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Bounded feedback control laws are designed for stabilization and tracking of underactuated space-
craft. The yat outputs of the system are computed and are used to generate reference trajectories for
the tracking problem.

Abstract

We provide stabilizing feedback control laws for the kinematic system of an underactuated axisymmetric spacecraft subject to input
constraints. The proposed control law forces all closed-loop trajectories in a region of the state space where the control inputs are
small and bounded. The control law is subsequently extended to solve the case of attitude tracking for an underactuated spacecraft
using two controls. As a special case we also provide a feedback control for the spacecraft symmetry axis to track a speci"ed direction
in the inertial space. All proposed control laws achieve asymptotic stability with exponential convergence. In addition, we give
a methodology for generating feasible trajectories using the fact that the system is di!erentially #at. One of the novelties of the
proposed control design is the use of a non-standard description of the attitude motion, which allows the decomposition of the general
motion into two rotations. This attitude description is especially useful for analyzing axisymmetric bodies, where the motion of the
symmetry axis is of prime importance. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of attitude stabilization has been the
subject of numerous research articles in the last decade
(Crouch, 1984; Byrnes & Isidori, 1991; Wen & Kreutz-
Delgado, 1991; Krishnan, McClamroch & Reyhanoglu,
1992; Bach & Paielli, 1993; Tsiotras, Corless & Longuski,
1995). Most of these results deal with the case of complete
control actuation. A complete mathematical description
of the attitude stabilization problem was presented as
early as 1984 by Crouch (1984), where he provided the
necessary and su$cient conditions for the controllability
of a rigid body in the case of one, two and three indepen-
dent control torques. This sparked a renewed interest in

the area of control of rigid spacecraft with less than three
control torques. Stabilization of the angular velocity
equations was addressed, for example, by Aeyels and
Szafranski (1988), Sontag and Sussmann (1988), Outbib
and Sallet (1992) and Andriano (1993). The complete set
of attitude equations (including the kinematics) was ad-
dressed in Byrnes and Isidori (1991) where they estab-
lished that a rigid spacecraft controlled by two pairs of
gas-jet actuators cannot be asymptotically stabilized to
an equilibrium using a smooth feedback control law. Sub-
sequently, in Krishnan et al. (1992) and later in Tsiotras
et al. (1995), nonsmooth controllers were established to
stabilize an axisymmetric spacecraft. Since the complete
dynamics of the spacecraft fail to be controllable or even
accessible (Krishnan et al., 1992), both of these control-
lers achieve arbitrary reorientation of the spacecraft, only
for the restricted case of zero spin rate. This is an interest-
ing control problem because, similarly to the nonsym-
metric case (Byrnes & Isidori, 1991), any stabilizing
(time-invariant) control law has to be necessarily non-
smooth. Time-varying stabilizing control laws have been
reported in Coron and Kerai (1996), Morin and Samson
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(1997) and Morin, Samson, Pomet and Jiang (1995). In
addition, as was shown in S+rdalen, Egeland and
Canudas de Wit (1992), the underactuated axi-symmetric
rigid body reorientation problem is equivalent to
a three-wheel mobile robot or, equivalently, to the well-
studied nonholonomic integrator benchmark problem in
the area of nonholonomic systems. Khennouf and Ca-
nudas de Wit (1995) have shown how to construct dis-
continuous controllers for a nonholonomic system in
power form, by extending the results of Tsiotras et al.
(1995). The controllers in Tsiotras et al. (1995) and Khen-
nouf and Canudas de Wit (1995), in particular, are not
Lipschitz continuous at the equilibrium, and may require
signi"cant amounts of control e!ort, especially if the
initial conditions are close to an equilibrium manifold. In
Tsiotras and Luo (1997) this controller was modi"ed, to
remedy the problem of large control inputs. The proced-
ure in Tsiotras and Luo (1997) consists of dividing the
state space into two regions. The control law drives
the trajectories of the closed-loop system away from the
singular equilibrium manifold (which gives rise to high
control inputs) and into the region in the state space
where the high authority part of the control input re-
mains small. No a priori bounds on the control input
where given in Tsiotras and Luo (1997), however.

In this paper, we continue the approach initiated in
Tsiotras and Luo (1997) and derive a controller for the
kinematics of an axisymmetric spacecraft with two inputs
(and zero spin rate) which remains bounded by an
a priori speci"ed bound. We make use of the formulation
for the attitude kinematics developed in Tsiotras and
Longuski (1995) and Tsiotras and Longuski (1996). This
attitude description allows one to isolate and describe the
motion of the symmetry axis of the body using a single
complex variable. We also solve the problem of tracking
an attitude trajectory for an axisymmetric spacecraft with
two control inputs. The tracking problem is formulated
as one of tracking a `virtuala spacecraft which follows
the target trajectory. The control law is exponentially
convergent and remains bounded by a speci"ed upper
bound. As a special case, we present a feedback control
law so that the spacecraft symmetry axis tracks a speci-
"ed direction in inertial space. In the "nal section of the
paper we address the problem of on-line feasible traject-
ory generation for an underactuated body with two con-
trols. We use the notion of diwerential yatness (Fliess,
Levine, Martin & Rouchon, 1992, 1995) and we propose
a simple way for designing the trajectory in the #at
output space. Several numerical examples demonstrate
the theoretical developments of the paper.

The main contribution of the paper stems from the
development of bounded (`saturatinga) control laws for
both the stabilization and the tracking problems of an
underactuated axi-symmetric body subject to two con-
trols. No similar results have been reported in the litera-
ture, at least as far as the authors know. We also propose

a speci"c approach for generating feasible reference state
trajectories for the tracking problem. Although the prop-
erty of di!erential #atness for the underactuated rigid
body problem has been known for some time (Nieuw-
stadt & Murray, 1995) no actual results have appeared in
the literature dealing speci"cally with this problem.

The discussion in the paper is con"ned to the kin-
ematic level, i.e., it is assumed that one can issue directly
angular velocity commands. The implementation of the
angular velocity commands via the dynamics is not
pursued here. How accurately these commands can be
followed depends on the bandwidth of the spacecraft
actuators (e.g., thrusters, reaction/momentum wheels,
control moment gyros, etc.). For `fast-enougha actuators,
a singular perturbation approach similar to the one in
Tsiotras and Luo (1997), can be used to implement the
angular velocity commands. Although we cannot
guarantee explicit bounds on the actual torques, the
results of Tsiotras and Luo (1997) show that highly
oscillatory angular velocity commands (which will be
typically responsible for the high torques) are avoided by
keeping the trajectories away from the singular equilib-
rium manifold.

