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We present data of driver control commands and vehicle response during the execution of
cornering maneuvers at high sideslip angles (drifting) by an expert driver using a RWD
vehicle. The data reveal that stabilization of the vehicle with respect to such cornering
equilibria requires a combination of steering and throttle regulation. A four wheel vehicle
model with nonlinear tire characteristics is introduced and the steady-state drifting con-
ditions are solved numerically to derive the corresponding control inputs. A sliding mode
control is proposed to stabilize the vehicle model with respect to steady-state drifting, using
steering angle and drive torque inputs. The performance of the controller is validated in a
high fidelity simulation environment.
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1. Introduction

Recently, numerous studies on the dynamic be-
havior and control of vehicles considering their full
handling capacity along with the operation of the
tires in their nonlinear region have appeared in the
literature. It is envisioned that a new generation
of active safety systems will employ expert driving
skills, instead of restricting the vehicle’s response
within the predictable linear region of operation of
the tires, to actively maneuver vehicles away from ac-
cidents. A mathematical analysis of expert driving
techniques was initiated in [1], [2], [3]. The driving
techniques investigated in the above references us-
ing numerical optimization were those used by rally
drivers, and clearly involve operation of the vehi-
cle outside the stable operation envelope enforced by
current active safety/stability systems.

The analysis in [1], [2], [3] provided a significant
understanding of the dominant effects during exe-
cution of expert driving techniques, but the open-
loop nature of the numerical optimization approach
is not implementable in the presence of uncertain-
ties. Several studies have appeared in the litera-
ture recently, contributing to a closed loop formu-
lation of vehicle cornering at high sideslip angles.
Derivation of steady-state cornering equilibria with
the tires operating in their nonlinear region, a sta-
bility analysis using phase-plane techniques and the

design of a robust stabilizing steering controller, ne-
glecting the longitudinal forces (tractive or braking)
at the tires, appeared in [4]. High sideslip angle
(drifting) steady-state cornering conditions were de-
rived in [5] using the lateral dynamics of a four wheel
rear-wheel-drive (RWD) vehicle model and a com-
bined traction/cornering tire friction model. The
stability of steady-state drifting using a rich four
wheel RWD vehicle model, incorporating longitudi-
nal and lateral dynamics, load transfer effects and a
combined motion tire friction model, was discussed
in [6]. Derivation of drifting equilibria using vehicle
models of lower order, and hence more appropriate
for control design, were discussed in [7] and [8].

In addition to the steering controller in [4], sta-
bilization of drifting equilibria appeared in [9] and
[10]. In [9] a sliding mode control, using independent
front and rear wheel drive/brake torque inputs, and
assuming a fixed steering angle at its steady-state
value, was designed to stabilize a single-track vehi-
cle model with respect to drifting equilibria. In [10]
a steering controller based on the lateral dynamics
of a single-track model was implemented on an au-
tonomous vehicle platform to perform steady-state
drifting, while a separate speed controller was used to
regulate the speed to the desired steady-state value.

In this work we present a controller to stabilize
a RWD vehicle with respect to drifting equilibria,
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based on a rich vehicle dynamics model, and us-
ing coupled lateral (steering) and longitudinal (drive
torque) control inputs. We first present the results of
a data collection experiment during the execution of
steady-state drifting by an expert driver and discuss
the driver steering, brake and throttle commands
during the stabilization of the vehicle. We introduce
a four wheel vehicle model, incorporating nonlinear
tire friction characteristics, longitudinal and lateral
load transfer effects and coupling of the rear wheels
drive torques through modelling of a differential sys-
tem. Using the four wheel model we calculate nu-
merically the steady-state tire friction forces and the
associated drive torque and steering angle control in-
puts corresponding to drifting equilibria. A linear
controller is designed to stabilize the vehicle with
respect to drifting equilibria using front wheel steer-
ing angle and rear wheel slip ratios (or equivalently
rear wheel rotation rates). A sliding mode control
scheme is then employed providing the drive torque
input necessary to regulate the rear wheel speeds to
the values dictated by the above linear controller.
Finally, the control scheme is implemented in a high-
fidelity simulation environment.

