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Abstract— In this paper, we propose a class of parameter-
dependent Lyapunov functions which can be used to assess the
stability properties of linear, time-invariant, single-parameter
dependent (LTIPD) systems in a non-conservative manner. It
is shown that stability of LTIPD systems is equivalent to the
existence of a Lyapunov function of a polynomial type (in
terms of the parameter) of known, bounded degree satisfying
two matrix inequalities. It is also shown that checking the
feasibility of these matrix inequalities over a compact set can
be cast as a convex optimization problem.

I. INTRODUCTION

For LTI Parameter-Dependent (LTIPD) systems of the form
ẋ = A(ρ)x, ρ ∈ Ω, stability can be established via
the use of constant Lyapunov functions, say, of the form
V (x) = xTPx. When the parameter ρ varies in the set
Ω or its value is not known a priori, a common (for all ρ)
Lyapunov function can be used to check Hurwitz stability of
the family of matrices {A(ρ), ρ ∈ Ω}. The resulting notion
of stability (quadratic stability) is nonetheless conservative,
since the same Lyapunov matrix P is used for the whole
parameter space. The conservativeness of quadratic stability
is more pronounced for the case of LTIPD systems where
the parameter ρ does not vary with time. In order to achieve
necessary and sufficient results one then needs to resort to
the use of parameter-dependent Lyapunov functions of the
form V (x, ρ) = xTP (ρ)x.

Since the explicit dependence of the Lyapunov matrix P (ρ)
on the parameter ρ is not known a priori, one typically
postulates a convenient functional parameter dependence
for P (ρ), and then one proceeds to derive the stability
conditions. This approach leads to conditions which are suf-
ficient but not necessary. In order to obtain nonconservative
(i.e., necessary and sufficient) conditions it is imperative to
know the “correct” parameter dependence for the Lyapunov
function. By “correct” we mean a Lyapunov function which
depends on the parameter in such a way that for those values
of the parameter for which the system is stable the stability
conditions are satisfied, while for the values of the parameter
for which the system is not stable, the stability conditions
fail.

In this paper we show that for LTI systems depending on a
single, constant parameter in an affine manner, nonconser-
vative stability tests can be derived by restricting the search
over Lyapunov matrices which depend polynomially on the
parameter. Therefore, a polynomial-type Lyapunov matrix
(of known degree) is suggested in this paper, which can be
used to derive necessary and sufficient stability conditions
for single-parameter LTIPD systems.

The contributions of the paper are summarized as follows:
First, a polynomial-type Lyapunov function of bounded,
computable degree is proposed which can be used to derive
sufficient and necessary stability conditions for single-
parameter LTIPD systems. These stability conditions are
given in terms of two simultaneous matrix inequalities.
The conditions take explicitly into consideration the rank
deficiency of the system matrix multiplying the parameter
in order to reduce the computational complexity of the
proposed algorithm. The main contribution of the paper is
therefore the knowledge of the structure of the Lyapunov
matrix that leads to nonconservative (i.e., exact) stability
results for single-parameter LTIPD systems. Second, the
inequalities for checking the stability of an LTIPD system
over a compact interval are expressed into computable,
non-conservative linear matrix inequalities (LMIs). We thus
also provide a non-conservative condition for checking
the robust stability of single-parameter LTI systems over
compact intervals. We note here that although the stability
of LTIPD systems can also be checked using the guardian
map techniques of [15], [6] (for similar results see also [16])
nonetheless, it is expected that the Lyapunov-based stability
conditions of this paper will be also amenable to synthesis.
Such an extension to the synthesis problem is not directly
evident from the use of guardian maps.

