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Abstract

In this paper we develop two time-invariant control
laws for a unicycle-type mobile robot. A mobile robot
of this type is an example of a system with a nonholo-
nomic constraint. Similarly to the majority of results in
the literature thus far, the controllers are based on the
robot’s kinematic model. They do not directly address
realistic factors such as motor dynamics, quantization,
sensor noise or delay which may affect the robot sta-
bility and performance. We use a Khepera robot to
compare the performance of these controllers in a real-
istic situation that includes all the previous factors.

Introduction

An underactuated system is one with fewer control in-
puts than independent generalized coordinates. Typi-
cally, underactuated systems arise because these gen-
eralized coordinates are subject to some non-integrable
motion constraint, decreasing the degrees of freedom of
the system, while the number of control inputs remains
the same. These systems are called nonholonomic.
Several examples which involve nonholonomic con-
straints can be found in real world applications, such
as mobile robots, bicycles, cars, underactuated axi-
symmetric spacecraft, underwater vehicles, etc. Sev-
eral control laws have been proposed for stabilizing
such systems. Omne approach is to use time-varying
controllers [6, 8, 5]. However, most of time-varying
controllers have slow convergence rates [4]. More-
over, time-varying controllers may be non-robust to
certain model perturbations [3]. Experimental valida-
tion of time-varying controllers has been performed in
[6]. An alternative approach is to use time-invariant,
non-smooth controllers, such as those in [9, 2, 1, 10].
These control laws ensure exponential convergence
rates. Their robustness properties, however, is still a
topic under investigation. This paper provides a small
step towards this goal by providing some indication on
the robustness properties of time-invariant, discontinu-
ous controllers by implementing these controllers on a
unicycle-type robot called Khepera. Ways to improve
the controller performance are also discussed.
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Figure 1: Definition of configuration variables.

Kinematic Equations

Consider a unicycle-type robot with two wheels, as
shown in Fig. 1. The kinematic equations are

& =wcosy, @=wvsiny, y=w (1)

The kinematic model of the mobile robot has two con-
trol inputs: velocity v and angular velocity w (see
Fig. 1). Equation (1) can be transformed to a normal
chained (or power) form by a state and input transfor-
mation. Using the state transformation

Ty =xcosy+ysiny, zx =1 (2)
T3 = xsiny — y cosy (3)

one arrives at two slightly different systems, depending
on the input transformation used. Systems I and II are
given by

T =ur, 2=u2, <3=2T1U2
(I) { V=uU; +T3U2, W=1U2 (4)

T
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The two systems are completely equivalent when then
inputs are v and w but are different when the inputs are
up and us. In particular, the two systems differ by the
term z3us in the ; equation. Our experimental results
show that this term has a significant effect in the tran-
sient response of the robot. This can be seen by observ-
ing that for System I angular velocity always generates
forward velocity. In other words, for any control law u;



and us that stabilizes System I, forward and angular ve-
locities are coupled, a rather awkward condition. Also,
for System I, large velocity commands may be gener-
ated when x3 is large. Although it is easier to design a
control law w; and us using System I, its practical im-
plementation favors System II. This fact has also been
observed by McCloskey and Murray [6, 7] where they
implemented their controllers (derived based on Sys-
tem I) using System II. Luckily, it turns out that the
extra term zzus does not destroy stability. A formal
proof of the statement can be found in Proposition 2
below. Our experiments actually showed that working
with System IT was always beneficial.

Controller 1
The first controller is given below

uy = —kzy + Bi(z, s), uz = —kzy + B2(z,s) (6)

s(z) s(z)
where (3, um%ij%xg nd (s um%+m§x1

Proposition 1 The control law given by Eq. (6) glob-
ally asymptotically stabilizes System I for all initial
conditions such that £1(0) # 0 and z2(0) # 0, if u > 0
and k > 0. Moreover, if u > 2k > 0 the control in-
puts w1 and uz are bounded along the trajectories of
the closed-loop system.