2. Data Analysis

In this section we present data of driver con-
trol inputs and corresponding vehicle response col-
lected during the execution of a drifting maneuver
by an experienced rally race driver. The data collec-
tion took place at the facilities of the Bill Gwynne
Rally School in Brackley, UK, using a rally-race pre-
pared 1980 1.6lt, 110bhp engine Ford Escort with
a RWD transmission and a limited slip differential
(Fig. 1). The vehicle vector velocity and sideslip an-
gle were measured using a VBox twin GPS antenna
sensor at 20Hz. An inertial measurement unit was
placed close to the estimated location of the vehi-
cle’s C.M. to measure 3-axis body accelerations and
3-axis body rotation rates. Externally fitted optical
encoders were used to measure the rotational speed
of each individual wheel. A string potentiometer was
used to measure the steering angle at the steering
wheel, and a rotational potentiometer was fitted on
the throttle pedal to measure the pedal position. The
vehicle was fitted with two brake pressure sensors at
the front and rear pairs of wheels. The data was
collected using a purpose-built data logger at 100Hz.
The driver executed drifting maneuvers on a loose
surface (dirt on tarmac), aiming at maintaining ap-
proximately constant speed and sideslip angle along
a path of approximately constant radius.

In Fig. 2 we present data for the vehicle states,
namely, vehicle speed V , sideslip angle β, yaw rate
ψ̇ and individual wheel speeds ωij , i = F (Front), R
(Rear), j = L (Left) , R (Right), during stabilization
of the vehicle at a steady-state clockwise trajectory
of radius approximately 13m. The vehicle sideslip
and yaw rate are positive along the counterclockwise
direction. In the same figure we also present the cor-
responding driver inputs, namely, the steering angle
of the front wheels, with positive values correspond-

Figure 1: The rally car used for data collection.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

t (sec)

V
 (

m
/s

ec
)

0 5 10 15 20 25 30 35 40
−20

0

20

40

60

t (sec)

β 
(d

eg
)

0 5 10 15 20 25 30 35 40
−80

−60

−40

−20

0

20

t (sec)

dψ
/d

t (
de

g/
se

c)

0 5 10 15 20 25 30 35 40
0

200

400

600

t (sec)

ω
ij (

R
P

M
) ω

FL

ω
FR

ω
RL

ω
RR

0 5 10 15 20 25 30 35 40
−40

−20

0

20

40

t (sec)

δ 
(d

eg
)

0 5 10 15 20 25 30 35 40
−20

0

20

40

60

80

100

t (sec)

th
ro

ttl
e/

br
ak

e 
in

pu
t (

%
)

throttle position
front brake pressure
rear brake pressure

Figure 2: Vehicle states and driver input data.

ing to turning the steering wheel to the left, as well
as the normalized throttle pedal position, and nor-
malized front and rear axle brake pressures. Part of
the vehicle trajectory is shown in Fig. 3.

Throughout the 13m radius trajectory the driver
applied no brake command, except from a small value
during a brief interval around t = 20 sec. The ve-
hicle started from standstill and accelerated while
cornering to the right. Between 5 ≤ t ≤ 10sec the
vehicle developed a high sideslip angle of approxi-
mately 30 deg. At the beginning of this interval we
notice application of full throttle, which resulted in
the rear wheels to rotate at a considerably higher
rate than the front ones. Hence the slip ratio at
the rear wheels was increased and the rear cornering
forces decreased (in accordance to the combined trac-
tion/braking and cornering operation of a tire [11]).
The vehicle sideslip and yaw rate increased and the
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Figure 3: Vehicle trajectory data.

driver regulated the vehicle yaw moment by steer-
ing the front wheels towards the opposite direction
with respect to the corner (counter-steered), while
applying a high value of throttle input. Similarly,
we notice peaks of sideslip angle at approximately
t = 13 sec and t = 17.5 sec under high throttle com-
mands and counter-steer. During 25 ≤ t ≤ 40 sec we
notice that the vehicle speed was stabilized close to
8.1m/sec and the yaw rate close to 36 deg/sec. The
sideslip angle is stabilized at approximately 32 deg.
We notice that the driver applied throttle close to the
maximum and consistently counter-steered. Despite
the corrections in the control inputs by the driver and
the fluctuations of the vehicle states in this interval,
we consider that the vehicle achieved a steady-state
cornering condition, characterized by a high sideslip
angle, which is referred to as steady-state drifting or
powerslide [6].