II. LINEAR TIME-INVARIANT PARAMETER-DEPENDENT

SYSTEMS

The objective of this paper is to find computable, non-
conservative conditions for checking the asymptotic stability
of LTI systems which depend on a single real parameter of
the form

ẋ = A(ρ)x, A(ρ) = A0 + ρA1, ρ ∈ Ω (1)

where A0, A1 ∈ Rn×n and Ω ⊂ R. At this point we
make no a priori assumptions on the set Ω (i.e., connected,
bounded, compact, etc.). The parameter ρ is assumed to be
constant1 and it is chosen from the set Ω. It is well known
that asymptotic stability of the system (1) is equivalent to
the existence of a matrix P (ρ) ∈ Rn×n such that

P (ρ) > 0, A(ρ)P (ρ) + P (ρ)AT (ρ) < 0, ρ ∈ Ω. (2)

Thus, checking the stability of (1) is equivalent to finding a
Lyapunov function P (ρ) satisfying the two matrix inequal-
ities (2). By the same token, if for some ρ′ ∈ Ω the matrix

1The results also hold when ρ varies very slowly so that a “quasi-static”
point of view is valid.



A(ρ′) is not Hurwitz, then there exists no positive-definite
matrix that satisfies the second inequality in (2).

Clearly, for single-parameter LTIPD systems, as the one in
equation (1), stability can be ensured if there exists a con-
stant Lyapunov function P (ρ) = P for all ρ ∈ Ω, such that
the two inequalities (2) are satisfied. The so-called quadratic
stability ensures robust stability against any (arbitrarily fast)
variations of the parameter ρ. In case the parameters do
not vary with time (such is the case with LTIDP systems),
quadratic stability can be very conservative. To reduce this
conservatism against slowly-varying or constant parameters,
several parameter-dependent Lyapunov functions have been
proposed to derive stability conditions. Such conditions,
however, provide only sufficiency results which, if fact, may
be far from necessary. On the other hand, for the multi- and
single-parameter dependent LTI systems, references [5] and
[13] provide a class of Lyapunov functions that can be used
to derive necessary and sufficient conditions for system (1),
assuming that the matrix A1 has rank one. The Lyapunov
function proposed in [5] solves an augmented system and
depends multiaffinely on the parameter vector. On the same
token, in [13] it is shown that for a single parameter and
for rankA1 = 1, a Lyapunov function which is linear in
the parameter can be used to characterize stability of the
system (1).

More recently, [2], [3] proposed parameter-dependent Lya-
punov functions of polynomial type in the parameter (of
sufficiently high degree) which can be used to assess the
robust stability of multi-linear systems over a compact set
without conservatism. Recall that if Q(ρ) ∈ Rn×n is any
positive-definite matrix for all ρ ∈ Ω ⊂ R, then the stability
of (1) can be established by finding a positive-definite
solution to the following Lyapunov equation

A(ρ)P (ρ) + P (ρ)AT (ρ) +Q(ρ) = 0. (3)

The solution P (ρ) to this equation is given explicitly as [17]

P (ρ) =
∫ ∞

0

eA(ρ)tQ(ρ)eAT (ρ)tdt. (4)

When Q(ρ) is analytic in ρ, P (ρ) in Eq. (4) is also analytic
in ρ and thus it can be expressed in terms of power series
in ρ as

P (ρ) = P0 + ρP1 + ρ2P2 + . . . =
∞∑

i=0

ρiPi. (5)

Starting from this simple observation, and using the uniform
convergence of the integral in (4) at t = +∞ with respect
to ρ when Ω is compact, Bliman recently showed in [3]
that the previous power series can be truncated and thus, a
polynomial type Lyapunov matrix of the form

P (ρ) = P0 + ρP1 + ρ2P2 + . . .+ ρmPm =
m∑

i=0

ρiPi (6)

of sufficiently high degree m in ρ solves the Lyapunov
inequality A(ρ)P (ρ) + P (ρ)AT (ρ) < 0, and thus it can
be used to provide necessary and sufficient conditions for
the robust stability of (1) over the set Ω. In [3] however no
a priori bound on the degree of the truncated polynomial is

given. The main contribution of the present paper is to give
an explicit bound for the polynomial dependence m of P (ρ)
in ρ and to provide a computable algorithm for checking
the associated linear matrix inequalities (2). In particular,
we show that the existence of a Lyapunov matrix of the
form (6) with m ≤ min{ 1

2 (2nr − r2 + r), 1
2n(n+ 1)− 1}

is necessary and sufficient for the stability of (1) for each
ρ ∈ Ω, where r denotes the rank of A1. In other words,
for every ρ ∈ Ω if P (ρ) in (6) satisfies (2), then the matrix
A(ρ) is Hurwitz. Most importantly, if for some ρ ∈ Ω the
matrix A(ρ) is not Hurwitz, then the matrix P (ρ) is either
non-positive definite, or the second inequality in (2) does
not hold. Finally, we show how the two matrix inequalities
(2) involved in checking the stability of A(ρ) can be cast
into computable LMIs without conservatism in case Ω is a
compact interval.

