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Abstract

This paper addresses the problem of low-bias control for
an active magnetic bearing (AMB) subject to voltage
saturation. Using a generalized complementarity flux
condition, a simple, three-dimensional model is used
to describe the dynamics of the low-bias mode of op-
eration. Several stabilizing controllers are derived by
applying recent results from nonlinear control theory.

1 Introduction

It is envisioned that future commercial and military
spacecraft will have an unprecedented degree of auton-
omy made possible by increased on-board processing
speed and memory capabilities. This increase in on-
board processing, autonomous sensing and communi-
cation capabilities translates directly to large require-
ments for on-board available power. Traditional chem-
ical batteries have several limitations stemming from
their inherent unreliability, low depth of discharge,
heavy weight, limited life, etc.
An alternative to the chemical batteries for energy stor-
age and power generation for future spacecraft has
been proposed in recent years, namely, that of elec-
tromechanical (e.g., flywheel) batteries [9]. Taking into
consideration that most orbiting spacecraft already in-
corporate moving wheels (e.g., reaction, momentum
wheels, CMG’s) for attitude control, the prospect of
using these spinning wheels to also store energy seems
natural and appealing. Several technical challenges
need to be overcome, however, before efficient flywheels
become a part of a standard spacecraft power subsys-
tem. One such major challenge is the design of fly-
wheels supported on low-loss active magnetic bearings
(AMB’s).
Efficient operation of flywheel electromechanical bat-
teries necessitates minimization of energy losses (me-
chanical and other). Mechanical losses (friction) are re-
duced via the use of AMB’s. Ohmic and eddy current
losses on the other hand (which can be quite significant
for high-speed flywheels) can be reduced by minimiz-
ing or eliminating the bias current during AMB opera-

tion [4, 7]. However, owing to the nonlinear flux/force
characteristic reduction or elimination of the bias cur-
rent leads to a nonlinear region which is dominated,
among other things, by slew-rate force limitations close
to the origin [2]. These limitations manifest themselves
as saturation constraints on the power amplifier voltage
driving the coils of the electromagnets. The problem of
designing low-bias control laws for AMB’s subject to
saturation constraints is a thus a nontrivial nonlinear
control problem.
In this paper we use recent results from the theory of
saturating control to design stabilizing control laws for
AMBs in low bias operation, subject to voltage satura-
tion constraints. The main design tools in this frame-
work are passivity and the asymptotic small-gain theo-
rem and nested saturation designs due to Teel [13]. We
present three low-bias designs for an AMB. The first
two designs ensure global asymptotic stability in case
of soft saturation constraints. The third design ensures
global asymptotic stability in case of hard voltage sat-
uration constraints.
All controllers proposed in this work require flux feed-
back. Since flux is not easily measurable in prac-
tice, a nonlinear observer is designed and incorpo-
rated in certainty-equivalence implementations of the
state-feedback control laws. The stability proof of this
certainty-equivalence scheme is given for each of the
three control laws. Numerical examples demonstrate
the theoretical developments.

2 Modeling of an AMB in Low Bias Mode

The simplified AMB model used in this paper consists
of two identical electromagnets, which are used to move
a rotor of mass m in one dimension. To regulate the
position x of the mass to zero, the control designer uses
the voltage inputs of the electromagnets, V1 and V2, in
order to exert attractive forces on the rotor; see Fig. 1.
Neglecting gravity, the total force generated by each
electromagnet is given by [10]

Fi =
Φ2

i

µoAg
, i = 1, 2 (1)
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Figure 1: Simplified AMB geometry.

where Φi is the total magnetic flux of the i-th elec-
tromagnet, Ag is the cross sectional area of the airgap
at the pole, and µo is the permeability of free space
(= 1.25 × 10−6 H/m). In non-zero bias operation we
distinguish the total magnetic flux into the bias flux Φ0

and the perturbation (control) flux ∆Φi generated by
the i-th electromagnet. The total flux generated by the
i-th electromagnet is then Φi = Φ0 + ∆Φi, (i = 1, 2).
Enforcing the following generalized complementary flux
condition (gcfc) on the perturbation flux ∆Φi [14]

