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Abstract— In this paper, we study the scheduling problem
arising from refuelling multiple satellites in a constellation. The
satellites in the constellation are assumed to be capable of refu-
elling each other. The cost of the rendezvous maneuver between
two satellites exchanging fuel is assumed to be negligible. The
goal of this refuelling problem is to equalize the fuel stored
among all satellites in the constellation after a given period.
It is shown that the problem of equalizing the fuel among the
satellites can be formulated and solved as a maximum-weight
matching problem.

I. INTRODUCTION

The current practice when the fuel on-board a satellite is
exhausted is to simply replace the satellite with a new one.
Replacing old satellites with new ones incurs a significant
cost in production and launching of satellites, not to mention
the addition of space debris. An alternative to replacing a
satellite when its fuel is depleted is to create a satellite
architecture having the capability of refuelling the satellites
when needed. Under this new concept, when a satellite
runs low on fuel, it can be refuelled and thus, the satellite
may continue its service. Satellites in a constellation can be
refuelled either from a vehicle launched from the earth for
that purpose, or by other satellites in the same constellation.

Much of the previous work on satellite refuelling has been
limited to hardware design and the feasibility of transferring
liquid in space. A good brief overall conceptual study of
this topic can be found in [5]. Only recently the scheduling
problem arising from refuelling multiple satellites has gained
some attention. Shen and Tsiotras in [10] studied the optimal
scheduling for refuelling or servicing multiple satellites in a
circular orbit using one single servicing spacecraft. Integer
programming was used in [10] to obtain the best schedule
of refuelling the satellites in a given order. A heuristic study
suggested that the best sequence to visit all satellites can
be chosen from the sequences which assume the minimum
total sweep angle. In [1], Alfriend et al considered the
optimal scheduling for servicing multiple satellites in a
geosynchronous orbit with small inclination. It is shown
that the fuel consumption is proportional to the distance
between the projections on the equatorial plane of the angular
momentum vectors of the orbits of the two satellites. Thus,
the minimum-fuel ordering is transformed into a classical
travelling salesman problem, for which numerous algorithms
exist [6].

In this paper, we study the scheduling problem arising

from the need to redistribute fuel within a satellite constel-
lation. It is assumed that there is no extra fuel delivered
to the constellation by an external spacecraft. Instead, all
satellites in the constellation are capable of refuelling each
other. This allows satellites that have excess fuel to deliver
fuel to the satellites which are depleted of, or are low on, fuel.
This refuelling scenario will be hereto called to Peer-to-Peer
(P2P) refuelling. The goal of the P2P refuelling problem
is to achieve fuel equalization among all satellites in the
constellation after a given refuelling period.

II. THE P2P REFUELLING PROBLEM

Since P2P refuelling problem has combinatorial complex-
ity, here we formulate and solve the P2P refuelling problem
as a sequence of fuel transactions. A fuel transaction involves
two satellites, a buyer and a seller. Under this framework, a
seller satellite rendezvous with a buyer to deliver fuel, or a
buyer rendezvous with a seller to receive fuel. We say that
this satellite constellation “market” reaches an equilibrium
state when the fuel distributed among all satellites is equal.

Assume there are n ≥ 3 satellites within a constellation.
Let I = {1, 2, · · · , n} denote the index set of the n
satellites. Let fM

i and fm
i , i ∈ I, denote the maximum fuel

capacity and minimum required fuel for each satellite. At
time tk, let fi(tk), i ∈ I, be the amount of fuel stored in
satellite i. Satellite i is considered operational at time tk
if and only if fm

i ≤ fi(tk) ≤ fM
i , i ∈ I. We are given

a time period h within which the fuel transactions must
take place. We assume that within the time interval h, each
satellite can deliver fuel to no more than one other satellite.
In addition, each satellite can receive fuel from no more
than one other satellite. That is, no two seller-buyer pairs
share a common satellite during one refuelling period. Let
gj

i (tk) denote the amount of fuel transferred from satellite i
to satellite j after they rendezvous (i.e., satellite i is the seller,
and satellite j is the buyer). After the transaction (exchange
of fuel), we therefore have fi(tk+1) = fi(tk) − gj

i (tk) and
fj(tk+1) = fj(tk) + gj

i (tk) where tk+1 = tk + h.