III. MAIN RESULT

Definition 3.1 ([11]): Given a symmetric matrix P =
PT ∈ Rn×n, define

vec(P ) :=



P11

...
Pn1

P22

...
Pn2

...
Pnn


∈ R

1
2 n(n+1) (7)

Note that the usual vec(P ) operator [4] that stacks the
columns of a matrix P one on top of the other consists
of all the elements of vec(P ) with some repetitions. For
every symmetric matrix P = PT ∈ Rn×n, there exists a
unique full column rank matrix Dn ∈ Rn2× 1

2 n(n+1) called
the duplication matrix [10], [11], which is independent of
the matrix P and which depends only on the dimension n
of the matrix P , and which satisfies

vec(P ) = Dnvec(P ). (8)

The pseudo-inverse of Dn satisfies the following proper-
ties [10], [11]

vec(P ) = D+
n vec(P ), D+

n Dn = I 1
2 n(n+1),

rank(Dn) = rank(D+
n ) = 1

2n(n+ 1).

Notice, in particular, that Dn is always full column rank.
Consequently, D+

n = (DT
nDn)−1DT

n .

Definition 3.2 ([11]): Given A ∈ Rn×n, let Â ∈
R

1
2 n(n+1)× 1

2 n(n+1) be defined by

Â := D+
n (A⊕A)Dn = D+

n ĀDn. (9)

where Ā := A ⊕ A = In ⊗ A + A ⊗ In is the Kronecker
sum of matrix A with itself.

The matrix Â is often called the lower Schlaeflian form of
or the power form of the matrix A. It is clear from the
definition that Â(ρ) = ̂A0 + ρA1 = Â0 + ρÂ1.



The main result in the paper can be stated as follows:

Theorem 3.1: Given the matrices A0, A1 ∈ Rn×n with
rankA1 = r, let

m :=
{

1
2 (2nr − r2 + r), if r < n,
1
2n(n+ 1)− 1, if r = n.

(10)

Then the following two statements are equivalent:

(i) A0 + ρA1 is Hurwitz for all ρ ∈ Ω.
(ii) There exists a set of m+1 matrices {Pi}0≤i≤m, such

that

(A0 + ρA1)TP (ρ) + P (ρ)(A0 + ρA1) < 0, (11)

P (ρ) = σ(ρ)

(
m∑

i=0

ρiPi

)
> 0, (12)

where σ(ρ) = −sign(det(Â0 + ρÂ1)) and ρ ∈ Ω.

Remark 1 Note that if the domain Ω is connected then
σ(ρ) is constant via Corollary 3.1 (see below) and the Lya-
punov matrix (12) is given simply by P (ρ) =

∑m
i=0 ρ

iPi

for all ρ ∈ Ω.

In order to provide the proof of Theorem 3.1 we need first
to introduce a few mathematical preliminaries.

Lemma 3.1: Let matrices A,B ∈ Rn×n with rankB = r
and let ρ ∈ R. Then deg(det(A+ ρB)) ≤ r.

The following lemma will play a major role in the results
of this paper. It states that the adjoint of the parameter-
dependent matrix A+ ρB is a matrix polynomial in ρ of a
certain maximal degree which depends on the rank of the
matrix B. Recall that given an invertible matrix A ∈ Rn×n,
its inverse can be calculated from A−1 = AdjA/det(A)
where AdjA is the adjoint of A.