∆Φ1 = ∆Φ, ∆Φ2 = 0 when ∆Φ ≥ 0
−∆Φ2 = ∆Φ, ∆Φ1 = 0 when ∆Φ ≤ 0

(2)

one obtains the equation for the dynamics of the system
as

ẍ =
1
κ
(∆Φ |∆Φ|+ 2Φ0∆Φ) , (3)

where κ = mµoAg. The gcfc operation constraint tries
to reduce the overall flux, thus ensuring smaller power
losses.
When the bias flux is taken to be zero (Φ0 = 0) our
gcfc model reduces to the standard complementary flux
condition (cfc) operation mode [14].
Using the gcfc (2) Faraday’s law gives the electrical
dynamics simply as1

Φ̇i = ∆Φ̇i =
Vi

N
, i = 1, 2, (4)

where N is the number of turns of the coil of each elec-
tromagnet. Next, we introduce the generalized voltage
V such that

∆Φ̇ =
V

N
(5)

and we define the non-dimensionalized state and con-
trol variables x1 = x/g0, x2 = ẋ/Φsat

√
g0/κ, x3 =

∆Φ/Φsat, v = V
√
g0κ/NΦ2

sat along with the non-
dimensionalized time τ = tΦsat/

√
g0κ where g0 is the

nominal air-gap and Φsat is the value of the satura-
tion (maximum) flux. Then one obtains the following
system in state-space form

x′1 = x2 (6a)
x′2 = εx3 + x3|x3| := εx3 + φ(x3) (6b)
x′3 = v (6c)

where ε = 2Φ0/Φsat (0 ≤ ε � 1) and where prime
denotes differentiation with respect to the new inde-
pendent variable τ . Notice that for ε = 0 this model

1In (4) the coil resistance has been neglected for simplicity.

reduces to the zero bias case. Zero-bias control design
for AMBs is especially challenging because of the loss
of linear controllability when ε = 0. Reference [14]
presents a complete analysis of the zero-bias AMB con-
trol problem.
In this paper we are primarily interested in the case
where the maximum value of v is limited due to voltage
saturation. If, for instance, it is known that |V | ≤ Vmax

then (6c) must be replaced with

x′3 = satλ(v) := λ sat
( v
λ

)
(7)

where λ = Vmax
√
g0κ/NΦ2

sat. For notational simplic-
ity, henceforth we use a dot to denote differentiation
with respect to τ .

3 Passivation Design

In this section we develop a passivation design to sta-
bilize the low-bias AMB system (6). Our design starts
with the preliminary feedback

v = −k2x2 − k3x3 + u , k2, k3 > 0. (8)

As shown below this feedback law (with u = 0) renders
the equilibrium x = 0 stable with a Lyapunov function
V satisfying V̇ ≤ 0. To compute such a V we introduce
the new variable

z := k2x1 + (k3/ε)x2 + x3 , (9)

and rewrite the system (6)-(8) as

ż =
k3
ε
x3|x3|+ u (10a)

ẋ2 = εx3 + x3|x3| (10b)
ẋ3 = −k2x2 − k3x3 + u . (10c)

Then the choice

V (z, x2, x3) = ε2
∫ z

0

sat(s) ds+
k2
2
x2

2 +
ε

2
x2

3 +
1
3
|x3|x2

3

satisfies
V̇ = ε sat(z)k3x3|x3| − εk3x

2
3 − k3x

2
3|x3|

+ (ε2sat(z) + εx3 + x3|x3|)u (11)