Finally, it should be pointed out that because of the
connection to nonholonomic systems, the methodology
proposed in this paper can be used for stabilization and
tracking of general nonholonomic systems in either
power of chained form. Some initial results in this direc-
tion have appeared in Luo and Tsiotras (1998).

2. The (w, z) attitude parameterization

The orientation of a rigid spacecraft can be speci"ed
using various parameterizations, for example, Eulerian
Angles, Euler Parameters, Cayley}Rodrigues Para-
meters, etc.; see, for instance, the recent survey article by
Shuster (1993). Recently, a new parameterization using
a pair of a complex and a real coordinate was introduced
based on an extension of an old result by Darboux
(Darboux, 1887; Tsiotras & Longuski, 1995, 1996). Ac-
cording to the results of Tsiotras et al. (1995) the relative
orientation between two reference frames can be repre-
sented by two successive rotations. The "rst rotation
is about the inertial iK

3
-axis at an angle z. The second

rotation is about the unit vector

hK "A
w#w6
2DwD B iK @

1
#A

i(w6 !w)

2DwD B iK @
2

(1)

and has magnitude

h"arccosA
1!DwD2
1#DwD2B. (2)

In Eq. (1), iK @"(iK @
1
,iK @
2
, iK @
3
) is the intermediate reference

frame resulting from the rotation z about the inertial
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Fig. 1. Attitude description in terms of (w, z) coordinates.

1Of course, stabilization and inertial pointing of the symmetry axis is
still possible; see, for example, Krishnan et al. (1992) and Tsiotras and
Longuski (1994).

iK
3
-axis. The situation is depicted in Fig. 1, where (a, b, c)

denote the coordinates of the unit vector iK @
3

in the body
frame, iK @

3
"a bK

1
#b bK

2
#c bK

3
. It can be shown (Tsiotras

& Longuski, 1995) that the location of the body bK
3
-axis

in the iK @ frame is also determined by a, b, c from
bK
3
"!a iK @

1
!b iK @

2
#c iK @

3
(Fig. 1). With this notation, the

complex coordinate w is de"ned by

w"w
1
#iw

2
"

b!ia

1#c
. (3)

We note here that in Eqs. (1) and (3), i"J!1, bar
denotes the complex conjugate, and DwD2"ww6 denotes
the absolute value of the complex number w3C. Con-
versely, from w one can compute (a, b, c) from

a"i
w!w6

1#DwD2
, b"

w#w6
1#DwD2

, c"
1!DwD2
1#DwD2

. (4)

The rotation matrices corresponding to the two rota-
tions in the (w, z) kinematic description have been cal-
culated in Tsiotras and Longuski (1995) as

R
1
(z)"C

cos z sin z 0

!sin z cos z 0

0 0 1D,
R

2
(w)"

1

1#DwD2C
1#Re(w2) Im(w2) !2 Im(w)

Im(w2) 1!Re(w2) 2Re(w)

2 Im(w) !2Re(w) 1!DwD2 D,
(5)

where Re( ) ) and Im( ) ) denote the real and imaginary
parts of a complex number. Subsequently, the rotation
matrix from the inertial to body frame is given by

R(w, z)"R
2
(w)R

1
(z) (6)

which can be written in the form

R(w, z)"
1

1#DwD2

C
Re[(1#w2)e*z] Im[(1#w2)e*z] !2 Im(w)

Im[(1!w6 2)e~*z] Re[(1!w6 2)e~*z] 2Re(w)

2 Im(we*z) !2Re(we*z) 1!DwD2 D. (7)

Conversely, given a proper rotation matrix R, one can
compute w and z and decompose the motion in two
rotations. The following lemma states this result.

Lemma 1. For any rotation matrix R, let

w"

R
23

!iR
13

1#R
33

(8)

and

cos z"1
2
((1#DwD2)trace(R)#DwD2!1) (9a)

sin z"
1

1#DwD2
[(1#Re(w2))R

12

#Im(w2)R
22

#2 Im(w)R
32

]

"!

1

1#DwD2
[Im(w2)R

11

#(1!Re(w2))R
21

!2Re(w)R
31

] (9b)

with the matrices R
1
(z) and R

2
(w) as in Eqs. (5). Then

R(w, z)"R
1
(w)R

2
(z) with w and z as in Eqs. (8) and (9).

The proof is straightforward and thus, omitted.
From now on, and by virtue of Lemma 1, we can refer

to (w, z) as the `attitude coordinatesa for the matrix
R without any ambiguity.

The kinematic equations in terms of w and z can
be written as follows (Tsiotras et al., 1995; Tsiotras
& Longuski, 1995):

w5 "!iu
3
w#

u
2
#

u6
2

w2, (10a)

z5 "u
3
#Im(uw6 ), (10b)

where u"u
1
#iu

2
.

In this paper we assume that only the angular velocity
u (equivalently, u

1
and u

2
) can be manipulated. The

angular velocity component about the body bK
3
-axis, u

3
,

cannot be changed due to, say, a thruster failure. Speci"-
cally, for an axisymmetric body about the body bK

3
-axis

with no torque component about this axis, u
3

remains
constant for all t50. In this case, three-axis stabilization
and pointing is possible only if, in addition, u

3
,0.1 This
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Fig. 2. A depiction of the function sat
#
(z,w) for real and positive w.

case will arise, for instance, during a rest-to-rest maneu-
ver of an axisymmetric spacecraft.

Letting u
3
"0 the kinematic equations become

w5 "
u
2
#

u6
2

w2, (11a)

z5 "Im(uw6 ). (11b)

In Tsiotras et al. (1995) the following feedback control
law was proposed in order to stabilize the system in
Eq. (11):

u"!iw!ik
z

w6
, k'i/2. (12)

This control law is well de"ned for w(0)O0, but initial
conditions close to the manifold w"0 may result to high
control inputs. The next section proposes a control law
which avoids this problem by ensuring that the control
input u remains below a speci"ed upper bound.

3. Stabilization with bounded control

Without any further modi"cation, the domain of
validity of the system in Eqs. (12) is the set of pairs
(w, z)3(CCM0N)]S1. For w(0)"0 the control law can be
modi"ed by using any open-loop strategy of arbitrary
short duration (Tsiotras et al., 1995). Nevertheless,
Eq. (12) suggests that the control inputs may become
arbitrarily large for initial conditions close to the mani-
fold w"0 (and zO0). In addition, Eq. (12) suggests that
the control input u will remain `smalla if the trajectories
belong to, say, the set

D
'
"M(w, z)3C]S1: DzD/DwD41N. (13)

We seek to construct a control law that will keep all
trajectories in D

'
and force the trajectories outside D

'
to

enter this set in "nite time.
Before we state the main result in this section, we need

the following de"nition.