Lemma 3.2: Given matrices A,B ∈ Rn×n with rankB =
r and ρ ∈ R, the adjoint of the matrix A+ ρB is a matrix
polynomial in ρ of degree at most min{r, n− 1}, i.e.,

Adj (A+ ρB) =
min{r,n−1}∑

i=0

ρiNi. (13)

We note here that the matrices Ni in (13) can be calculated
explicitly from the matrices A0 and A1. The details are left
to the reader.

Lemma 3.3 ([10], [11]): Given A ∈ Rn×n and Â as in
Definition 3.2, the eigenvalues of Â are the 1

2n(n + 1)
numbers λi + λj , (1 ≤ j ≤ i ≤ n) where λi, λj are the
eigenvalues of A.

The following is immediate from Lemma 3.3.

Corollary 3.1: Suppose the parameter-dependent matrix
A0 + ρA1 ∈ Rn×n is Hurwitz for all ρ ∈ Ω. Then

det( ̂A0 + ρA1) = det(Â0 + ρÂ1) 
= 0, ∀ρ ∈ Ω (14)

Central to our results is the following lemma which provides
a bound for the rank of the Schlaeflian form of a matrix.

Lemma 3.4: Given a matrix A ∈ Rn×n with rankA = r,
then rank Â ≤ 1

2 (2nr − r2 + r).

We are now ready to provide the proof of Theorem 3.1.

Proof: [Of Theorem 3.1] (ii) ⇒ (i): This is obvious.

(i) ⇒ (ii): Since A0 + ρA1 is Hurwitz for all ρ ∈ Ω, from
Corollary 3.1 it follows that det(Â0 + ρÂ1) 
= 0. Let the
parameter-dependent matrix

Q(ρ) := |det(Â0 + ρÂ1)|In > 0, ρ ∈ Ω. (15)

Note that Q(ρ) is positive definite for each ρ ∈ Ω. Since
A0+ρA1 is Hurwitz for all ρ ∈ Ω, the following Lyapunov
equation has a unique, positive definite-solution P (ρ) > 0
for each ρ ∈ Ω

(A0 + ρA1)P (ρ) + P (ρ)(A0 + ρA1)T +Q(ρ) = 0. (16)

Solving this equation for P (ρ) one obtains

(A0 + ρA1)vec(P (ρ)) = −|det(Â0 + ρÂ1)|vec(In)

(Ā0 + ρĀ1)vec(P (ρ)) = −|det(Â0 + ρÂ1)|vec(In)

D+
n (Ā0 + ρĀ1)Dnvec(P (ρ)) = −|det(Â0 + ρÂ1)| vec(In)

(Â0 + ρÂ1)vec(P (ρ)) = −|det(Â0 + ρÂ1)|vec(In)

and thus,

vec(P (ρ)) = −|det(Â0 + ρÂ1)|Adj(Â0+ρÂ1)

det(Â0+ρÂ1)
vec(In)

= σ(ρ)Adj(Â0 + ρÂ1)vec(In) (17)

where σ(ρ) := −sign(det(Â0 + ρÂ1)).

Let r̂ := rank Â1. According to Lemma 3.4 we have that
r̂ ≤ 1

2 (2nr − r2 + r). Moreover, according to Lemma
3.2 there exist constant matrices Ni such that Adj(Â0 +
ρÂ1) =

∑m
i=0 ρ

iNi where m = min{r̂, 1
2n(n+ 1)− 1} ≤

min{ 1
2 (2nr− r2 + r), 1

2n(n+1)− 1}. Notice, in particular
that min{1

2 (2nr−r2+r), 1
2n(n+1)−1} = 1

2 (2nr−r2+r)
for r < n and min{1

2 (2nr − r2 + r), 1
2n(n + 1) − 1} =

1
2n(n+ 1)− 1 if r = n.

Moreover, since the mapping vec(·) is one-to-one, its in-
verse mapping vec−1(·) exists. Therefore, (17) finally yields

P (ρ) = σ(ρ)

(
m∑

i=0

ρiPi

)
(18)

where Pi ∈ Rn×n are constant matrices given by Pi =
vec−1

(
Nivec(In)

)
for 0 ≤ i ≤ m.