It is assumed that for a pair of satellites, say i and j,
only one can be the active satellite which initiates the fuel
transaction. For example, if satellite i is active, it applies
impulses to travel to j and conducts a fuel transaction with
j, before travelling back to its originally designated orbital
slot. During the whole process, satellite j remains at its pre-



assigned orbital slot. Thus, only the active satellite consumes
fuel during the rendezvous maneuver. At time tk, let pj

i (tk)
be the fuel consumed by satellite i to rendezvous with
satellite j and then return to its designated orbital slot. Note
that since, in general pj

i (tk) 	= p i
j (tk), it is possible that less

fuel is consumed if the buyer initiates the fuel transaction.
If this is the case, the buyer can be selected to be active
provided that the buyer has enough fuel to complete the go-
and-return rendezvous maneuvers.

In the following, we assume that fM
i = fM

j and fm
i = 0

for all 1 ≤ i, j ≤ n. For ease of notation, in the following,
we will use the superscript ‘-’ to denote values at tk and
superscript ‘+’ to denote values at tk+1. For example, f−

i
will be used to denote the fuel owned by satellite i before
refuelling, and f+

i will be used to denote the fuel owned by
satellite i after refuelling.

III. FORMULATION OF THE MAXIMUM-WEIGHT

MATCHING PROBLEM

In cases where the fuel consumption for a rendezvous
maneuver is much smaller than the amount of fuel to
be transferred, we can simplify the refuelling problem by
assuming that the rendezvous cost is zero. This assumption is
generally valid when the satellites are in a close formation or
when the total time allowed to complete the fuel transactions
is sufficiently large (it has been shown in [8] that for a
circular constellation orbit the rendezvous cost decreases
monotonically when time-of-flight increases). The case when
the rendezvous cost is not zero is treated in [9].

Under the assumption of zero rendezvous cost, the total
fuel among all satellites is conserved. Thus, the average fuel
stored among all satellites in the constellation is

f̄ =
1
n

n∑
i=1

f−
i =

1
n

n∑
i=1

f+
i , i ∈ I

We further assume that each time two satellites rendezvous,
the fuel transaction results in the two satellites having the
same amount of fuel. That is, if satellite i and satellite j
conduct a fuel transaction, then f+

i = f+
j = (f−

i + f−
j )/2.

A. The Constellation Graph

The constellation graph G is a graph with the n satellites
being the n vertices. An edge exists between two vertices if
either of the two vertex-satellites can initiate the rendezvous
and carry out a fuel transaction with the other. However, there
could be restrictions on the satellite pairs due to operational
requirements of the satellite constellation or formation. For
example, in order to maintain the normal operation of the
constellation, a subset of satellites may be required to remain
in their orbital slots while others are engaged into fuel
transactions. Reflected in the constellation graph, this implies
that there are no edges between those satellites. Obviously,
if these satellites are involved in fuel transactions, they can
only be inactive. Clearly, if there are no restrictions on the

satellite pairs, the constellation graph is a complete graph
[3].

In this paper, we will use the difference of the onboard
fuel stored in each satellite from the average amount of fuel,
as a measure of fuel equalization among all satellites. That
is, we wish to maximize

max z =
∑
i∈I

(
− ∣∣f+

i − f̄
∣∣). (1)

Recall that two satellite pairs do not share a common
satellite during a refuelling period. Thus, the edges associated
with the satellite pairs can be considered as a matching in the
constellation graph. Therefor, the search for satellite pairs to
achieve the fuel equalization is equivalent to the search for a
matching in the constellation graph such that z in Eq. (1) is
maximized. In the following, the search for satellite pairs to
conduct fuel transactions will be modelled and solved in the
framework of the maximum-weight matching problem (MP)
in the constellation graph.

B. The Maximum-Weight Matching Problem in the Con-
stellation Graph

Suppose there are m edges in the constellation graph, and
let L = {1, 2, · · · , m} be the index set of the edges. Let
us associate a binary variable x� with each edge e� for all
� ∈ L, where x� is defined by

x� =
{

1 if edge e� is in the matching,
0 otherwise.