Proof: The reader may refer to [2, 9] for the complete
proof. ™

The derivation of the previous control law makes used
of ideas from invariant manifold theory. Specifically, it
can be shown that M = {z € R? : s(z) = 0} where
s(z) = x3 — x122/2 is an invariant manifold for the
closed-loop system. The nonlinear terms in (6) render
M attractive and the linear terms drive any trajectory
on M to the origin [9].

Singularity avoidance

The controller given by Eq. (6), is not defined on
the x3 axis. For initial conditions near the x3 axis,
large control inputs may result. A modification of con-
troller (6) is needed for this singular case. To this
end, let |n| = /B + B3 /u = |s|/\/x? + x3. Since the
control input increases with |n|, this is a direct mea-
sure of the magnitude of the control input. Let us
now denote the following neighborhood of the x5 axis
Dy = {(x1,x2,23) : |n| > m }. The value n, is chosen
by experimentation in order to achieve a reasonable
control input and transient response. The set where
In| < mp will be denoted by Dj. For initial conditions
in the region D, (where || is large), we apply the fol-
lowing simple control law

up = kssgn(s), wu2 =0 (7)

to escape from Dy, where k; is some constant. A sim-
ple argument shows that with the control law (7) the
trajectories leave Dy in finite time. To complete the
design of Controller 1, one must make sure that the

control law given in Eq. (6) will not bring the closed-
loop trajectory to the region Dy. A simple calculation
shows that 7 = —(u — 2k)/2n and || is decreasing al-
ways under this control law. Thus, once the system
leaves Dy, it will never enter this region again.

We now turn our attention to System II. In this case, s
is not invariant under the simple feedback and one can-
not apply the previous analysis to prove global asymp-
totic stability. However, local asymptotic stability can
be shown using the properties of homogeneous systems.
Before doing that, we show that the control law (6)
achieves boundedness for the system in (5).

Consider the radially unbounded, positive definite
function V = z? + z3 + z%. Its derivative along (5)
and (6) is calculated as V = —2k(z? + 22) < 0.
This shows that 1 — 0, x5 — 0 as t — oo and z3 is
bounded. To show local stability we need the following
mathematical preliminaries.

Definition 1 For any set of positive scalars r; > 0,
it = 0,...,n, the dilation operator AY is defined as
Atz = [Ny Azy ... Xz ]P0 X > 0. The ho-
mogeneous norm associated with the dilation Af is a
continuous function p: R™ — R4 if (i) p(x) > 0, and
p(x) =0 if and only if £ = 0, and (ii) p(ALz) = Ap(z).
Such a norm always exists.

The next proposition basically states that the extra
term —x3uy in the %, equation for System II does not
destroy asymptotic stability.

Proposition 2 The control law given by Eq. (6) lo-
cally asymptotically stabilizes the System II, if k > 0
and p > 0. Moreover, if u > 2k the control law is
bounded along the closed-loop trajectories.

Proof: Let f(z) = [u1 us mus]? and g(z) =
[~z3uz 0 0]T, then the equation for System I is
given by & = f(z) and the equation for System II is
given by & = f(z) + g(z). The fact that the con-
trol law in (6) globally exponentially stabilizes the
System I can be shown using the Lyapunov function
V(z1,@2,73) = (2} + 22)? + s®. The derivative of V
along the closed-loop trajectories of System I is given
by V = LV (z) = —2k(2% +23)* —us®> < —yV(z) <0
for all z € R, where v = min{4k,u} > 0. The
derivative of V' along the closed-loop trajectories of
System II is given by V = LV (x) + L,V (z), where
L,V (z) = —2(2? + 23)z123u2(2) + smazsus(z).
Consider the dilation Afx = [Az; Az, Nax3]T. Us-
ing this dilation, one obtains that s(A%z) = A\?s(z),
Bi1(A%z) = ABi(xz) and (2(A%z) = AB2(z). There-
fore, ui(Az) = —k(Az1) + ABi(z) = Au(z) and
uz(Afz) = —k(Az2) + AB2(x) = Aug(x). Thus, the
control law in Eq. (6) is homogeneous of degree one
with respect to the dilation Afz. Moreover, since
LV (ALz) = MLV (z) and L,V (ALz) = A°L,V (z),
then L;V and L,V are homogeneous functions of de-
grees four and six, respectively.