De5nition 2. Given two scalars z3R and w3C, we de"ne
the complex saturating function sat

#
( ) ) by

sat
#
(z, w)"G

0 if z"0, w"0,

satA
z

DwDB e*( if wO0,

sgn(z) if zO0, w"0

(14)

and /"arg(w) is the argument of w, i.e., w"DwDe*(.

The function sat
#
( ) ) is de"ned for all (w, z)3D :"

C]S1. Fig. 2 shows this function for real and positive w.
Note that sat

#
( ) ) is discontinuous at the origin.

The following proposition provides a stabilizing con-
trol law which is bounded by a speci"ed constant.

Proposition 3. Consider the system in Eq. (11) and the
following control law:

u"!i
w

J1#DwD2
!ik sat

#
(z,w), (15)

where sat
#
(z,w) is as in Dexnition 2, and where i and k are

constants satisfying

k'i/2'0 if (w, z)3D
'
, (16a)

k'!i'0 if (w, z)3D
"
:"DCD

'
. (16b)

Then, for all initial conditions (w(0), z(0))3D, the control
law in Eq. (15) is well dexned and the corresponding
closed-loop trajectories satisfy lim

t?=
(w(t), z(t))"0.

In addition, the control law is bounded as Du(t)D4
maxMDiDN#k for all t50, where maxMDiDN denotes the
maximum of the absolute value of i in D

"
and D

'
.

Consider the positive-de"nite, radially unbounded
function <: C]RPR

`
de"ned by <(w, z)"

2 (J1#DwD2!1)#1
2
z2. Noticing that

d

dt
DwD2"(1#DwD2) Re(uw6 ), (17)

the derivative of < along the closed-loop trajectories yields

<Q "
1

J1#DwD2
(1#DwD2) Re(uw6 )#z Im(uw6 )

"!J1#DwD2
i DwD2

J1#DwD2
!k z Im[sat

#
(z,w)w6 ]

"!i DwD2!kz satA
z

DwDBDwD. (18)
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2Asymptotic stability is here de"ned with respect to the subspace
topology of C]S1 generated by the open subset (CCM0N)]S1.

If (w, z)3D
"

then DzD/DwD'1 and z sat(z/DwD)"
z sgn(z)"DzD. Since k'!i'0 one obtains from
Eq. (18)

<Q "!DwD2(i#kDzD/DwD)(!DwD2(i#k)(0 (19)

for all (w, z)3D
"
. Notice also that in D

"
,

<52(J1#DwD2!1)#1
2
DwD2. The last equation, along

with Eq. (19) imply that if the trajectories remain in D
"
,

then lim
t?=

Dw(t)D"0. This leads to a contradiction, since

d

dt
DwD2"!i DwD2J1#DwD2 (20)

with i(0, and DwD is monotonically increasing in D
"
.

Therefore, the trajectories leave D
"

and enter the region
D

'
in "nite time. Moreover, for (w, z)3D

'
we have that

DzD/DwD41 and hence from Eq. (18)

<Q "!i DwD2!k z2(0 ∀(w, z)3D
'

(21)

since i'0 for (w, z)3D
'
.

We have shown that <Q (0 for all (w, z)3D and hence
lim

t?=
<(t)"0. In particular, lim

t?
(w(t), z(t))"0. The

asymptotic convergence to the origin is exponential, as
can be easily seen by checking the closed-loop system for
(w, z)3D

'
,

d

dt
DwD2"!i DwD2J1#DwD24!i DwD2, (22a)

dz

dt
"!k z. (22b)

Moreover, a straightforward calculation shows that

Du(t)D4DiD
Dw(t)D

J1#Dw(t)D2
#k4maxMDiDN#k (23)

for all t50 and the control law is bounded.
The motivation behind the proposed control law is

simple. It forces all trajectories to the `gooda region
D

'
where the potentially bothersome term z/w6 in Eq. (12)

is bounded by a known constant. Moreover, Eqs. (22)
show that if k'i/2 the vector "elds on DzD"DwD point in
the interior ofD

'
and thus,D

'
is a positively invariant set

of the closed-loop trajectories. Once in D
'
, Eqs. (22)

ensure that trajectories go to the origin with exponential
rate of decay. As a result, there is at most one switching as
the control law crosses the boundary DzD"DwD and there is
no possibility of chattering. Although the control law in
Eq. (15) is discontinuous, the solutions of the closed-loop
system are well de"ned and unique.

Remark 4. The idea of dividing the state space into
`gooda and `bada regions was initially used in Tsiotras
and Luo (1997). Nevertheless, the control law in Tsiotras
and Luo (1997) guarantees only convergence to the ori-
gin. Here, by virtue of inequalities (19) and (21) we are
actually able to prove asymptotic (Lyapunov) stability for

the closed-loop system.2 In addition, in Tsiotras and Luo
(1997) no a priori upper bound of the control law was
given.

Remark 5. We can use Eq. (22) to introduce a sliding
mode de"ned by the equation DzD"DwD by making the
vector "eld on the boundary of D

'
point to the interior of

D
"
. This can be achieved by choosing, for example,

i'2k in Eq. (16a). Then for DzD"DwD, we get
sat

#
(z, w)"sgn(z) e*( and the equations become

d

dt
DwD2"!i (1#DwD2)DwD2, (24a)

dz

dt
"!k sgn(z) DzD. (24b)

The previous equations show that the sliding mode is
stable.

Fig. 3(a) shows the sets D
"

and D
'
in the (DwD, DzD) space,

along with typical trajectories for the closed-loop system
in Eq. (11) with the control law in Eq. (15). Fig. 3(b) shows
the corresponding trajectories when choosing i'2k in
D

'
. The trajectories tend to the origin along the sliding

mode described by the boundary of the sets D
'

and D
"
,

i.e., along DzD"DwD (see also Remark 5 above).
Recall that the previous derivation assumes that

u
3
,0. In practice, there is always a small coupling

between the axes due to system imperfections. For
a spacecraft with small asymmetries the equation for
u

3
is given by u5

3
"eu

1
u

2
where e is a constant para-

meter that depends on the body moments of inertia. In
this case the body will spin about the z-axis. The best one
can hope for in this case is a very slow rotation about this
axis. Numerical simulations indicate that this drift
is typically small for small asymmetries (e;1) and
u

3
(0)"0. If u

3
(0)O0, the procedure described in

Schleicher (1999) can be used to "rst drive u
3

(and w) to
zero using u as the control input. After this preliminary
step a control law such as in Eq. (12) or Eq. (15) can be
applied.