Let x = (x1, x2, · · · , xm) denote the vector of the binary
variables. Then, the conditions for a matching can be written
as follows [4].

(MC):
∑

e�∈Q(vi)

x� ≤ 1, ∀ i ∈ I

x� ∈ {0, 1}, ∀ � ∈ L
where Q(vi) denotes the set of edges that are incident with
the vertex vi.

Now, let us elaborate on the objective function in Eq. (1).
In general, not every satellite is involved in a fuel transaction.
For example, if the number of satellites is odd, at least one
satellite will be left unmatched. Suppose that satellite i is
matched with satellite j. Then after the fuel transaction,
the fuel stored between the two is averaged out. Therefore,
the contribution of satellite i to the objective function is
− ∣∣(f−

i + f−
j )/2− f̄

∣∣, which is the same as the contribution
of satellite j. On the other hand, if a satellite, say satellite
k, is not matched with any other satellite, then its fuel
remains the same throughout the refuelling period. Thus,
its contribution to the objective function is − ∣∣f−

k − f̄
∣∣.

Utilizing the binary variables in the vector x, we can write the
contribution to the objective function of all matched satellites



as [7]
z1 =

∑
i∈I

∑
e�∈Q(vi)

(−c�x�) , (3)

where c� =
∣∣(f−

i + f−
j )/2− f̄

∣∣, and i and j are such that
e� = 〈vi, vj〉; i.e., e� is the edge between vertices vi and vj .
Similarly, we can write the contributions of all unmatched
satellites to the objective function as [7]

z2 =
∑
i∈I


1−

∑
e�∈Q(vi)

x�


 (
− ∣∣f−

i − f̄
∣∣). (4)

Then, the objective function in Eq. (1) can be written as
z = z1 + z2. Thus,

z =
∑
i∈I

∑
e�∈Q(vi)

(∣∣f−
i − f̄

∣∣− c�

)
x� −

∑
i∈I

(∣∣f−
i − f̄

∣∣).

Since the last term in the previous equation is constant, we
can remove it from z without affecting the optimal solution
for maximizing z. Therefore, and rewriting z as a sum over
all edges, one obtains

z =
∑
�∈L

(∣∣f−
i − f̄

∣∣ +
∣∣f−

j − f̄
∣∣− ∣∣f−

i + f−
j − 2f̄

∣∣)x�

In the following, we will use π� to denote the coefficients of
x�, i.e.,

π� =
∣∣f−

i − f̄
∣∣ +

∣∣f−
j − f̄

∣∣− ∣∣f−
i + f−

j − 2f̄
∣∣ . (5)

Therefore, the P2P refuelling problem can be formulated as
the following maximum matching problem in terms of the a
zero-one integer program:

(MP-IP): Maximize z =
m∑

�=1

π� x�

Subject to (MC)

From the definition of the weights π� in Eq. (5), we can see
that for the edge e� = 〈vi, vj〉, if either f−

i = f̄ or f−
j = f̄ ,

then π� = 0. The same holds for the case when f−
i ≤ f̄

and f−
j ≤ f̄ , and the case when f−

i ≥ f̄ and f−
j ≥ f̄ . For

all other cases, π� > 0. Therefore, each edge with π� > 0
has one end at a fuel-sufficient satellite (i.e., a satellite with
more fuel than average) and the other end at a fuel-deficient
satellite (i.e., a satellite with less fuel than average).

The edges with π� = 0 do not contribute to the objective
of the (MP-IP). In other words, having the two end-vertices
of an edge with zero-weight conduct a fuel transaction does
not improve the equalization of the fuel in the constellation.
Therefore, the optimal cost of the (MP-IP) remains the same
if the edges with π� = 0 are removed from the constellation
graph G. Let Gr denote the remaining graph after removing
the edges with π� = 0 from G. We call Gr the reduced
constellation graph. It can be shown [7] that Gr is a bipartite
graph, with the buyer group and the seller group being the
two classes of vertex partitions.