Consider now the homogeneous norm p(z) associated
with the given dilation A§.! We claim that there exists

1
!Choose, for instance, p(z) = (z} + #5 + 22)=.



¢ > 0 such that for all p(z) < ¢, [L;V(z)| > |L,V ().
To this end, let

. _ |LsV ()]
A= e ALV ) ®)
If A* > 1, let ¢ =1 and we are done. Otherwise, let a
positive scalar ¢* such that ¢* < A* < 1 and consider
the set p(z) < ¢*. Noticing that {z : p(z) < "} =
{A%y : p(y) <1, 0< X< c*}, one obtains that for
any z such that p(z) < ¢

1LV ()l
|L9V(y)|

LV ()] _ \/ILfV(ARy)I 1L
|LgV ()| ILaV(ASY)l A

where 0 < A < ¢* and p(y) < 1. From (8) we have that

LVl o A
2 >1
|Lg V(y)l A

Since z was arbitrary, this proves the assertion.
Therefore, there always exist a neighborhood of the
origin such that |LyV ()| > |LgV (2)]. Since LV (z) <
0, this implies that V' = L;V(z) + L,V (z) < 0 and
System II is (at least) locally asymptotically stable.
To show that the control law remains bounded for
> 2k > 0 it suffices to show that n remains bounded
in a neighborhood of the origin. Along the trajec-
tories of (5) with control law (6) we have that § =
—(u/2) s + xox3u2/2 and thus § = —[(p — 2k)/2]n +
wyay (402 +no1) [ (4v) = —[(u — 2k)/2] -+ 6(x). Next,
notice that n is homogeneous of degree one, whereas,
¢(z) is homogeneous of degree three. Using a simi-
lar argument as before, we conclude that for a small
enough neighborhood of the origin 7 < 0 and the con-
trol law remains bounded around the origin. ]

Controller 2

The second controller is based on a control law that
was originally developed for the stabilization problem
of an underactuated axisymmetric spacecraft [10]. It
is modified here for the case of a mobile robot. In this
controller, the control input is bounded by some finite
value regardless of the initial conditions.

Consider the following controller,

g

Tﬂ#—usa&(s,u), 1=1,2 9)

Ul':—k‘

Where v = y/2? + 2% and the saturation functions sat;
and sats are defined as

S\ T2,1 .
saty 2(s,v) = sat (;) > ifv>e (10)
sgn(s), ifv<e

with € a small number to avoid chattering in the nu-
merical implementation of the controller on a digital
computer.

Proposition 3 The control law given by Eqs. (9) and
(10) globally asymptotically stabilizes the System I for
k and p satisfying p > 2k > 0 for |n| < 1 and p >
—2k > 0 for |n| > 12. Moreover, the control input is
bounded by |u1 2| < |k| + p.

Proof: The proof involves two regions depending on
the value of n = s/v. We investigate the closed-loop
trajectories in the two regions of the state space || < 1
and |n| > 1. If |p| < 1, then sat; »(s,v) = (s/v?) z2,
and the time derivative of s is § = —(u/2)s. The time
derivative of the radially unbounded, positive definite
function Vs = 22 +a3+s> = v>+5? is therefore given by
Vi = —2kv?/v/v2 + 1—ps? < 0. The time derivative of
n = s/v,is computed as 7 = —(1/2)(p—2k/Vv2 + 1) n
It follows that if ;1 > 2k the region where |n| < 1 is
invariant. It follows that for all initial conditions in this
region the state will remain in this region and converge
to zero. This result shows that the closed-loop system
will go to origin if the initial conditions satisfy |n| < 1.
For |n| > 1, it is sat12(s,v) = sgn(s)(z21/v)
and the time derivative of s is computed as § =
—(1/2)uv sgn(s). The time derivative of = s/v is
thus computed as 7 = —(u/2) sgn(s) + kn/Vv? + 1.
Since k < 0, when || > 1, and since sgn(s) = sgn(n) it
follows that || will always decrease and the trajectory
will enter the region where |n| < 1 in finite time.
Combining the previous results, we see that the con-
troller in Eq. (9) makes the closed loop trajectories
converge to the origin for all initial conditions.