4. Tracking of an underactuated spacecraft

In this section we derive a controller for an underac-
tuated spacecraft to track a desired attitude. The desired
attitude history is given in terms of the complex/real
attitude parameters of Section 2 as w

d
(t) and z

d
(t). These

parameters represent the orientation of a `virtuala space-
craft in inertial space. Because u

3
,0, the attitude para-

meters of the spacecraft w and z cannot be functionally

P. Tsiotras, J. Luo / Automatica 36 (2000) 1153}1169 1157



Fig. 3. Typical closed-loop trajectories for the system of equations (11)}(15) and the sets D
"

and D
'
.

independent. In other words, in the absence of any con-
trol over u

3
, we cannot expect to track arbitrary trajec-

tories. In order for the underactuated spacecraft to
properly track the target attitude, it is reasonable to
assume that the target attitude trajectory, w

d
(t), z

d
(t), is

generated by two control angular velocities u
d1

(t),u
d2

(t)
of a `virtuala spacecraft. This will guarantee that the
corresponding trajectories are feasible. In Section 6 we
will remove this restriction and we will develop an
approach to generate feasible trajectories between two
given attitude orientations. Feasibility of trajectories en-
sures that there exist u

d1
(t) and u

d2
(t) such that Eqs. (25)

are satis"ed for all t50.
The governing kinematic equations for this `virtuala

spacecraft are of the same form as in Eqs. (11)

w5
d
"

u
d

2
#

u6
d

2
w2
d
, (25a)

z5
d
"Im(u

d
w6
d
), (25b)

where u
d
"u

d1
#iu

d2
is the complex variable of the

known angular velocities expressed in the `virtuala
frame. They are assumed to be bounded by Du

di
(t)D4b

i
for i"1,2.

We wish to design a control law u"u(w, z,u
d
, w

d
, z

d
)

such that it satis"es the following two requirements:

Tracking control requirements:
(R1) If w(0)"w

d
(0) and z(0)"z

d
(0) then w(t)"w

d
(t)

and z(t)"z
d
(t) for all t50 (perfect tracking).

(R2) For all initial conditions (w(0), z(0))3C]S1 we
have that lim

t?=
(w(t), z(t))"(w

d
(t), z

d
(t)) (asymptotic

tracking).

To make things more concrete, let the inertial frame be
iK"(iK

1
, iK
2
, iK
3
), the body frame of the spacecraft be

b)"(bK
1
, bK

2
, bK

3
), and the reference frame of the `virtuala

spacecraft be v("(v(
1
, v(

2
, v(

3
). It is easy to see that

b)"R(w, z)iK and v("R(w
d
, z

d
)iK . (26)

We can then express the body frame of the spacecraft in
the reference frame of the `virtuala spacecraft as follows:
b)"R(w, z)RT(w

d
, z

d
)v( :"R

r
(w

r
, z

r
)v( where R

r
(w

r
, z

r
) is the

rotation matrix from v( to b) and where w
r

and z
r

are
the corresponding attitude coordinates. Lemma 1 shows
how to compute (w

r
, z

r
) from (w, z) and (w

d
, z

d
), which can

then serve as a coordinate description of the relative
orientation between the b) and v( frames.

The angular velocity between the frames bK and v(
(expressed in the b) frame) is given by

C
u

r1

u
r2

u
r3
D"C

u
1

u
2

0 D!R
r
(w

r
, z

r
)C

u
d1

u
d2

0 D. (27)

Note, in particular, that since R
r31

and R
r32

are nonzero,
in general, u

r3
O0, although both u

3
and u

d3
are as-

sumed to be zero.
The kinematic equations of the target frame (as seen

from b) ) are therefore given by

w5
r
"!iu

r3
w
r
#

u
r

2
#

u6
r

2
w2

r
, (28a)

z5
r
"u

r3
#Im(u

r
w6
r
). (28b)

The objective of the tracking controller is to keep the
body frame of the spacecraft aligned with the body frame
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of the target frame. Hence, the problem of tracking has
been transformed to a problem of stabilization of the
relative attitude expressed by the pair (w

r
, z

r
).

Proposition 6. Let the kinematics of the spacecraft
described by Eqs. (11), and the kinematics of the target
attitude trajectory generated by Eqs. (25) for some known
u

d
(t). Consider the controller

u"!iw
r
!iA

kz
r
#u

r3
w6
r

B#g(R
r
,u

d
), (29)

where w
r

and z
r

the attitude coordinates corresponding to
the rotation matrix R

r
from the target to the body frame,

i'0 and k'i/2 are constants, and

u
r3
"!R

r31
u

d1
!R

r32
u

d2
, (30a)

g(R
r
,u

d
)"R

r11
u

d1
#R

r12
u

d2
#i(R

r21
u

d1
#R

r22
u

d2
).

(30b)

Then this kinematic controller is well dexned for all t50,
and for all initial conditions such that w(0)Ow

d
(0), we have

that lim
t?=

(w(t), z(t))"(w
d
(t), z

d
(t)). In addition, this con-

troller is bounded along closed-loop trajectories.

First, notice that with u as in Eq. (29) the relative
angular velocity between b) and v( is given by

u
r
:"u

r1
#iu

r2
"!iw

r
!iA

kz
r
#u

r3
w6
r

B. (31)

Substituting the previous equation in Eqs. (28) one ob-
tains

d

dt
Dw

r
D2"!iDw

r
D2(1#Dw

r
D2), (32a)

dz
r

dt
"!kz

r
(32b)

and thus, lim
t?=

(w
r
(t), z

r
(t))"0 with exponential rate of

decay for all (w
r
, z

r
)3D.

The control law in Eq. (31) is well de"ned for all
initial conditions (w

r
, z

r
)3(CCM0N)]S1 since if w

r
(0)O0,

Eq. (32a) implies that w
r
(t)O0 for all t50.

It remains to show that the control law in Eq. (31) is
bounded. From Eq. (32a) one readily obtains that w

r
is

bounded. Moreover, using Eqs. (32) a direct calculation
shows that z

r
/w6

r
is bounded if k'i/2. In addition, from

Eq. (30a) one obtains that

Du
r3

D
Dw

r
D
4

DR
r31

D
Dw

r
D
Du

d1
D#

DR
r32

D
Dw

r
D
Du

d2
D

4

2

1#Dw
r
D2

(Du
d1

D#Du
d2

D)42(b
1
#b

2
), (33)

where we have used Eq. (7) and the facts that
DRe(we*z)D4DwD and DIm(we*z)D4DwD for any w3C. Also,
since R

r
is a rotation matrix, a direct calculation shows

that

Dg(R
r
,u

d
)D4Du

d
D4Du

d1
D#Du

d2
D"b

1
#b

2
(34)

and g(R
r
,u

d
) is bounded. Thus, u is bounded. This com-

pletes the proof of the proposition.
A tracking controller bounded by a given upper bound

can be obtained by simply combining the results of Prop-
ositions 3 and 6. Here we assume that this upper bound is
greater than a constant that depends on the bounds of
u

d1
and u

d2
. This is a reasonable assumption since there

will always be a minimum e!ort required to track arbit-
rary trajectories. Moreover, this minimum e!ort will
depend on the trajectories to be tracked.