A. Numerical Examples

Example 1 Consider the matrix A(ρ) = A0 + ρA1, where

A0 =

[−2 0
0 −1

]
, A1 =

[
1 0
0 −1

]
.

The largest stability domain for this example is (−1, 2). To
compute P (ρ), first note that

Â0 =

−4 0 0
0 −3 0
0 0 −2

 , Â1 =

2 0 0
0 0 0
0 0 −2


and det(Â0 + ρÂ1) = (−4 + 2ρ)(6 + 6ρ) = −24− 12ρ+
12ρ2. Therefore,

Adj(Â0 + ρÂ1) =

6ρ + 6 0 0
0 −4ρ2 + 4ρ + 8 0
0 0 −6ρ + 12

 ,



and thus,

P (ρ) =

[
6ρ + 6 0

0 −6ρ + 12

]
.

Moreover,

A(ρ)P (ρ) + P (ρ)A
T

(ρ) =

[−24 − 12ρ + 12ρ2 0
0 −24 − 12ρ + 12ρ2

]
.

The eigenvalues of P (ρ) are given by λ1 = 6ρ + 6 and
λ2 = −6ρ + 12. Notice that λ1, 2(ρ) > 0 for ρ ∈ (−1, 2)
and therefore P (ρ) > 0 for ρ ∈ (−1, 2). Furthermore,
A(ρ)P (ρ) + P (ρ)AT (ρ) < 0 for ρ ∈ (−1, 2).

Example 2 Consider the parameter-dependent matrix
A(ρ) = A0 + ρA1, where

A0 =

 0.7493 −2.4358 −1.6503
−2.0590 −3.3003 −1.4833
−1.5019 1.2149 −4.8737

 ,

A1 =

1.2149 1.6640 −2.2091
0.7542 −0.1501 0.2109
2.1990 0.6493 −0.2214

 (19)

The exact stability domain for A(ρ) is
(−18.3861,−1.2729) ∪ (2.1538, 3.7973), which is
computed with the method presented in [16]. With the
method introduced in the proof of Theorem 3.1, one can
first compute Â0, Â1 and then Adj(Â0 + ρÂ1). The matrix
P (ρ), is a polynomial in ρ of degree m = 1

2n(n+1)−1 = 5
since r = rank(A1) = n = 3.

In this example the stability domain is composed of two dis-
joint intervals. The parameter-dependent Lyapunov function
is given by

P (ρ) = σ(ρ)
(
P0 + ρP1 + ρ2P2 + ρ3P3 + ρ4P4 + ρ5P5

)
It can be checked numerically that A(ρ)P (ρ) +
P (ρ)AT (ρ) < 0 for all ρ ∈ R. However, P (ρ) is
positive definite only for ρ ∈ (−18.3861,−1.2729) ∪
(2.1538, 3.7973).

Remark 2 Theorem 3.1 can be used to determine the whole
stability domain of a parameter-dependent LTI system, even
if this domain is composed of several disjoint intervals of R

as is the case in Example 2. The approach of [1], [12], [11],
[6], [14], [15] without modification, on the other hand, can
only be used to check the stability over a connected domain
which includes the origin.

IV. A CONVEX CHARACTERIZATION OF THE STABILITY

CONDITIONS

The previous analysis shows that the parameter-dependent
matrix A(ρ) = A0 + ρA1 is Hurwitz for any ρ ∈ Ω, if
and only if there exists a Lyapunov matrix which depends
polynomially on the parameter ρ, of the form

P (ρ) := P0 + ρP1 + . . .+ ρmPm, (20)

such that the corresponding two matrix inequalities

A(ρ)P (ρ) + P (ρ)A(ρ)T < 0, (21)

P (ρ) > 0, (22)

are satisfied. In order to be able to use the stability criterion
of Theorem 3.1 in practice, we need a relatively simple

method to determine the feasibility of the matrix inequalities
(21) and (22).

In this section we provide computable, non-conservative,
conditions to test the matrix inequalities (21) and (22) over
any compact interval Ω. Without loss of generality, in the
sequel we assume that Ω := [−1, 1].