Let the vertex set in the seller group be denoted by Vs,
and the vertex set in the buyer group Vb. Denote the index
set of the seller satellites Is, and the index set of the buyer
satellites Ib. Let Er denote the edge set of Gr, and let N (vi)
denote the set of vertices that are adjacent to vi. For each
edge e� = 〈vi, vj〉 with i ∈ Is and j ∈ Ib, let xij denote x�,
and πij denote π�. Therefore, the (MP-IP) for the reduced
constellation graph can be rewritten as

(MP-IP): Maximize z =
∑
i∈Is

∑
vj∈N (vi)

πij xij

Subject to
∑

vj∈N (vi)

xij ≤ 1, ∀ i ∈ Is

∑
vi∈N (vj)

xij ≤ 1, ∀ j ∈ Ib

where xij ∈ {0, 1} and for all i ∈ Is, j ∈ Ib and 〈vi, vj〉 ∈
Er.

IV. THE SOLUTION TO THE (MP-IP)

It has been shown in [2] that the integrality conditions
in the (MP-IP) are redundant, and they can be replaced by
the nonnegativity conditions of the binary variables xij . By
doing so, one converts the (MP-IP) into a linear programming
problem which can be solved by general methods such as the
simplex method [11]. However, more efficient methods have
been developed over the last three decades specifically for the
maximum-weight matching problem. A well-known method
is the one proposed by Edmonds and Johnson, described in
[4].

However, there is one special case where the solution can
be readily obtained without having to refer to the above
algorithm. To make this matter clear, and without loss of
generality, let us assume that the fuel owned by the n
satellites before refuelling is ordered such that f−

1 ≥ f−
2 ≥· · · ≥ f−

n . This can always be achieved by rearranging the
index set of the vertices according to the order of the fuel
stored in each satellite. Suppose that there are ns sellers
among the n satellites; i.e., f−

ns
≥ f̄ > f−

ns+1. Then, there
are nb = n − ns buyers. Let us assume that nb ≤ ns. The
case with more buyers than sellers can be treated similarly.

A symmetric matching consists of such seller-buyer pairs
as the seller with the most onboard fuel and the buyer
with the least onboard fuel, the seller with the second most
onboard fuel and the buyer with the second least onboard
fuel, and so on. That is, the symmetric matching, denoted
by Ms, is defined as the following collection of edges,
Ms =

{
〈v1, vn〉, 〈v2, vn−1〉, · · · , 〈vnb

, vn−nb+1〉
}

.

Proposition 4.1: If the reduced constellation graph Gr

contains all the edges in the symmetric matching, then the
symmetric matching is an optimal solution to the (MP-IP).

Proof: We will only prove the case when Gr is a
complete bipartite graph. The other case follows immediately.



Since Gr is a complete bipartite graph, and the edge
weights are all positive, the maximum-weight matching is
a maximum matching. Thus, it suffices to show that the
symmetric matching is better than any other maximum
matchings. Let Vs

1 = {vi | i = 1, 2, · · · , nb} and Vs
2 =

{vi | i = nb + 1, nb + 2, · · · , ns} denote a decomposition
of Vs. Notice that Vs

1 has the same cardinality as Vb. This
decomposition of Vs is shown in Figure 1. First it will be
shown that given any maximum matching M′ in Gr there is
a matching M between Vs

1 and Vb whose total weight is at
least as large as that of M′.

Vs
1

Vs
2

Vb

vi

vk

vj

M′

Fig. 1. Demonstration of Vs
1 , Vs

1 , Vb, and M′.

To this end, suppose M′ consists of edges between Vs
1

and Vb as well as edges between Vs
2 and Vb. Let there

be r edges in M′ which are between Vs
2 and Vb. Then

there are precisely r vertices in Vs
1 that are not matched

by M′. Let vi ∈ Vs
1 be a vertex that is not matched by

M′. Let 〈vk, vj〉 be any edge in M′ where vk ∈ Vs
2

and vj ∈ Vb. This scenario is shown in Figure 1. It will
be shown that πij ≥ πkj . According to Eq. (5), πij and
πkj are given by πij = f−