≤ −k3x
2
3|x3|+ (ε2sat(z) + εx3 + x3|x3|)u ,

which means that the system (10) with input u and out-
put y = ε2sat(z) + εx3 + x3|x3| is passive. With u = 0,
the origin x = 0 is stable but not asymptotically stable,
because the system (10) has a continuum of equilibria
at (z0, 0, 0), z0 ∈ 	. To increase the negativity in (11)
we apply the feedback

u = −satλ(y) = −satλ(ε2sat(z) + εx3 + x3|x3|)
which ensures global asymptotic stability for any satu-
ration level λ > 0.
Theorem 1 Consider the system (6), and let the vari-
able z be as in (9). Then, the control law

v = −k2x2 −k3x3 − satλ(ε2sat(z)+ εx3 +x3|x3|) (12)

where k2, k3, λ > 0, globally asymptotically stabilizes the
origin x = 0.
Proof: The result follows from (11) and a straightfor-
ward application of LaSalle’s invariance principle.
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4 Small Gain Design

Our next design makes use of an asymptotic small gain
theorem by Teel [13]. Before presenting the main result
from [13] used herein, we let |y| := maxi |yi| denote the
norm for a vector y ∈ 	n, and for a signal y(t), we
denote ‖y‖a = limt→∞ sup |y(t)|. The following result,
adapted from [13, Theorem 3], is instrumental in our
design:

Proposition 1 Consider the system

ẋ = Ax+Bu+ w (13a)
ż = f(z, u, d) (13b)
w = g(z, u, d) (13c)

where x ∈ 	n1 , z ∈ 	n2 , A is marginally stable; that
is, there exists a matrix P = PT > 0 satisfying ATP +
PA ≤ 0, the function f(z, u, d) is locally Lipschitz, and
the function g(z, u, d) is continuous satisfying

lim
|(z,u)|→0

|g(z, u, 0)|
|(z, u)| = 0 . (14)

Suppose, for the z-subsystem (13), there exists a lo-
cally Lipschitz class-K function γ1(·) such that, for each
bounded u(t) and d(t), the solution z(t) exists for all
t ∈ [0,∞), and

‖z‖a ≤ γ1(‖u‖a + ‖d‖a) . (15)

Then, there exist positive constants ∆ and λ∗ such that,
for each bounded d(t) satisfying ‖d‖a ≤ ∆, and for each
λ ∈ (0, λ∗], the control law

u = −satλ
(
BTPx+ d

)
, (16)

perturbed by d, ensures that the closed-loop solutions
(x(t), z(t)) are bounded, and

‖(x, z)‖a ≤ γ2(‖d‖a) (17)

for some class-K function γ2(·). �
An advantage of the saturation design (16) is that it
guarantees robustness against small measurement dis-
turbances d. When the disturbance converges to zero,
that is, when ‖d‖a = 0, then (17) implies ‖(x, z)‖a = 0,
which means that the trajectories (x(t), z(t)) converge
to the origin.
We now apply this design methodology to the AMB
system (6). Here we assume that there are no measure-
ment disturbances, i.e., d(t) ≡ 0, and we design a glob-
ally asymptotically stabilizing control law as in (16). In
Section 6 we will implement this control law with state
estimates obtained from an observer, and prove stabil-
ity using the robustness property (17), where d is the
observer error.
With the preliminary feedback (8), the (x2, x3)-
subsystem plays the role of the z-subsystem in Propo-
sition 1 because, as we prove in Theorem 2 below, it
satisfies the gain property (15). Next, we note that the
system (6)-(8) is of the form (13a) with

A =

[ 0 1 0
0 0 ε
0 −k2 −k3

]
, B =

[ 0
0
1

]
, w =

[ 0
x3 |x3|

0

]
.