To this end, let the vector ρ[q] ∈ Rq be defined by

ρ[q] :=
(
1 ρ ρ2 · · · ρq−1

)T
, (23)

and notice that the parameter-dependent matrix in (20) can
be rewritten as

P (ρ) =
(
ρ[k] ⊗ In

)T
PΣ

(
ρ[k] ⊗ In

)
(24)

where k = �m
2 � + 1 and PΣ = PT

Σ ∈ Rnk×nk is a
constant symmetric matrix (here �m

2 � denotes the smallest
integer which is larger than or equal to m/2). Note that the
matrix PΣ is not unique. On the other hand, for any given
symmetric matrix PΣ one can also get a unique polynomial
Lyapunov matrix P (ρ) in the form (20) using the expression
(24).

The following lemma provides a convenient expression for
the matrix R(ρ) = A(ρ)P (ρ) + P (ρ)AT (ρ) which will be
useful for providing a convex characterization of inequality
(21).

Lemma 4.1 ([3]): Given a matrix A(ρ) = A0 + ρA1 ∈
Rn×n and a symmetric, parameter-dependent matrix P (ρ) ∈
Rn×n as

P (ρ) =
(
ρ[k] ⊗ In

)T
PΣ

(
ρ[k] ⊗ In

)
,

let R(ρ) := AT (ρ)P (ρ) + P (ρ)A(ρ). Then

R(ρ) =
(
ρ[k+1] ⊗ In

)T
RΣ

(
ρ[k+1] ⊗ In

)
(25)

where,

RΣ = HT
ΣPΣFΣ + FT

Σ PΣHΣ (26)

HΣ = Ĵk ⊗ In (27)

FΣ = Ĵk ⊗A0 + J̌k ⊗A1 (28)

and Ĵk :=
[
Ik 0k×1

]
and J̌k :=

[
0k×1 Ik

]
.

Notice that the matrix RΣ depends linearly upon each of
the matrices PΣ, A0 and A1.

The following lemma is instrumental in casting the matrix
feasibility problem (21)-(22) to a convex optimization prob-
lem. It is an extension of a result given in [8].

Lemma 4.2: Let the matrices Θ = ΘT ∈ Rn×n and J,C ∈
Rk×n be given. The following statements are equivalent.

(i) The inequality ζTΘζ < 0 holds for all nonzero vectors
ζ ∈ Rn which satisfy (J − δC)ζ = 0, for some real
scalar δ such that |δ| ≤ 1.

(ii) There exist matrices D ∈ Rk×k and G ∈ Rk×k such
that

D = DT > 0, G+GT = 0,

Θ <

[
C
J

]T [−D G
GT D

] [
C
J

]
.



A. LMI Conditions for Checking the Stability of LTIPD
Systems

It is desirable to find computable, convex, non-conservative
conditions to test the stability conditions (21)-(22). Using
(24) and (25), the inequalities (21)-(22) can be rewritten as(

ρ[k] ⊗ In

)T
PΣ

(
ρ[k] ⊗ In

)
> 0, ∀ρ ∈ Ω, (29)(

ρ[k+1] ⊗ In

)T
RΣ

(
ρ[k+1] ⊗ In

)
< 0, ∀ρ ∈ Ω. (30)

Lemma 4.3: Given the matrices J = J̌k−1 ⊗ In ∈
Rn(k−1)×nk and C = Ĵk−1⊗ In ∈ Rn(k−1)×nk, the sets C1

and C2 below are equal.

C1 := {ζ ∈ Rnk : (J − δC)ζ = 0, some δ ∈ [−1, 1]},

C2 := {ζ ∈ Rnk : ζ = (ρ[k] ⊗ In)z, ρ ∈ [−1, 1], z ∈ Rn}.
Lemma 4.4: Let J := J̌k−1⊗In = [0 I] ∈ Rn(k−1)×nk and
C := Ĵk−1 ⊗ In = [I 0] ∈ Rn(k−1)×nk. Then the matrix
inequality (

ρ[k] ⊗ I
)T

Θ
(
ρ[k] ⊗ I

)
< 0 (31)

holds for all ρ ∈ [−1, 1] if and only if there exist matrices
D ∈ Rn(k−1)×n(k−1) and G ∈ Rn(k−1)×n(k−1) such that

D = DT > 0, G+GT = 0,

Θ <

[
C
J

]T [−D G
GT D

] [
C
J

]
.