Theorem 7. Let the kinematics of a spacecraft described by
Eqs. (11), and the kinematics of a target attitude trajectory
generated by Eqs. (25) where Du

di
(t)D4b

i
, for i"1,2. Con-

sider a constant b
3
'3(b

1
#b

2
). Let the feedback control

law

u"!i
w
r

J1#Dw
r
D2
!ik sat

#
(z

r
, w

r
)

!i
u

r3
w6
r

#g(R
r
,u

d
), (35)

where w
r
, z

r
, R

r
, u

r3
, and g(R

r
, u

d
) as in Proposition 6.

Assume that the gains i and k are as in Eq. (16) and that
satisfy maxMDiDN#k4b

3
!3(b

1
#b

2
). Then the control

law in Eq. (35) is well dexned for all (w, z)3D, satisxes
requirements (R1) and (R2) and it is bounded by Du(t)D4b

3
for all t50.

Notice that if w
r
"0 then necessarily u

r3
"0. Also, in

this case, g(R
r
, u

d
)"u

d
e~*zr . Thus, the control law in

Eq. (35) simpli"es to

u"!i
w
r

J1#Dw
r
D2
!ik sat

#
(z

r
, w

r
)#u

d
e~*zr . (36)

With the proposed control law in Eq. (35), the closed-
loop trajectories satisfy

d

dt
Dw

r
D2"!iDw

r
D2J1#Dw

r
D2, (37a)

dz
r

dt
"!k satA

z
r

Dw
r
DBDwr

D. (37b)

By Proposition 3 it follows that lim
t?=

(w
r
(t), z

r
(t))"0

for all (w
r
, z

r
)3D. If initially w(0)"w

d
(0) and z(0)"z

d
(0)

then R
r
"I and the control law in Eq. (35) reduces to

u"u
d

and thus, (w(t), z(t))"(w
d
(t), z

d
(t)) for all t50.

Therefore, the proposed control law satis"es require-
ments (R1) and (R2).
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The proof of boundedness of u is shown easily by

DuD4maxMDiDN#k#
Du

r3
D

Dw
r
D
#Dg(R

r
,u

d
)D

4maxMDiDN#k#3(b
1
#b

2
)4b

3
(38)

for all t50 where we have used Eqs. (33) and (34).

5. Special case: tracking of the symmetry axis

The results of the previous section can also be used in
the special case of tracking a speci"c direction in inertial
space with the body bK

3
-axis (which we assume to be the

symmetry axis of the axisymmetric spacecraft). This
would be the case when, for example, the symmetry axis
is the axis of a communications antenna, the line-of-sight
of an onboard telescope or camera, etc. In all these cases,
the relative rotation about the symmetry axis is irrel-
evant. In particular, the body is now allowed to rotate
about its bK

3
-axis at a constant angular rate u

3
(0)"u

30
.

It is assumed that the desired pointing direction with
respect to the inertial frame is given as w

d
(t). Consulting

Fig. 1, this implies that the desired direction in inertial
frame is given by the unit vector

v(
3
"!a

d
iK
1
!b

d
iK
2
#c

d
iK
3
, (39)

where

w
d
"

b
d
!ia

d
1#c

d

. (40)

Conversely, given w
d
, the coordinates of the vector v(

3
in

the inertial frame (!a
d
,!b

d
, c

d
) can be computed from

Eqs. (4). A tracking controller's objective is then to make
bK
3

track v(
3

as tPR.

Proposition 8. Consider the system of Eqs. (10) describing
the orientation of a rigid spacecraft in inertial frame. Let
the direction along the unit vector in inertial frame given by
v(
3

as described by Eqs. (25a), (39) and (40), where
u

d
(t)"u

d1
#iu

d2
(t) is a given function of time such that

Du
di
(t)D4b

i
for i"1,2. Let the control law

u"!i
w
r

J1#Dw
r
D2
#g(R,u

d
), (41)

where i'0, and where

g(R,u
d
)"R

11
u

d1
#R

12
u

d2
#i(R

21
u

d1
#R

22
u

d2
) (42)

with R"R(w, z) as in Eq. (7). Then with this control law the
body bK

3
-axis will track exponentially the direction along the

unit vector v(
3

from all initial conditions. Moreover, the
control law is bounded by Du(t)D4i#b

1
#b

2
for all

t50.

Using the fact that v(
3
"!a

d
iK
1
!b

d
iK
2
#c

d
iK
3

and
b)"R(w, z)iK one can immediately show that the target
direction v(

3
in the body frame is given by

v(
3
"a

r
bK
1
#b

r
bK
2
#c

r
bK
3
, (43)

where

C
a
r

b
r

c
r
D"R(w, z)C

!a
d

!b
d

c
d
D. (44)

Using this expression, one can compute the `errora coor-
dinate w

r
in the body frame by

w
r
"

b
r
!ia

r
1#c

r

. (45)

The di!erential equation for w
r
is then given by Eq. (28a),

where

C
u

r1

u
r2

u
r3
D"C

u
1

u
2

u
30
D!R(w, z)C

u
d1

u
d2

0 D. (46)

Using the control law in Eq. (41), the closed-loop system
for w

r
yields

d

dt
Dw

r
D2"!iDw

r
D2(1#Dw

r
D2) (47)

which shows that w
r
P0 with exponential convergence

rate. Eq. (43) shows that w
r
"0 implies that a

r
"b

r
"0

and hence v(
3
"bK

3
. Finally, using Eq. (34) it follows

immediately that the control law is bounded by
Du(t)D4i#b

1
#b

2
for all t50.

Remark 9. The complex variable w
r
denotes the `errora

between the v(
3

and bK
3

unit vectors. However, notice that
w
r
"0 does not necessarily imply that w"w

d
. This is

due to our speci"c de"nitions for w and w
d
.