3. Vehicle Model

The equations of motion of a four-wheel vehicle,
with front wheel steering, travelling on a horizontal
plane (Fig. 4) are given below:

mV̇ = (fFLx + fFRx) cos(δ − β)

− (fFLy + fFRy) sin(δ − β)

+ (fRLx + fRRx) cosβ

+ (fRLy + fRRy) sinβ, (1)

β̇ =
1

mV
[(fFLx + fFRx) sin(δ − β)

+ (fFLy + fFRy) cos(δ − β)

− (fRLx + fRRx) sinβ

+ (fRLy + fRRy) cosβ] − ψ̇, (2)

Izψ̈ = ℓF [(fFLy + fFRy) cos δ

+ (fFLx + fFRx) sin δ]

+ wL (fFLy sin δ − fFLx cos δ − fRLx)

+ wR (fFRx cos δ − fFRy sin δ + fRRx)

− ℓR (fRLy + fRRy) , (3)

Iwω̇ij = Tij − fijxr (i = F,R, j = L,R). (4)

In the above equations m is the vehicle’s mass, Iz is
the moment of inertia of the vehicle about the verti-
cal axis, V is the vehicle velocity at the center of mass

(C.M.), β is the sideslip angle at the C.M. and ψ is
the yaw angle. The moment of inertia of each wheel
about its axis of rotation is Iw, the radius of each
wheel is r, and the rotation rate of each wheel is ωij

(i = F,R, j = L,R). The steering angle of the front
wheels (assuming equal angle for left and right front
wheels) is denoted by δ, and the drive/brake torque
applied on each wheel is Tij . We have neglected the
rolling resistances and self-aligning moments at the
tires. The longitudinal and lateral friction forces at
each wheel are denoted by fijk (i = F,R, j = L,R
and k = x, y). The distances ℓF , ℓR, wL and wR

determine the location of the C.M. with respect to
the center of each wheel, as in Fig. 4.
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Figure 4: Full-car vehicle model.

The tire forces fijk in the above vehicle model are
calculated as functions of tire slip and wheel normal
load using Pacejka’s Magic Formula [11]. Tire slip
refers to the non-dimensional relative velocity of the
tire with respect to the road. The slip ratio and
lateral slip [11] are defined as:

sijx =
Vijx − ωijrij

ωijrij
, sijy =

Vijy

ωijrij
, (5)

respectively, where Vijk (i = F,R, j = L,R, k =
x, y) are the tire frame components of the vehicle
velocity vector at the centers of the four wheels.

Neglecting vertical motion and pitch and roll ro-
tations of the sprung mass of the vehicle, we cal-
culate the normal load at each of the four wheels
considering the static load distribution and longitu-
dinal/lateral normal load transfer under longitudi-
nal/lateral acceleration. For instance, acceleration
ax along the longitudinal body axis results in load
transfer from front to rear wheels as follows:

∆fx =
mhax

ℓF + ℓR
, (6)

where h is the distance of the vehicle’s C.M. from
the road level. Similarly, acceleration ay along the
lateral body axis results in load transfer from front-
left to front-right and rear-left to rear-right wheels.

Finally, we introduce the model of a limited slip
differential (LSD) system, which provides coupling
of the drive torques of the driven rear-left and rear-
right wheels, and allows us to consider a single drive
torque input, corresponding to the driver’s throttle
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command. Considering a RWD vehicle and assum-
ing no braking command we have front wheel torques
TFj = 0, (j = L,R). The output drive torque TR

from the gearbox will then be distributed between
the rear-left and rear-right wheels, providing TRL

and TRR of equation (4). In this work we use the
torque transfer characteristics of a LSD differential
model of the CarSim vehicle simulation software [12].
In particular, the torque transfer as a function of the
wheel speed differential is provided in CarSim in the
form of a look-up table. The data of the look-up
table were used to identify the following explicit ex-
pression of the differential torque transfer as a func-
tion of the wheel speed differential (Fig. 5):

∆T (∆ω) = −sign(∆ω)Cd

√

|∆ω|, (7)

where ∆T = TRL − TRR, ∆ω = ωRL − ωRR, and
Cd is a positive constant. We may now consider a
single torque input TR = TRL + TRR corresponding
to the gearbox torque output, providing rear-left and
rear-right wheel torques as follows:

TRR =
TR − ∆T (∆ω)

2
, TRL =

TR + ∆T (∆ω)

2
, (8)

where ∆T (∆ω) from (7). Finally, using equations
(4), (7) we derive the dynamics of the rear wheels
speed differential as follows:

Iw
d∆ω

dt
= ∆T (∆ω) − (fRLx − fRRx)r. (9)
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Figure 5: LSD torque transfer characteristic.