i − f−
j −

∣∣f−
i + f−

j − 2f̄
∣∣ and

πkj = f−
k − f−

j −
∣∣f−

k + f−
j − 2f̄

∣∣, where we have used
the facts that f−

i ≥ f̄ , f−
k ≥ f̄ , and f−

j ≤ f̄ . Utilizing
the fact that f−

i ≥ f−
k and the triangular inequality, we have

πij−πkj = f−
i −f−

k +
∣∣f−

k + f−
j − 2f̄

∣∣−∣∣f−
i + f−

j − 2f̄
∣∣ ≥∣∣f−

i − f−
k + f−

k + f−
j − 2f̄

∣∣ − ∣∣f−
i + f−

j − 2f̄
∣∣ = 0. Thus,

πij ≥ πkj .

From the previous analysis, we conclude that the new
matching obtained by replacing the edge 〈vk, vj〉 with
〈vi, vj〉 in M′ has a total weight no less than that of
M′. By replacing all edges in M′ between Vs

2 and Vb by
edges between the unmatched vertices in Vs

1 and Vb, and
retaining the original edges of M′ between Vs

1 and Vb, we
can construct a matching M which consists only of edges
from Vs

1 to Vb, and its total weight is no less than that of
M′. Therefore, it suffices to prove the proposition for the
case when nb = ns. This will be shown by induction.

If nb = ns = 1, then the proposition is trivial because
there is only one edge. Consider the case nb = ns = 2.
Then there are two candidate maximum matchings, Ms =

{
〈v1, v4〉, 〈v2, v3〉

}
and Mc =

{
〈v1, v3〉, 〈v2, v4〉

}
. It is

trivial to show that the symmetric matching Ms has a total
weight no less than that of Mc; i.e., zs ≥ zc, where zs and
zc denote the total weights of Ms and Mc, respectively.

Let us now assume that the proposition holds for ns =
nb = k ≥ 2. We need to show that the proposition holds for
the case with k+1 sellers and k+1 buyers. In the following,
given any maximum matching Mm, with zm being its total
weight, we will show that zs ≥ zm. Again, zs is the total
weight for the symmetric matching Ms.

v1 v2k+2

v2
v2k+1

v3 v2k

vk+1 vk+2

G′r = Kk, k

Fig. 2. Illustration of the case when 〈v1, vn+2〉 ∈ Mm.

First, if 〈v1, v2k+2〉 ∈ Mm, then the graph G′r obtained
by removing the vertices v1 and v2k+2 from Gr is a com-
plete bipartite graph with k seller vertices and k buyer
vertices. This is illustrated in Figure 2. Therefore, from
the induction hypothesis, the symmetric matching M′

s ={〈v2, v2k+1〉,〈v3, v2k〉, · · · , 〈vk+1, vk+2〉
}

in G′r has a total
weight no less than the total weight of Mm\〈v1, v2k+2〉.
Since the symmetric matchingMs of Gr consists of precisely
the edge 〈v1, vn+2〉 and M′

s, we conclude that zs ≥ zm.

Next, we consider the case when 〈v1, v2k+2〉 	∈ Mm.
Since Mm is a maximum matching in Gr, vertices v1 and
v2k+2 are matched by Mm. Suppose v1 and v2k+2 are
matched by the edges 〈v1, vj〉 and 〈vi, v2k+2〉, respectively,
as shown in Figure 3(a).

Consider the bipartite graph induced by the vertices v1,
vi, vj , and v2k+2. This is a complete bipartite graph with
seller vertices v1 and vi and buyer vertices vj and v2k+2.
According to the induction, the total weight of the match-
ing

{〈v1, vj〉, 〈vi, v2k+2〉
}

is no larger than that of the
matching

{〈v1, v2k+2〉, 〈vi, vj〉
}

. By removing 〈v1, vj〉 and
〈vi, v2k+2〉 from Mm, and adding 〈v1, v2k+2〉 and 〈vi, vj〉
to Mm, we can transform Mm into a new matching M′

m.
This transformation is illustrated in Figure 3. By doing so,
we guarantee that the total weight ofM′

m is no smaller than
that of Mm; i.e., z′m ≥ zm, where z′m is the total weight of
M′

m. Finally, we have that the edge 〈v1, vn+2〉 ∈ M′
m and

thus zs ≥ z′m. Therefore, it follows that zs ≥ zm.



v1v1 v2k+2v2k+2

v2v2 vjvj

vi
vi vj−1vj−1

vk+1vk+1 vk+2vk+2

G′r = Kk, k

(a) (b)

Fig. 3. Illustration of the case when 〈v1, vn+2〉 �∈ Mm. (a) contains
matching Mm, (b) contains matching M′

m, and z′m ≥ zm.