6. Feasible trajectory generation

In the tracking problem of Section 4 we assumed that
the reference trajectory is given as the output of a dynam-
ical system with the same nonlinear structure as the
original system. We called this exosystem the `virtuala
spacecraft. The advantage of this approach is that we
could guarantee a priori that the trajectories of this
exosystem are feasible and perfect tracking can be
achieved. That is, given some reference trajectories w(t)
and z(t) we could guarantee the existence of an angular
velocity command u(t) such that Eqs. (11) are satis"ed. In
general, it is not true that, given some arbitrary functions
of time w(t) and z(t), there exists such a command u(t).
For example, given w(t) for t50, one could solve Eq. (11)
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3This type of equivalence is called Lie}BaK cklund equivalence and it
is quite well-known in physics. Two systems are equivalent in the
Lie}BaK cklund sense if any variable of one system may expressed as
a function of the variables of the other system and of a "nite number of
their time derivatives. One system can then be transformed to the other
via endogenous feedback. This transformation does not necessarily
preserve state dimension; see also Fliess, Levine, Martin and Rouchon
(1999).

4Except the case of con"guration #at Lagrangian systems with
n degrees of freedom and n!1 controls, where a complete characteriza-
tion exists; see, for instance, Murray and Rathinam (1996).

for u(t) from

u"

2

1!DwD4
(w5 !w65 w2) (48)

whenever wO1. The last equation implies the constraint

z5 (1!DwD2)!2 Im(w5 w6 )"0 (49)

which, in general, does not hold for arbitrary functions of
time w(t) and z(t).

In this section we develop an approach to generate
feasible trajectories for the system in Eq. (11). These
trajectories, can then be used as reference trajectories for
the tracking problem. In particular, given an initial point
(w

0
, z

0
), a "nal point (w

&
, z

&
) and a time t

&
, we seek time

functions w(t) and z(t), de"ned over the interval
04t4t

&
, such that (w(0), z(0))"(w

0
, z

0
), (w(t

&
), z(t

&
))"

(w
&
, z

&
) and Eq. (49) is satis"ed for all 04t4t

&
. We call

such trajectories feasible since they ensure the existence
of a function u(t) such that system in Eq. (11) is satis"ed.
Such an u(t) can be found by Eq. (52) below. The func-
tions w(t) and z(t) are then the solutions of system (11)
with input u(t), initial conditions (w

0
, z

0
) and "nal condi-

tions (w
&
, z

&
).

To solve the feasible trajectory generation problem, we
will use the notion of di!erential #atness (Fliess et al.,
1992, 1995. A system is di!erentially #at if one can "nd
a number of outputs (the same as the number of inputs)
such that all states and inputs of the system can be
written as algebraic functions of these #at outputs and
their derivatives. Di!erentially #at systems are extremely
nice since, they are equivalent3 to an algebraic system,
i.e., a system without dynamics. The downside of this
approach is that most (nonlinear) systems are not #at.
Also, to date, there does not exist a systematic way for
"nding the #at outputs,4 although very often (if they
exist) they have intrinsic physical signi"cance. An addi-
tional problem may arise if the transformation from the
#at output space to the state space is singular. In this
paper we address all these problems for the underac-
tuated spacecraft problem, and propose a simple para-
meterization of trajectories in the #at output space that
satis"es all the constraints and avoids any singularities.

From now on, and for clarity of exposition, we switch
from complex to real number notation. The kinematic

model of an underactuated rigid body is then described
by

w5
1
"1

2
(1#w2

1
!w2

2
)u

1
#w

1
w

2
u

2
, (50a)

w5
2
"1

2
(1!w2

1
#w2

2
)u

2
#w

1
w

2
u

1
, (50b)

z5 "w
1
u

2
!w

2
u

1
(50c)

or, compactly, by

C
w5
1

w5
2
z5 D"C

1
2
(1#w2

1
!w2

2
) w

1
w

2
w

1
w

2
1
2
(1!w2

1
#w2

2
)

!w
2

w
1

DCu1
u

2
D

"F(w)C
u

1
u

2
D. (51)

If [w5
1

w5
2

z5 ]T is in the range of F(w), we can solve the
previous equation uniquely for the angular velocities

C
u

1
u

2
D"(FT(w)F(w))~1 FT(w)C

w5
1

w5
2
z5 D

"

4

(1#w2
1
#w2

2
)2

C
1
2
(1#w2

1
!w2

2
) w

1
w
2

!w
2

w
1
w
2

1
2
(1!w2

1
#w2

2
) w

1
D C

w5
1

w5
2
z5 D.
(52)

Note that in case [w5
1

w5
2

z5 ]T is not in the range of F(w),
the previous equation solves the minimum distance prob-
lem to the range of F(w).

We now return to the characterization of the #at
outputs of system (50).

Proposition 10. The kinematic model of an underactuated
rigid body described by Eqs. (50) is diwerentially yat.

Consider the following two functions:

y
1
"2 arctanA

w
2

w
1
B#z, (53a)

y
2
"z. (53b)

We claim that these are #at outputs for the system in
Eqs. (50).

First note that, trivially, z can be written as a function
of y

1
and y

2
. Di!erentiating Eq. (53a) we get

y5
1
"

1!DwD2
DwD2

y5
2
#y5

2
"

y5
2

DwD2
(54)

or that

DwD2"
y5
2

y5
1

. (55)
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5A proof of this result is shown in the appendix.

Moreover, we have that

arctanA
w
2

w
1
B"

y
1
!y

2
2

. (56)

The previous two equations together imply that

w
1
"S

y5
2

y5
1

cosA
y
1
!y

2
2 B, (57a)

w
2
"S

y5
2

y5
1

sinA
y
1
!y

2
2 B (57b)

which, together with the equation,

z"y
2

(58)

imply that w
1
, w

2
and z can be written as algebraic

functions of y
1
, y

2
and their time derivatives. By virtue of

Eq. (52) u
1

and u
2

can also be written as functions of
y
1
, y

2
and their time derivatives. Therefore, y

1
and y

2
are

#at outputs for the system in Eqs. (50), as claimed.
The initial and "nal points of the trajectory correspond

to the points

y
10

"2 arctanA
w
20

w
10
B#z

0
, y

20
"z

0
, (59a)

y
1&
"2 arctanA

w
2&

w
1&
B#z

&
, y

2&
"z

&
(59b)

in the y
1
}y

2
plane, respectively. We can now construct

paths in the y
1
}y

2
plane connecting the points (y

10
, y

20
)

and (y
1&

, y
2&

) and map them back to the w}z state space
using Eqs. (53b). We may choose any path we want, as
long as y5

1
y5
2
50. One way to achieve this is to assume

a linear dependence of y
1

with time

y
1
(t)"y

10
#

t

t
&

(y
1&
!y

10
) (60)

and then parameterize y
2

as a cubic function of y
1

y
2
"a

0
#a

1
y
1
#a

2
y2
1
#a

3
y3
1
. (61)