Example 3 Let P (ρ) = (1+ ε)In − ρ2In. It is clear that if
ε > 0, P (ρ) is positive definite for all ρ ∈ [−1, 1]. If, on
the other hand, ε < 0, P (ρ) is not positive definite for all
ρ ∈ [−1, 1]. Rewriting P (ρ) in the form (24),

P (ρ) =
(
ρ[2] ⊗ In

)T
PΣ

(
ρ[2] ⊗ In

)
=

[
In

ρIn

]T [(1 + ε)In 0
0 −In

] [
In

ρIn

]
(32)

and applying Lemma 4.4, with k = 2, the condition P (ρ) >
0 for all ρ ∈ [−1, 1] is equivalent to the existence of
matrices D = DT > 0 and G+GT = 0 such that

−PΣ <

[
C
J

]T [−D G
GT D

] [
C
J

]
(33)

where J = [0n×n In] and C = [In 0n×n]. The matrix
inequality (33) is equivalent to the existence of matrices
D = DT > 0 and G+GT = 0 such that[

D − (1 + ε)In −G
−GT In −D

]
< 0. (34)

A necessary condition for the existence of D in (34) is
In < D < (1 + ε)In. When ε > 0, such a D exists and
along with G = 0 the LMI (33) is feasible. When ε < 0, no
D can satisfy (34) and the LMI (34) has no solution. For
both cases, the result of Lemma 4.4 agrees with the direct
stability analysis.

The following is a direct consequence of Lemma 4.4. It
provides convex conditions in terms of LMIs for check-
ing the robust stability of the parameter dependent matrix
A(ρ) = A0 + ρA1 for ρ ∈ [−1,+1].

Theorem 4.1: Let the parameter-dependent matrix A(ρ) =
A0 + ρA1, where A0, A1 ∈ Rn×n with rank A1 = r and
let k = �m

2 �+ 1 where

m :=
{

1
2 (2nr − r2 + r), if r < n,
1
2n(n+ 1)− 1, if r = n.

(35)

Let J1 = [0 In(k−1)] ∈ Rn(k−1)×nk, C1 = [In(k−1) 0] ∈
Rn(k−1)×nk, J2 = [0 Ink] ∈ Rnk×n(k+1) and C2 =
[Ink 0] ∈ Rnk×n(k+1). Then, A(ρ) is Hurwitz for all
ρ ∈ [−1, 1] if and only if there exist symmetric matrices
PΣ ∈ Rnk×nk, D1 ∈ Rn(k−1)×n(k−1) and D2 ∈ Rnk×nk

and skew-symmetric matrices G1 ∈ Rn(k−1)×n(k−1), G2 ∈
Rnk×nk, such that

D1 = DT
1 > 0, G1 +GT

1 = 0,

−PΣ <

[
C1

J1

]T [−D1 G1

GT
1 D1

] [
C1

J1

]
, (36)

D2 = DT
2 > 0, G2 +GT

2 = 0,

RΣ <

[
C2

J2

]T [−D2 G2

GT
2 D2

] [
C2

J2

]
, (37)

where RΣ = RΣ(PΣ) as in (26)-(28).

Example 4 Let A(ρ) = −(1 + ε)I2 + ρI2. Here A0 =
−(1 + ε)I2 and A1 = I2. It is clear that if ε > 0, A(ρ) is
Hurwitz for all ρ ∈ [−1, 1] whereas if ε < 0, A(ρ) is not
Hurwitz for all ρ ∈ [−1, 1]. Applying Theorem 4.1 with
n = 2 and m = 1

2n(n+ 1)− 1 = 2 one has

P (ρ) = P0 + ρP1 + ρ2P2

=
(
ρ[2] ⊗ I2

)T
PΣ

(
ρ[2] ⊗ I2

)
R(ρ) = AT (ρ)P (ρ) + P (ρ)A(ρ)

=
(
ρ[3] ⊗ I2

)T
RΣ

(
ρ[3] ⊗ I2

)
where PΣ is [

P0 0.5P1

0.5P1 P2

]
and RΣ is AT

0 P0 + (∗) $ $
0.5AT

0 P1 + 0.5AT
1 P0 + (∗) AT

0 P2 +AT
1 P1 + (∗) $

0 0.5AT
1 P2 + (∗) 0

 .