(18)

The design in Proposition 1 is now applicable because
A is marginally stable, and g(z, u, d), given by w above,
satisfies (14).
Theorem 2 For the system (6), let A and B be as in
(18) with design parameters k2, k3 > 0, and let P =
PT > 0 be such that ATP + PA ≤ 0. Then, there
exists a constant λ∗ such that, for every λ ∈ (0, λ∗], the
control law

v = −k2x2 − k3x3 − satλ
(
BTPx

)
(19)

globally asymptotically stabilizes the equilibrium x = 0.
Proof: We first note that the Jacobian linearization
of the closed-loop system is ẋ = (A− BBTP )x, where
A − BBTP is Hurwitz because (A,B) is controllable.
Thus, the equilibrium x = 0 is locally asymptotically
stable. To prove global attractivity of x = 0, we employ
Proposition 1 and show that the z-subsystem, rewritten
here as

ẋ2 = εx3 + x3 |x3|
ẋ3 = −k2x2 − k3x3 + u ,

(20)

satisfies the gain condition (15). To this end, we let

V =
k2
2
x2

2 +
ε

2
x2

3 + µx2x3 +
1
3
|x3|x2

3 (21)

where 0 < µ < min{k3,
√
k2ε, 4εk2k3/(4εk2 + k2

3)} It
can be readily shown that V is positive definite. The
derivative of V along the trajectories of (20) is

V̇ = −εµ̄x2
3 − k2µx2

2 − µk3x2x3

−µ̄|x3|x2
3 + εx3u+ u|x3|x3 + µx2u

≤ −a1|x|2 + (ε+ µ)|x||u|+ |u||x3|2 − µ̄|x3|3

where a1 = 1
2 (εµ̄ + µk2 −

√
(εµ̄− µk2)2 + µ2k2

3) > 0
and µ̄ = k3 − µ. Using Young’s inequality [8, p. 75] we
have

|u||x3|2 ≤ 4
27

1
µ̄2

|u|3 + µ̄|x3|3

Thus,
V̇ ≤ −a1|x|2 + a2|x||u|+ a3|u|3 (22)

where a2 = ε + µ and a3 = 4/27µ̄2. Upon completion
of squares, the last inequality yields

V̇ ≤ −(a1 − a2
2
b)|x|2 + a2

2κ
|u|2 + a3|u|3 (23)

where b a positive number such that b < 2a1/a2.
From (23) it follows that V̇ < 0 whenever |x| >√
c1|u|2 + c2|u|3 = ρ(|u|) with c1 = a2/b(2a1 − a2b)

and c2 = 2a3/(2a1 − a2b). Now let c3 = 1
2 (k2 + ε −√

(k2 − ε)2 + 4µ2) and c4 = k2 + ε+
√
(k2 − ε)2 + 4µ2

and note that

α(|x|) = c3|x|2 ≤ V (x) ≤ c4|x|2 + 1
3
|x|3 = ᾱ(|x|).

Using [3, Fact 37] we conclude that

‖(x2, x3)‖a ≤ γ1(‖u‖a) (24)

where γ1(s) = α−1(ᾱ(ρ(s))) =√
b1s2 + b2s3 + (b3s2 + b4s3)3/2, b1 = c4c1/c3, b2 =

c4c2/c3, b3 = c1/(3c3)2/3, b4 = c2/(3c3)2/3. Thus,
from Proposition 1, the solution x(t) exists for all
t ∈ [0,∞), and ‖x‖a = 0, that is, the equilibrium x = 0
is globally attractive.
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5 Nested Saturation Design

The control laws (12) and (19) are only partially sat-
urated. We now design a completely saturated control
law following the nested saturation scheme of Teel [12].
Unlike the general procedure in [12], in the following
proposition we explicitly compute admissible saturation
levels.

Proposition 2 Consider the system (6). The control
law

v = −satλ1(x3+satλ2(
x2

ε
+x3+satλ3(

x1

ε
+
2
ε
x2+x3)))

(25)
with λ1 > 0 and

0 < λ2 < min{λ1

2
,
ε

5
}, 2

ε
λ2

2 < λ3 <
1
2
(λ2−1

ε
λ2

2) (26)

globally asymptotically stabilizes the equilibrium x = 0.