Because the output y
2

is parameterized in terms of y
1
,

we call y
1

the `independenta #at output. The previous
parameterization implies

y
2
(0)"y

2
(y

1
(0))"a

0
#a

1
y
1
(0)#a

2
y2
1
(0)

#a
3
y3
1
(0), (62a)

y
2
(t
&
)"y

2
(y

1
(t
&
))"a

0
#a

1
y
1
(t
&
)#a

2
y2
1
(t
&
)

#a
3
y3
1
(t
&
). (62b)

From Eq. (55), the boundary conditions at t"0 and
t
&

also imply the extra constraints

dy
2

dy
1

(0)"a
1
#2a

2
y
1
(0)#3a

3
y2
1
(0)

"w2
10

#w2
20

"Dw(0)D2, (63a)

dy
2

dy
1

(t
&
)"a

1
#2a

2
y
1
(t
&
)#3a

3
y2
1
(t
&
)

"w2
1&
#w2

2&
"Dw(t

&
)D2. (63b)

We have a linear system of four equations (62)}(63) in the
four unknowns a

0
, a

1
, a

2
, a

3
. In order to ensure that

y@
2
(y

1
)50 we take advantage of the ambiguity of the

arctan( ) ) function in Eqs. (53). First, and without loss
of generality we assume that y

1&
'y

10
and y

2&
5y

20
.

Otherwise, we can add or subtract multiples of 4p to
y
i0

and/or y
i&

(i"1,2) to make sure that the previous
inequalities hold.

From Eq. (61) we have that y@
2
(y

1
)"0 whenever

yH
1
"

!a
2
$Ja2

2
!3a

1
a
3

3a
3

. (64)

By adding multiples of 4p to y
2&

one can ensure
that yH

1
N (y

10
, y

1&
). Since y@

2
(y

1
)(0)50 it follows that

y@
2
(y

1
)(t)50 for all t3[0, t

&
].5

Remark 11. One can choose many di!erent paths con-
necting (y

10
, y

20
) and (y

1&
, y

2&
) in the y

1
}y

2
plane, as long

as they satisfy the boundary conditions in Eqs. (62) and
(63). A cubic polynomial is the lowest degree polynomial
which satis"es the four boundary conditions in Eqs.
(62)}(63). Since the cubic polynomial is completely deter-
mined by these boundary conditions, there is no extra
freedom to satisfy the slope constraint y@

2
(y

1
)50. One

could have chosen a higher order polynomial and use the
extra degrees of freedom to satisfy the slope constraint.
However, this is not an easy task with no analytical
answer. Here we have chosen the simplest case of a cubic
polynomial, and we have addressed the slope restriction
by taking advantage of the fact that multiples or 2p
correspond to the same angle (i.e., the same physical
orientation of the body).

Once the time functions y
1
(t) and y

2
(t) are known

from the algorithm above, one can compute w5
1

and
w5
2

and z5 from

w5
1
"

1

2A
y5
1

y5
2
B
1@2

A
yK
2

y5
1

!

y5
2
yK
1

y5 2
1
B cosA

y
1
!y

2
2 B

!A
y5
2

y5
1
B
1@2

sinA
y
1
!y

2
2 B

y5
1
!y5

2
2

, (65a)
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Fig. 4. Closed-loop trajectories for the system of equation (11).

w5
2
"

1

2A
y5
1

y5
2
B
1@2

A
yK
2

y5
1

!

y5
2
yK
1

y5 2
1
B sinA

y
1
!y

2
2 B

!A
y5
2

y5
1
B

1@2
cosA

y
1
!y

2
2 B

y5
1
!y5

2
2

, (65b)

z5 "y5
2
, (65c)

where y5
1
O0 because of Eq. (60). The corresponding

angular velocities are computed from Eq. (52).
Eqs. (65) have a potential singularity at y5

2
"0. By the

previous discussion it is clear that this can happen only at
the boundary points of the interval [0, t

&
]. Indeed, if

either Dw(0)D"0 or Dw(t
&
)D"0, then from Eq. (55) we must

have necessarily y5
2
(0)"0 or y5

2
(t
&
)"0, respectively.

From Eqs. (65) it is clear that in such a case we need to
impose the additional constraint that yK

2
(0)"0 or

yK
2
(t
&
)"0.

Since

yK
2
(t)"(2a

2
#6a

3
y
1
(t))y5 2

1
(t), (66)

we can guarantee that yK
2
(0)"0 by choosing a function

y
1
(t) such that y5

1
(0)"0. For instance, if Dw(0)D"0 we can

choose

y
1
(t)"y

10
#A

t

t
&
B
2
(y

1&
!y

10
). (67)

Similarly, for the case when Dw(t
&
)D"0 we can choose the

following time parameterization for y
1
:

y
1
(t)"y

1&
#A

t!t
&

t
&
B
2
(y

10
!y

1&
) (68)

which guarantees that y5
1
(t
&
)"0 and hence from Eq. (66)

also that yK
2
(t
&
)"0.

Finally, for the case when the initial and "nal condi-
tions are such that Dw(0)D"Dw(t

&
)D"0, we can choose the

following cubic parameterization of y
1
:

y
1
(t)"2(y

10
!y

1&
)A

t

t
&
B
3
!3(y

10

!y
1&

)A
t

t
&
B
2
#y

10
. (69)

This expression guarantees that y5
1
(0)"y5

1
(t
&
)"0, hence

also that yK
2
(0)"yK

2
(t
&
)"0, as required. Notice that the

parameterizations of y
1
(t) given in Eqs. (67)}(69) ensure

that y5
1
(t)O0 for all t3(0, t

&
).

Summarizing, we have shown that a linear para-
meterization for `independenta #at output y

1
(t) along

with a cubic parameterization of y
2

in terms of y
1

can be
used to solve the trajectory generation problem in the #at
output space for the majority of cases. With a linear
parameterization of y

1
, singularities may occur at the

initial and/or "nal points, if DwD"0 at these points. If this
is the case, a quadratic or cubic parameterization of
y
1

can be used to circumvent the singularity problem at
the boundary points.

7. Numerical examples

In this section we provide numerical examples to dem-
onstrate the control laws developed previously. The "rst
example compares the control laws in Eqs. (12) and (15).
The initial conditions were chosen as w(0)"0.01!i0.1
and z(0)"2. These initial conditions were chosen on
purpose close to the singular manifold w"0 in order to
demonstrate the e!ect of `bada initial conditions. The
time histories of the corresponding closed-loop trajecto-
ries are shown in Fig. 4. For the control law in Eq. (15)
the gains were chosen as i"1 in D

'
and i"!2 in D

"
,

and k"2. For the control law in Eq. (12) it is i"1.
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Fig. 5. Comparison of closed-loop trajectories and control inputs with control laws as in Eqs. (12) and (15).