V. NUMERICAL EXAMPLES

In this section, numerical examples are presented to
demonstrate the above formulation and show some character-
istics of the P2P refuelling problem. To this end, we consider
a fourteen-satellite constellation which is shown in Figure 4.
The fuel initially stored is shown next to each satellite as

f−
1 = 97

f−
2 = 90

f−
3 = 88

f−
4 = 82

f−
5 = 74

f−
6 = 69

f−
7 = 67

f−
8 = 44

f−
9 = 35

f−
10 = 20

f−
11 = 17

f−
12 = 16

f−
13 = 14

f−
14 = 1

Fig. 4. A refuelling scenario with fourteen satellites.

a percentage of maximum fuel. The average fuel storage in
this scenario is f̄ = 51. As shown in Figure 4, we have
seven sellers (satellites 1 to 7) and seven buyers (satellites
8 to 14). Thus, the bipartite reduced constellation graph Gr

can be constructed with the seller satellites in one bipartition
and the buyer satellites in the other.

The weights assigned to the edges defined in Eq. (5) can be
represented by a weight matrix Π. Each row corresponds to a
seller, and each column corresponds to a buyer. For example,
the (i, j) element of Π represent the weight between seller
satellite i and buyer satellite j + 7; i.e., Π(i, j) = πij+7.
Therefore, for the constellation in Figure 4, the weight matrix

TABLE I

ONBOARD FUEL OF SATELLITES AFTER FUEL TRANSACTIONS IN

SYMMETRIC MATCHING.

Sellers i 1 2 3 4 5 6 7

f+
i 49 52 52 49.5 47 52 55.5

Buyers j 8 9 10 11 12 13 14

f+
j 55.5 52 47 49.5 52 52 49

can be calculated as
v14 v13 v12 v11 v10 v9 v8
↓ ↓ ↓ ↓ ↓ ↓ ↓

Π =




92 74 70 68 62 32 14

78 74 70 68 62 32 14

74 74 70 68 62 32 14

62 62 62 62 62 32 14

46 46 46 46 46 32 14

36 36 36 36 36 32 14

32 32 32 32 32 32 14




←v1

←v2

←v3

←v4

←v5

←v6

←v7

(7)

The weight matrix in Eq. (7) assumes that each seller
is allowed to conduct a fuel transaction with any buyer.
Therefore, Gr is a complete bipartite graph, and each element
of Π represents an edge in Gr. Then, a matching can thus
be represented in Π by a collection of elements with no
two elements appearing in one row or column. A maximum-
weight matching is then a collection of independent elements
such that the sum of the elements is maximized. For ex-
ample, the symmetric matching is shown in Eq. (7) with
the collection of elements in squares. As proved in Propo-
sition 4.1, the symmetric matching is a maximum-weight
matching if all edges are available. After the fuel transaction
between the satellite pairs in the symmetric matching, the
fuel of each satellite is summarized in Table V. The total
deviation of the onboard fuel from the average after the
refuelling is

∑
i∈I

∣∣f+
i − f̄

∣∣ = 30, while the total deviation
of the onboard fuel from the average before the refuelling is∑

i∈I
∣∣f+

i − f̄
∣∣ = 420.

If constraints are imposed on the satellite pairs, Gr may
no longer be a complete bipartite graph, and all edges in
the symmetric matching may not exist anymore. In this case,
the solution to the maximum-weight matching problem is no
longer trivial, and the algorithm mentioned in Section IV has
to be applied to obtain the optimal solution.