Proof: With y3 := x3, y2 := (x2/ε) + x3, and y1 :=
(x1/ε) + (2/ε)x2 + x3, the closed-loop system (6),(25),
is rewritten as

ẏ1 = y2 + y3 + v + (2/ε)y3|y3| (27a)

ẏ2 = y3 + v +
1
ε
y3|y3| (27b)

ẏ3 = v = −satλ1(y3 + v2) , (27c)

where v2 = satλ2(y2 + satλ3(y1)). First, we note from
the feedforward structure that the closed-loop system
does not exhibit finite escape time. Next, because
|v2| ≤ λ2 in (27c), the Lyapunov function V3 = 1

2y
2
3 sat-

isfies V̇3 < 0 whenever |y3| > λ2 and, hence ‖y3‖a ≤ λ2.
Using λ2 < λ1/2, it follows that the saturation function
satλ1(y3 + v2) operates in its linear region after a finite
time t1. Thus, for t ≥ t1,
v = −y3 − v2 = −y3 − satλ2(y2 + satλ3(y1)) , (28)

and the y2-subsystem is

ẏ2 = −satλ2(y2 + v3) + w2 (29)

where v3 = satλ3(y1) and w2 = 1
εy3|y3|. Using the

Lyapunov function V2 = 1
2y

2
2 one can show that V̇2 < 0

whenever |w2| < λ2 and |y2| > |v3| + |w2|. Because
‖w2‖a ≤ 1

ε‖y3‖2
a ≤ 1

ελ
2
2 < λ2 from (26), it follows that

‖y2‖a ≤ ‖v3‖a +‖w2‖a. From this inequality and using
‖v3‖a ≤ λ3, ‖w2‖a ≤ 1

ελ
2
2 and the last inequality in

(26), it is not difficult to show that ‖y2‖a+‖v3‖a < λ2;
that is, after a finite time t2 ≥ t1, v2 = satλ2(y2+v3) =
y2 + v3 which implies that v = −y2 − y3 − satλ3(y1).
This means that, for t ≥ t2, the y1-subsystem is

ẏ1 = −satλ3(y1) + w3 (30)

where w3 = (2/ε)y3|y3|. We first note that a λ3 satisfy-
ing the last inequality in (26) exists because λ2 < ε/5
in the second inequality. Next, because λ3 > 2λ2

2/ε, it
follows from (30) that ‖y1‖a ≤ ‖w3‖a ≤ (2/ε)λ2

2 < λ3,

which means that, after a finite time t3, satλ3(y1) = y1.
Thus, for t ≥ t3 ≥ t2, the closed-loop system is

ẏ1 = −y1 + (2/ε)y3|y3| (31a)
ẏ2 = −y1 − y2 + (1/ε)y3|y3| (31b)
ẏ3 = −y2 − y2 − y3 . (31c)

We conclude the proof by showing that this system is
globally asymptotically stable. Indeed, the derivative
of the Lyapunov function

V = 3y21 − 4y1y2 + 8y22 + (8/3ε)y3|y3|2 (32)

along the trajectories of (31) is

V̇ = −2y21 − 8y1y2 − 16y22 − (8/ε)y3|y3|2 , (33)

which is negative definite. Thus, the system (6), (25)
is globally asymptotically stable.

6 Flux Observer Design and Output Feedback

Thus far, our designs relied on the availability of flux
measurements, which may be difficult in practice [5].
Because the system nonlinearity φ(x3) = x3|x3| in (6)
is non-decreasing, we pursue the observer design of Ar-
cak and Kokotović [1] for this class of nonlinearities.
When ε is small as in low bias applications, a full-order
design gives rise to large observer transients. We cir-
cumvent this problem with a reduced-order variant of
the observer in [1]:

Proposition 3 Consider the system (6) with the out-
put y = x2, and define the new variable χ := x3−(k/ε)y
where k > 0 is a design parameter. With the reduced-
order observer