The fact that the control inputs are bounded by |k|+
follows directly from (9). m

Next, we apply Controller 2 to System II. For System II
consider the radlally unbounded, positive definite func-
tion V = (ml + m2 + x%). Its derivative is calculated

as V = —k (22 + 23)/\/2? + 3 + 1. This result holds
regardless whether |n| < L or || > 1. If &k > 0, V

is non-increasing for all x € R?. Thus, we conclude
that z; and x5 go to zero and z3 is bounded. More-

over, since —k(z? + z3)/\/7? + 3 + 1 > —k(z3 + 23 +
23)/\/ 23 + 22 + 1 > —kV, it follows that V is bounded
below by an exponentially decaying function. There-
fore, x? + 23 go to zero asymptotically (not in finite
time). Now, we have the following proposition.

Proposition 4 For k > 0 and p > 0, the control law
in Eq. (9) and (10) globally asymptotically stabilizes
the System II. Moreover, the control inputs are bounded
by |uiz| <k + p

Proof:  The proof is similar to the one of Proposi-
tion 3 and thus, omitted. It is based on the observation
that V' < 0 only if 3 converges to zero. ™

Controller Implementation

The implementation of the controllers discussed
previously was done on a Khepera mobile robot.

2The bound 1 is taken only for convenience. It could be any
positive number.



Khepera is a small-size robot developed for ed-
ucational and research purposes by K-Team
(http://www.k-team.com). It has several prox-
imity sensors (not used in this work) and can work
in semi-autonomous (server-client) or completely
autonomous mode. In the server-client mode the
robot is controlled through an RS-232 serial port by
a host computer. A C++ application running under
Windows NT was developed to implement the previous
algorithms and control the robot.

Figure 2: The Khepera robot (http://www.k-team.com).

The Khepera Robot

The Khepera mobile robot uses two DC motor-driven
wheels. The DC motors are connected to the wheels
through a 25:1 reduction gear box. Two incremental
encoders are placed on the motor axes. The resolu-
tion of the encoder is 24 pulses per revolution of motor
axis. This corresponds to 24 x 25 = 600 pulses per
revolution of the wheels or 12 pulses per millimeter of
wheel displacement. The algorithm to estimate the ve-
locity from the encoder output is implemented on the
robot. For the DC motor speed control, a native PID
controller is also implemented on the Khepera robot.
All one needs to do in order to control Khepera, is to
read position signals and issue velocity commands via
the RS-232 serial port.

Implementation of Controllers on a Windows
NT Environment

C/C++ is used to implement the previous control al-
gorithms with a nice-looking, multi-tabbed dialog box
interface, shown in Fig. 3. From the Realtime tab,
one can click the target position and orientation. The
software automatically sets up a stabilizing problem by
transforming the target position/orientation to origin
and current position/orientation to the initial condi-
tions. For the discrete implementation of the contin-
uous controller, a 32bit multimedia timer service in
NT is used and all other applications are closed to
minimize the timer latency. The software provides a
combo-box interface to select the sampling frequency
of the controller in the Configuration tab. The max-
imum sampling rate can, theoretically, be slightly over

100Hz because of the speed limitation of the RS-232
serial communication (maximum is 4.8kbytes/s for the
Khepera robot). For all experiments in this paper, we
have chosen 50Hz for the sampling frequency. The
software also features a Sensors display tab, and a
Console tab. The motor can be tested/configured via
the Performance tab. For convenience, all gains of the
controller and other parameters are stored in a .ini
file. The software comes also with an ini editor so that
the user can change the settings online. To record the
history of the control input and robot response with-
out recording time limitations, a double-buffered data
storage algorithm was developed. The robot can also
be visualized by an independent OpenGL Window that
supports 6DOF camera navigation using the keyboard.

KHEPERA ROBOT x|

Realtime | CUnerII Sensursl CUnsUIeI Perlurmancel Cunfiguraliunl Dretail Cunligl
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Figure 3: Robot control program interface.