4. Steady-State Cornering Conditions

Steady-state cornering is characterized by a tra-
jectory of constant radius R = Rss, negotiated at
a constant speed V = V ss, constant yaw rate ψ̇ =
ψ̇ss = V ss/Rss, constant sideslip angle β = βss, and
constant wheel rotation rates ωij = ωss

ij . In steady-
state cornering the control inputs, namely the steer-
ing angle δ = δss and rear axle torque TR = T ss

R also
remain constant.

Enforcing a steady-state cornering condition:

V̇ = 0, β̇ = 0, ψ̈ = 0, ω̇ij = 0, (10)

considering a RWD transmission and no braking com-
mand (in accordance to the data), that is enforcing
free rolling of the front wheels:

sssFjx = 0, f ss
Fjx = 0, T ss

Fj = 0, j = L,R, (11)

and providing fixed values for the steady-state pair
(Rss, βss), we are able to solve numerically equations
(1)-(8) for the rest of the steady-state state vari-
ables V ss, ωss

ij , steady-state slip quantities and tire
forces sssijk, f ss

ijk, normal loads at the wheels f ss
ijz, and

steady-state control inputs δss and T ss
R .

In Fig. 6 we present cornering equilibria for a
range of path radius Rss and sideslip angle βss, con-
sidering the vehicle and tire model parameters of Ta-
ble 1. In particular, we have plotted the steady-
state value of the centripetal acceleration ass

cent =
(V ss)2/Rss, and the solid line passes through the
maximum ass

cent for fixed Rss. We notice the ex-
istence of steady-state conditions at extremely low
path radii, which may expand the mobility charac-
teristics of the vehicle, and that along paths of low
radii the vehicle achieves the highest speed equilibria
at higher sideslip angles. These observations will be
further examined as part of our future work.

Table 1: Estimated test-vehicle parameters.

m (kg) 850 ℓF (m) 1.25
Iz (kgm2) 1400 ℓR (m) 1.25
Iw (kgm2) 0.6 r (m) 0.311
wL, wR (m) 0.74 B 4

Cd (Nm/(rad/s)1/2) 35.949 C 1.3
h (m) 0.5 D 0.62
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Figure 6: Calculated steady-state equilibria.

In Table 2 the steady-state condition achieved
during the data collection experiment is compared
to a calculated steady-state condition using the four-
wheel vehicle model. We notice that, despite the un-
certainty in many of the vehicle and tire parameters,
the calculated steady-state closely matches the data.

5. Stabilization of Steady-State Cornering

In the following we propose a control scheme to
stabilize a RWD vehicle with respect to drifting equi-
libria, using control inputs directly correlated to the
driver’s commands. The proposed architecture con-
sists of a linear controller providing stabilizing front
wheel steering angle (corresponding to the driver’s
steering command), and rear wheel slip ratio inputs.
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Table 2: Steady-state drifting condition.

Variable Data Calculated
V ss (m/sec) 8.1 8.35
|βss| (deg) 31.4 32

|ψ̇ss| (deg/sec) 36 36.8
|∆ωss| (RPM) 42.7 64.2
|δss| (deg) 12.5 13.8

In addition, a sliding mode controller calculates the
rear differential drive torque necessary for the rear-
left and rear-right wheels to achieve the slip ratios
dictated by the previous linear controller.

Neglecting the dynamics of rotation of each indi-
vidual wheel (4), we express the equations of motion
of the full-car model (1)-(3), including the rear wheel
speed differential equation (9), as a system driven by
the control inputs δ and one of the rear-left or rear-
right wheel slip ratios, for instance sRRx:

˙̃x = f(x̃, u), (12)

where x̃ = [V β ψ̇∆ω]T and ũ = [sRRx δ]
T . We no-

tice that, given the state variables V , β and ψ̇, the
control input sRRx can be used to calculate the rear-
right wheel speed ωRR from the definition (5). Then,
using the state variable ∆ω, we calculate the rear-left
wheel speed ωRL, and rear-left wheel slip ratio sRLx

from (5). Hence, we may calculate longitudinal and
lateral friction forces at both rear wheels, using the
tire model of [11]. We also enforce free rolling of the
front wheels (11).