˙̂χ = v − k (χ̂+ k

ε
y)− k

ε
φ(χ̂+

k

ε
y) (34a)

x̂3 = χ̂+
k

ε
y , (34b)

the observer error d(t) := x̂3(t)−x3(t) satisfies, for all t
in the maximal interval of existence [0, tf ) of (6), (34),

|d(t)| ≤ |d(0)|e−kt. (35)

Proof: First, notice that the observation error d =
χ̂− χ satisfies

ḋ = ˙̂χ− χ̇ = −kd− k
ε

[
φ(χ̂+

k

ε
y)− φ(χ+ k

ε
y)

]
. (36)

Next, because the function φ(x3) = x3|x3| is non-
decreasing, we get

(χ̂− χ)
[
φ(χ̂+

k

ε
x2)− φ(χ+ k

ε
x2)

]
≥ 0 , (37)

from which the derivative of V = 1
2d

2 satisfies V̇ =
−kd2 = −2kV , thus proving (35).
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Theorem 3 Consider the system (6) and the observer
(34). Either one of the control laws (12), (19), or (25),
implemented with x̂3 instead of x3, globally asymptoti-
cally stabilizes the origin (x, χ̂) = 0.

Proof: We first prove stability for the passivation
design (12). When x3 is replaced with x̂3 = x3 + d, the
resulting output feedback control law ṽ differs from the
state feedback control law v in (12), by

d̃ := v − ṽ = k3d+ satλ(ε2sat(z + d)
+ ε(x3 + d) + (x3 + d)|x3 + d|)
− satλ(ε2sat(z) + εx3 + x3|x3|) .

Then, the derivative of the Lyapunov function (3),
along the trajectories of (6) with ṽ, satisfies

V̇ ≤ −k3|x3|3 − (ε2sat(z) + εx3 + x3|x3|)d̃ . (38)

Using the inequalities x3|x3|d̃ ≤ (k3/4)|x3|3 +
(4/k3)2|d̃|3 (to see this, consider the two cases |d̃| ≤
(k3/4)|x3| and |x3| ≤ (4/k3)|d̃|), and εx3d̃ ≤
(k3/4)|x3|3 + ε|d̃|

√
(4ε/k3)|d̃| (consider the two cases

|d̃| ≤ (k3/4ε)|x3|2 and |x3| ≤
√
(4ε/k3)|d̃|, we obtain

V̇ ≤ −k3
2
|x3|3 +

[
ε2|d̃|+

(
4
k3

)2

|d̃|3 + ε|d̃|
√

4ε
k3

|d̃|
]
.

Next, letting T be in the maximal interval of existence
[0, tf ) of the closed-loop system and integrating both
sides of (6) from 0 to T , we obtain

V (x(T ))−V (x(0)) ≤
∫ T

0

[
ε2|d̃|+

(
4

k3

)2

|d̃|3 + ε|d̃|
√
4ε

k3
|d̃|

]
dt .

(39)

Because d̃ is exponentially decaying from (35) and (6),
the integral on the right-hand side has an upper-bound
which is independent of T . This proves that tf = ∞,
and the trajectories are bounded. Finally, because d
converges to zero, it follows from LaSalle’s invariance
principle that the solutions converge to the largest in-
variant set where d = 0. When d = 0, the output
feedback control law coincides with the state feedback
control law and, hence, the largest invariant set is the
origin. This concludes the proof of global asymptotic
stability for the passivation design (12).
When the small gain design (19) is implemented with
x̂3, the closed-loop system is

ẋ1 = x2 (40a)
ẋ2 = εx3 + x3|x3| (40b)

ẋ3 = −k2x2 − k3(x3 + d)− satλ(BTP x̂) (40c)

where x̂ = [x1 x2 x̂3]T . To show that there is no
finite escape time, we assume tf < ∞ and let T ∈
[0, tf ). The arguments used in the proof of Theorem 2
show that the (x2, x3) subsystem is input-to-state sta-
ble [11, Lemma 2.14] with respect to the disturbance
ũ = −k3d− satλ(BTP x̂); that is, for all t ∈ [0, T ],

|(x2(t), x3(t))| ≤ β(|(x2(0), x3(0))|, t) + γ( sup
t∈[0,T ]

(ũ) ).

