can also be represented
in a matrix form. Namely, a matrix, denoted by Π, can be
created such that Π(i, j) = π� for each edge π� = 〈vi, vj〉.

As mentioned in Section II, edges with negative weights
are removed from the constellation graph. After removing
all these edges, we have the following reduced constellation
graph shown in Figure 2.

Once the reduced constellation graph and the weights on
the edges are obtained, we can calculate the maximum-
weight matching. The optimal matching is also shown in
Figure 2, depicted by thicker dark lines. The optimal match-
ing has seven edges, which implies that every satellite is
engaged in a fuel transaction with another satellite. The fuel
stored in each satellite before and after refuelling is also
shown next to each vertex in the form of a fraction. The
value of the numerator is the amount of fuel before refuelling,
and the value of the denominator is the amount of fuel after
refuelling. It can be seen that the fuel after refuelling is much
more evenly distributed than that before refuelling. Indeed,
before refuelling,

∑14
i=1 |f−i − f̄ | = 168, but after refuelling,∑14

i=1 |f+
i − f̄ | = 30.1. The total fuel expense for the orbital

transfers of the active satellites is 30.1.

Recall that in cases where every two satellites are allowed
to conduct a fuel transaction and the rendezvous cost can be
neglected, it has been shown in [4] that the symmetric match-
ing is the optimal matching. In the constellation shown in
Figure 1, the symmetric matching is the following collection
of edges{〈v1, v14〉, 〈v2, v13〉, 〈v3, v12〉, 〈v4, v11〉,

〈v5, v10〉, 〈v6, v9〉, 〈v7, v8〉
}
.

However, as can be seen from Figure 2, the optimal matching
is not the symmetric matching, even though in Example 1
every two satellites are allowed to conduct a fuel transaction.
In fact, one of the edges in the symmetric matching, 〈v7, v8〉,
does not even exist in the reduced constellation graph. It is
removed from the constellation graph because the weight for
this edge is negative. Therefore, the fact that the rendezvous
cost is considered in the formulation has a big impact on the
satellite pairings.

B. Example 2

In the second example, we again consider a constellation
with fourteen satellites evenly distributed on a circular orbit
with an altitude of 500 kilometers. The constellation is shown
in Figure 3.

Figure 4 shows the reduced constellation graph along with
the optimal matching, shown by thicker solid lines. The fuel
stored in each satellite before and after the fuel transaction
is shown as well in the same way as in Figure 2. Before
refuelling,

∑14
i=1 |f−i − f̄ | = 103.6. But after refuelling,∑14

i=1 |f+
i − f̄ | = 52.6. Therefore, the fuel is more evenly

distributed after refuelling. The total amount of fuel spent on
the rendezvous maneuvers is 43.5.

Notice that the optimal matching contains only five edges,
so not every satellite is engaged in a fuel transfer. In this
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Fig. 3. The fourteen-satellite constellation in Example 2.
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Fig. 4. The reduced subgraph with the optimal matching for Example 2.

example, for instance, satellites 10, 11, 12, and 14 are not
matched with any other satellites.

In this example, the satellites with the least amount of
fuel before the fuel transaction are left unmatched. They are
satellites 11 and 12. The reason is that these satellites are
farther away from the fuel-sufficient satellites than other fuel-
deficient satellites. Thus, the fuel expenses for the rendezvous
maneuvers between satellite 11 or 12 and the fuel-sufficient
satellites are high. This prohibits fuel transactions between
satellite 11 or 12 and the fuel-sufficient satellites to be
beneficial to the refuelling objective. For example, it is
beneficial for satellite 12 to have a fuel transaction with only
satellite 1 or satellite 4. However, pairing satellites 1 and 13
is more beneficial than pairing satellites 1 and 12, and pairing
satellites 4 and 2 is more beneficial than pairing satellites 4
and 12.

As a result, the optimal matching displays a balance
between two conflicting objectives, namely, fuel equalization
and minimum fuel expense on the rendezvous maneuvers. In
the case of vertices v11 and v12, the latter objective is the
dominant factor. However, if we increase the total time al-
lowed to each rendezvous maneuver, then the rendezvous fuel
expense will decrease [5]. Then, the objective of minimum
fuel expense will become less significant. Eventually, as the
total time is increased, the fuel equalization objective will
become the dominating factor, and satellites 11 and 12 will
be matched.

V. CONCLUSION

In this paper, we studied the P2P refuelling problem where
the fuel expense for the rendezvous maneuvers is taken
into consideration when scheduling the satellite rendezvous
pairings. The problem is formulated as a maximum-weight
matching problem. It is shown that fuel transactions between
any fuel-deficient satellites are not beneficial to the refu-
elling objective. Other non-beneficial satellite pairs can also
be identified before solving the maximum-weight matching
problem. By removing the non-beneficial satellite pairs, the
computation effort to solve the maximum-weight matching
problem can be reduced. It is shown that the optimal solution
is not necessarily the symmetric matching, and that not all
satellites are involved in fuel transactions.
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