Equations (12) are linearized about the equilib-

rium x̃ss = [V ss βss ψ̇ss ∆ωss]T and ũss = [sssRRx δ
ss]T

and a linear quadratic regulator is designed

ũ− ũss = −K(x̃− x̃ss), (13)

to stabilize the system (12) with respect to the equi-
librium x̃ss, using steering angle and rear-right wheel
slip ratio inputs.

Next, we design a sliding mode controller using
the rear drive torque TR to regulate the slip ratios of
the rear wheels to the values generated by the control
law (13). We define the variable z̃RR as the differ-
ence between the actual wheel angular rate ωRR and
a reference wheel angular rate corresponding to a ref-
erence value of longitudinal slip ŝRRx(V, β, ψ̇,∆ω):

z̃RR = ωRR − φRR(V, β, ψ̇,∆ω), (14)

where φRR(V, β, ψ̇,∆ω) is the value of wheel rota-
tion rate corresponding to the longitudinal slip ŝRRx

generated by (13):

φRR(V, β, ψ̇,∆ω) =
VRRx

(1 + ŝRRx(V, β, ψ̇,∆ω))r
.

The sliding mode controller generates the following
rear-right wheel torque

TRR = T eq
RR + Iwv̂RR, (15)

where

T eq
RR = fRRxr + Iw

(

∂φRR

∂V
f1 +

∂φRR

∂β
f2

+
∂φRR

∂ψ̇
f3 +

∂φRR

∂∆ω
f4

)

. (16)

The component T eq
RR is referred to as the equivalent

control. Taking TRR = T eq
RR results in ˙̃zRR = 0 and

ensures that the vehicle’s states will remain in the
sliding manifold z̃RR = 0. Equations (4), (14), (15)
and (16) yield

˙̃zRR = v̂RR. (17)

Finally, we take

v̂RR = −λRRsat(z̃RR), λRR > 0. (18)

It can be readily shown that the control (18) stabi-
lizes (17) [13]. In fact, all trajectories starting off the
sliding manifold z̃RR = 0 will reach it in finite time
under the control input (15). We notice that given
TRR from (15) we can calculate the corresponding
rear differential drive torque TR and rear-left wheel
torque TRL from equations (8).

6. Simulation Results

In the following we present the implementation of
the control scheme of the previous section in simula-
tion. The parameters of the vehicle and tire friction
model used in the numerical calculations are summa-
rized in Table 1, and we consider stabilization with
respect to the calculated steady-state condition of
Table 2. The initial velocity is perturbed by 30% and
the initial sideslip angle by 50% from their steady-
state values. The vehicle states and control inputs
are shown in Fig. 7. The states and inputs corre-
sponding to the simulation of the full-car model (1)-
(3), (4) with static normal load transfer (6), are de-
noted as “no suspension”. The controller (13), (15)
successfully stabilizes the vehicle with respect to the
corresponding cornering equilibrium in finite time.

To further validate the control architecture, we
implement the sliding mode controller using CarSim
to simulate the response of a high-fidelity vehicle
model including suspension dynamics. For consis-
tency we incorporate the same tire friction model as
with the “no suspension” model. We observe that
the responses of the two different models are very
close, and that the suspension dynamics essentially
have no effect on the performance of the controller.
We recall that the steady-state equilibria were de-
rived after neglecting the suspension dynamics. Fig-
ure 8 shows the trajectory of the vehicle during stabi-
lization, generated by the animation tool of CarSim.

7. Conclusions

In this work we studied the stabilization of RWD
vehicles with respect to cornering equilibria charac-
terized by aggressive sideslip angles. We discussed
the results of a data collection experiment during ex-
ecution of steady-state drifting by an expert driver
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Figure 7: Vehicle states and control inputs during

stabilization with respect to the cornering equilib-

rium of Table 2.

Figure 8: Vehicle trajectory during stabilization.

and concluded that RWD vehicle drifting stabiliza-
tion requires a combination of throttle and steer-
ing regulation. A full-car vehicle model with non-
linear tire characteristics was introduced to numeri-
cally calculate the steady-state cornering states and
inputs. Incorporating realistic drive-train modelling
we were able to derive control input variables with
direct correlation to the driver’s steering and throt-
tle commands, namely, the steady-state front wheel
steering angle and rear differential drive torque. A
sliding mode control scheme was then proposed to
stabilize the vehicle with respect to drifting corner-
ing equilibria. The controller used combined steer-
ing angle and drive torque inputs, in accordance to
our experimental observations, and was successfully
validated via implementation in a high fidelity sim-
ulation environment.
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