(41)

where β(·, ·) is a class-KL function function and γ(·) is a
K-class function. Since β(·, t) is a decreasing function in
t and because |d(t)| ≤ |d(0)| and |satλ(BTP x̂(t))| ≤ λ,
it follows from (41) that, in the interval t ∈ [0, T ],
|(x2(t), x3(t))| is bounded by a function of initial condi-
tions that is independent of T . Likewise, using ẋ1 = x2

and (41), we conclude that |x1(t)| has an upper bound
which is a continuous function of T , which contradicts
the assumption tf < ∞ because T can be arbitrarily
close to tf .
To prove stability of the equilibrium (x, d) = 0, we
represent the closed-loop system (40) as in Proposition
1, where the z-subsystem is as in (20), with u replaced
with ũ = u− k3d, and

w = g(z, u, d) =

[ 0
x3|x3|
−k3d

]
(42)

in (18). Then, the same argument as in Theorem 2
implies that (24) holds for ũ = u − k3d and, from
‖ũ‖a ≤ max{1, k3}(‖u‖a + ‖d‖a), the gain condition
(15) of Proposition 1 holds. Because ‖d‖a = 0, it fol-
lows from (17) that the equilibrium (x, d) = 0 is glob-
ally attractive. Finally, it is not difficult to show from
the Jacobian linearization that the equilibrium is also
stable. Having established stability and attractivity, we
conclude that the equilibrium is globally asymptotically
stable.
The proof of stability for the nested saturation design
(25) is straightforward because the arguments in the
proof of Proposition 2 continue to hold when x3 is re-
placed with x̂3 = x3 + d where ‖da‖ = 0.

7 Numerical Examples

In this section we illustrate the previous theoretical re-
sults via a series of numerical simulations. Due to space
limitation only the results for controllers (12) and (19)
are shown here. We consider a magnetic bearing with
characteristics similar to those in Ref. [6]. The bias
voltage is chosen as Φ0 = 10 µWb. This corresponds to
ε = 0.1 and it is an order of magnitude less than what
is typically used in practice2. The results of the simula-
tions with the control law (12) for two different values
of voltage saturation Vmax = 10 V and Vmax = 1 V are
shown in Figs. 2. In all cases, the observer in (34) was
implemented to estimate the flux. Simulations with
several values of the observer gain k were performed.
As shown in Fig. 2 the trajectories of the observer-
controller interconnection tend to the trajectories of the
state-feedback controller with increasing k.
The results of the simulations with the control law (19)
for Vmax = 10 V and Vmax = 5 V are shown in Figs. 3.
Simulations with other saturation levels and initial con-
ditions give similar results.

2A value of 40-50% of the saturation flux is used for most
typical biasing schemes.
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Figure 2: State-feedback and output-feedback system tra-
jectories with control law (12) and different ob-
server gains: k = 0.5, k = 1, k = 10. Controller
gains k2 = k3 = 1.
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Figure 3: State-feedback and output-feedback system tra-
jectories with control law (19) and different ob-
server gains: k = 0.5, k = 1, k = 10. Controller
gains k2 = k3 = 1.

8 Conclusions

Low-bias control of an active magnetic bearing sub-
ject to voltage saturation is a challenging control prob-
lem. In this paper we have presented three different
flux-based designs for low-bias operation of active mag-
netic bearings using ideas from passivity, the asymp-
totic small-gain theorem of Teel, and nonlinear sat-
urated control. Since flux is not typically available
for feedback we also propose a nonlinear reduced-order
observer to estimate the flux from velocity measure-
ments. We have shown that this flux observer, when in-
terconnected in a certainty-equivalence implementation
with the state-feedback controllers, results in a globally
asymptotically stable system.
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