Quantization in the Velocity Output

The velocity command of the Khepera robot is quan-
tized by 8 mm/sec. At the origin, quantization is man-
ifested as a deadzone problem. If we apply a control
law, the small velocity command will be ignored by the
robot and we will get large steady state errors. For ex-
ample, the steady state error in v was about 15 ~ 60
deg for both controllers. One simple but effective ap-
proach is to use an inverted deadzone to handle this
problem. The responses of the robot with and without
the inverted deadzone are shown in Fig. 4. A dramatic
improvement in steady-state response (especially for )
is achieved using this method. The inverted dead-zone
is implemented in software.

Scaling

Before implementing the controllers to the real robot,
we need to choose the units of several variables, or more
generally, to scale the states. By choosing the scaling
values, we can adjust the magnitude of the states, i.e.,
x1,%2 and x3. For each controller, state scaling was
chosen to give the best transient response.
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Figure 5: Comparison of responses with different units
(scaling).

Experimental Results

Mission Design

To compare the two controllers, we designed four mis-
sions: easy, normal, singular and long distance. We
defined the difficulty of each mission by the ratio be-
tween forward and sideways motions. The initial value
of v is chosen to be zero. A long distance mission was
devised to demonstrate the motor saturation due to
possible large velocity commands. During the long dis-
tance mission the advantage of Controller 2 which has
bounded input was evident. The initial conditions for
these missions are shown in Table 1. Starting from this
position, the robot is commanded to move to the origin.

Table 1: Mission specifications.

| Mission [ x (mm) [ y (mm) [ v (deg) |
Easy -100 -25 0
Normal -100 -100 0
Singular 0 -100 0
Long Distance -500 -500 0

Experimental Results

The summary of the experiments are shown in Table 2.
In this table, ‘E’, ‘N, ‘S’ and ‘L’ stand for easy, normal,
singular and long distance missions, respectively. ‘G’
stands for ‘Good’; which means that the convergence
is fast enough, i.e., within 10 seconds. ‘O’ stands for
oscillatory, which means that the trajectory did not
converge nor diverge but oscillated around the origin.

Table 2: Experimental results.

[Ctr. [Sys. [ E[ N[ SJL] Note |
1 I G | O | O | O | Oscillatory
1 1I G| G|G|G Good
2 I G | G| G| O | Oscillatory
2 I | G|G|G|G Good

Figures 6 and 7 show plots of some selected trajectories.
As it is shown in these figures, Controllers 1 and 2 may
fail to achieve convergence for System I for some cases.
In System II, they achieved stability for all missions.
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Figure 6: Selected Trajectories of Controller 1.
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Figure 7: Selected Trajectories of Controller 2.

Figure 8 shows a comparison between the actual and
commanded velocities for Controllers 1 and 2. The



bounded Controller 2 behaves as expected, whereas,
Controller 1 exhibits large magnitude in v. Figure 9
shows the commanded and actual forward and angu-
lar velocity responses for Systems I and II using the
same controller (Controller 1) for the Normal mission.
It is seen that a great improvement results in the com-
manded velocities using System II for controller imple-
mentation. In this case, Controller 1 exhibits highly
oscillatory behaviour when applied to System I.

Long Distance, Controller 1, System I

Long Distance, Controller 2, System I
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Figure 8: Selected Trajectories of Controller 2.
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Figure 9: Commanded and Actual Velocities for Systems
I and II.

More detailed plots of the results are available from the
authors upon request.

Conclusion

We have experimentally tested two time-invariant con-
trollers for a unicycle-type mobile robot. These con-
trollers are discontinuous at the origin so their exper-
imental implementation/validation poses several inter-
esting challenges. In particular, deadzone, quantization
errors, sensor noise, poor measurements and motor dy-
namics can affect the response and even the stability
of the system. We devised several techniques, such as
input transformation, scaling and inverted deadzone to
handle some of these issues. By applying these tech-
niques, the performance improved significantly and the

experimental results matched pretty closely to the the-
oretical predictions. Motor dynamics turned out to be
a major problem for some tasks. Overall, the experi-
ments showed that discontinuous, time-invariant con-
trollers can be used successfully in practice if care is
taken when implementing these controllers.
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