In general, if not all edges in the symmetric matching
exist in the reduced constellation graph, then the edges
of the symmetric matching that do exist in the reduced
constellation graph are not necessarily part of the optimal
solution. To this end, a partial symmetric matching will
denote the edges in the symmetric matching that do exist
in the reduced constellation graph. For example, suppose
that in the constellation, satellites 2 and 13 and satel-
lites 6 and 9 are not allowed to have a fuel transac-
tion. Then, the partial symmetric matching is given by{
〈v1, v14〉, 〈v3, v12〉, 〈v4, v11〉, 〈v5, v10〉, 〈v7, v8〉

}
. The re-



duced constellation graph is not a complete bipartite graph,
and the weight matrix has changed as shown in (8) below,
where the symbol ‘×’ implies that the two corresponding
satellites are not allowed to have a fuel transaction.

v14 v13 v12 v11 v10 v9 v8
↓ ↓ ↓ ↓ ↓ ↓ ↓

Π =




92✐ 74 70 68 62 32 14

78 × 70 68 62 32✐ 14

74 74 70✐ 68 62 32 14

62 62 62 62✐ 62 32 14

46 46 46 46 46✐ 32 14

36 36✐ 36 36 36 × 14

32 32 32 32 32 32 14✐




←v1

←v2

←v3

←v4

←v5

←v6

←v7

(8)

Two matchings are shown in the weight matrix Π in Eq.
(8). The first one is an optimal matching for the (MP-IP),
with the corresponding matrix elements shown in squares.
The second one is an optimal matching obtained with the
restriction that the partial symmetric matching be part of the
optimal matching, with the corresponding matrix elements
shown in circles. It can be verified that the total weight of
the first solution is 390, much greater the total weight of the
second solution which is 352. Therefore, the solution which
includes the partial symmetric matching is not optimal.

Notice that the optimal solution to the refuelling problem
is not unique. For example, the optimal solution in the last
example and the symmetric matching both have a total weight
of 390. In addition, in the optimal matching for the last
example, if the edges 〈v4, v10〉 and 〈v5, v11〉 are replaced
by 〈v4, v11〉 and 〈v5, v10〉, the resulting matching is also an
optimal matching.

Finally, we will show that the optimal matching need
not to be a maximum matching. To this end, assume that
all satellite pairs in the symmetric matching are not al-
lowed to have fuel transactions. In addition, let us assume
that the following satellite pairs are not allowed to have
fuel transactions, 〈v1, v10〉, 〈v1, v12〉, 〈v3, v10〉, 〈v3, v14〉,
〈v5, v8〉, 〈v5, v12〉, 〈v5, v14〉, 〈v7, v10〉, 〈v7, v12〉, 〈v7, v14〉.
As mentioned earlier, these restrictions may be imposed from
satellite or constellation operational requirements. In this
case, the weight matrix is changed as follows.

v14 v13 v12 v11 v10 v9 v8
↓ ↓ ↓ ↓ ↓ ↓ ↓

Π =




× 74✐ × 68 × 32 14

78✐ × 70 68 62 32 14

× 74 × 68 × 32 14✐

62 62 62 × 62✐ 32 14

× 46 × 46✐ × 32 ×
36 36 36✐ 36 36 × 14

× 32 × 32 × 32✐ ×




←v1

←v2

←v3

←v4

←v5

←v6

←v7

(9)

An optimal matching is shown in Eq. (9) with the cor-
responding matrix elements in squares. Notice that this
matching consists of only six edges. Satellites 5 and 8
are left unmatched. The total weight for this matching is
350. Moreover, a maximum-weight maximum matching is
obtained and shown in Eq. (9) as well, with the corresponding

matrix elements in circles. This matching has seven edges,
and it is optimal among all maximum matchings. The total
weight for this matching is 342, less than that of the optimal
maximum-weight matching which contains only six edges.
This shows that the optimal solution is not necessarily a
maximum matching.

VI. CONCLUSION

We have investigated the P2P refuelling problem with
negligible rendezvous cost. The problem is formulated as
a maximum-weight matching problem in a bipartite graph.
It is shown that the symmetric matching is optimal if all
edges in the symmetric matching exist. Otherwise, a partial
symmetric matching is not guaranteed to be included in the
optimal solution. It is also shown that the optimal solution is
not unique, and that the optimal solution is not necessarily a
maximum matching.
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