Let J1 = [02×2 I2], C1 = [I2 02×2], J2 = [04×2 I4] and
C2 = [I4 04×2] as in Theorem 4.1. Using the MATLABTM

LMI Toolbox [7] one can solve (36) and (37) with ε =
0.001. On the other hand, for ε = −0.001 no solution to
the inequalities (36) and (37) exists. Theorem 4.1 thus gives
the same results as the direct stability analysis.

Example 5 Let A(ρ) = A0 + ρA1 where

A0 =

1.1132 1.6802 −1.8252 −0.5279
1.2328 −0.8224 −0.3503 −0.8995
2.8858 1.9407 −3.1417 −1.1186
1.5929 0.1522 −0.4807 −2.0469

 ,

A1 =

 0 −7.7372 0 0
7.7372 0 0 0

0 0 0 0
0 0 0 0


Using the method of [16], one can show that the matrix
A(ρ) is Hurwitz if and only if ρ ∈ (−0.9688, 0.5024).



In this example, n = 4, r = rank(A1) = 2 and m =
1
2 (2nr − r2 + r) = 7. The parameter-dependent Lyapunov
matrix P (ρ) =

∑7
i=0 ρ

iPi satisfies the matrix inequality
A(ρ)P (ρ)+P (ρ)AT (ρ) < 0 for all ρ ∈ R but it is positive-
definite only when ρ ∈ (−0.9688, 0.5024). For this special
example, P7 = 04×4 which shows that the upper bound of
the degree of the polynomial Lyapunov matrix is not tight.
On the other hand, the matrix inequalities (36) and (37),
have no solution. This is expected, since [−1, 1] is not a
subset of (−0.9688, 0.5024).

Let now A(ρ) = A0 + ρA′
1 and A′

1 = 0.5A1. The
exact stability domain for this system is (−1.9376, 1.0048).
Applying the algorithm of Theorem 4.1, and using the
MATLABTM LMI Toolbox [7], it can be verified that
the inequalities (36) and (37) are indeed feasible. This
result agrees with the direct analysis, since [−1, 1] ⊂
(−1.9376, 1.0048) and thus A0 + ρA′

1 is Hurwitz for all
ρ ∈ [−1, 1].

Remark 3 Notice that when A(ρ) is nominally stable, i.e.,
when the matrix A0 is Hurwitz, the inequality (36) is not
necessary. This is due to the fact that A0 Hurwitz along
with inequality (37) guarantees that P (0) > 0. Also, (37)
ensures that P (ρ) > 0 for all ρ ∈ [−1, 1]; see [9]. Assuming
therefore nominal stability, one can discard the inequality
(36), thus reducing considerably the number of variables in
the convex feasibility problem of Theorem 4.1.

V. CONCLUSIONS

In this paper we propose a class of parameter-dependent
Lyapunov matrices P (ρ) which can be used to test
the stability of linear, time-invariant, parameter-dependent
(LTIPD) systems of the form ẋ = (A0 + ρA1)x where
ρ ∈ Ω. The proposed Lyapunov matrix has polynomial
dependence on the parameter ρ of a known degree and
can be used to derive exact (i.e., necessary and sufficient)
conditions for the stability of LTIPD systems. We show
that checking these conditions over a compact interval can
be cast as a convex programming problem in terms of
linear matrix inequalities without conservatism. Finally, it
should be pointed out that the results of [13] as well as of
the Example 5 indicate that the degree of the polynomial
dependence given in Theorem 3.1 is only an upper bound
(not tight) and the question of the lowest degree polynomial
Lyapunov matrix is still open.
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