Fig. 6. Closed-loop trajectories for the tracking problem.

The corresponding trajectories in the (w, z) plane are
shown in Fig. 5(a). The solid line corresponds to the
trajectory using the bounded control law in Eq. (15),
while the dashed line corresponds to the trajectory using
the control law in Eq. (12). Fig. 5(b) shows the dramatic
reduction in the control input required to perform this
maneuver using the control in Eq. (15). In this case, the
control law is bounded by maxMDiDN#k"4 as suggested
by Proposition 3. The control reduction is achieved by
allowing the states w

1
and w

2
increase at the beginning of

the trajectory so as to move away from the singular
manifold w"0; see also Fig. 4.

The second example deals with the attitude tracking
problem. We again consider the kinematic equations of
a rigid body, described by Eqs. (11). We let the trajectory
to be tracked generated by the system in Eqs. (25) where
u

d
(t)"0.5 sin(0.5t)#i cos(0.25t). The initial conditions

are given by (w(0), z(0))"(5#i,3) and (w
d
(0), z

d
(0))"

(i, 2.5). The results of the numerical simulations are
shown in Fig. 6. The closed-loop trajectories with control
law as in Eq. (35) are shown in Fig. 6(a). The gains were
chosen as i"2 in D

'
and i"!1 in D

"
, and k"4.

Fig. 6(b) shows the error trajectories in the (Dw
r
D, Dz

r
D)

space.
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Fig. 7. Snapshots of the attitude orientation history. The wire frame represents the `virtuala spacecraft which furnishes the reference attitude to be
tracked.

Fig. 8. Snapshots of the attitude orientation history for the reference direction tracking problem. The solid line represents the desired direction in
inertial frame and the dashed line represents the symmetry axis.

Fig. 7 shows a series of `snapshotsa of the actual
orientation of the body and the target reference frames.
The solid parallelepiped in the "gure represents the rigid
spacecraft while the wire frame represents the `virtuala
spacecraft along the desired attitude history. Fig. 7 shows
clearly that tracking of the target frame has been
achieved after approximately 5 s in this case.

The next example demonstrates tracking of a desired
direction in inertial space. The body is assumed axisym-
metric having a constant velocity component about the
bK
3
-axis equal to u

30
"!0.5 r/s. The control law in

Eq. (41) is used with i"2. The reference trajectory for

the unit vector v(
3

is generated by the system in Eqs. (25a)
with u

d
(t)"t sin(0.5t)#i1.5 cos(t).

The actual orientation of the spacecraft during the
tracking maneuver is shown in Fig. 8. The solid line in
Fig. 8 represents the desired reference direction v(

3
and

the dashed line represent the body axis direction bK
3
. Fig.

8 shows that tracking of v(
3

has been achieved after
approximately 4 s.

In the last example, we demonstrate the algorithm
for automatic feasible trajectory generation developed
in Section 6. We assume "rst that the initial and "nal
conditions are given by (w

1
(0),w

2
(0), z(0))"(1, 2, 0.5) and
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Fig. 9. Feasible trajectory generation.

Fig. 10. Corresponding trajectories in the #at output space.

(w
1
(t
&
),w

2
(t
&
), z(t

&
))"(0,!1, 1.25), respectively. We also

choose t
&
"20 s. The corresponding initial and "nal

points in the y
1
}y

2
-plane of the #at outputs are cal-

culated by the proposed algorithm as (y
10

, y
20

)"
(2.71, 0.5) and (y

1&
, y

2&
)"(10.67, 13.81). Notice that in

this case y
1&
"2 atan[w

2
(t
&
)/w

1
(t
&
)]#z(t

&
)#4p and

y
2
(t
&
)"4p#z(t

&
). Fig. 9(a) shows the trajectories in the

w}z space, and Fig. 9(b) shows the corresponding angular
velocity history which generates these trajectories. In
Fig. 9(a) there are actually plotted two separate sets of
trajectories. One set is generated from the #at outputs,
i.e., from Eqs. (58), and the other set is generated directly
from the dynamical equations (11) subject to the
angular velocity history in Fig. 9(b). The two sets are
almost exact so there is no visible discrepancy in Fig. 9(a).
Fig. 10 shows the corresponding path in the #at output
space.

Consider now the case when (w
1
(t
&
), w

2
(t
&
), z(t

&
))"

(0, 0, 1.25). The initial conditions remain the same as in
the previous case. If we use the linear parameterization
for y

1
given in Eq. (60) we get the results in Fig. 11. The

dashed lines in Fig. 11(a) correspond to the trajectories as
given directly by the #at outputs, and the solid lines
correspond to the trajectories as given by integrating the
system of di!erential equations using the angular velocity
history in Fig. 11(b). Notice that although the trajectory
generated by the #at output approach matches very
closely the one generated by the dynamical system, the
angular velocity history requires large values at the "nal
point. In particular, because of the singularity at that
point, we get that lim

t?t&
u5 (t)"R.

By using the quadratic parameterization of y
1
(t) in

Eq. (68) we get the results in Fig. 12. The trajectories
are shown in Fig. 12(a). They are similar to the previous
ones (since the path in the #at output space remains the

same). The angular velocity history, however, shown in
Fig. 12(b) is much better behaved. In particular, the
singularity at the "nal time has been eliminated com-
pletely.

Similar results are obtained for boundary conditions
such that Dw(0)D"0 and Dw(0)D"Dw(t

&
)D"0. In the latter

case, the cubic parameterization of y
1
(t) in Eq. (69) can be

used to obtain well-behaved angular velocity command
at both the initial and the "nal time.
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Fig. 11. Feasible trajectory generation using a linear parameterization for y
1

(case Dw(t
&
)D"0).

Fig. 12. Feasible trajectory generation using a quadratic parameterization for y
1

(case Dw(t
&
)D"0).

8. Conclusions

In this paper we solve the problems of stabilization
and tracking for an underactuated rigid spacecraft. The
body is underactuated in the sense that there is no con-
trol authority along one of its principal axis. An example
of this situation is the case of an axisymmetric rigid
spacecraft with a thruster failure along the symmetry
axis. For the restricted case of zero spin rate, stabilization
is possible, but any stabilizing control laws has to be
nonsmooth. We develop such a nonsmooth control law
which, in addition, remains bounded by an a priori speci-
"ed bound. We then extend these stabilization results to
controllers which are able to track a given attitude tra-
jectory. As a special case, we also present a control law to

track an arbitrary direction in the inertial space using
two bounded control inputs. All proposed control laws
achieve asymptotically stability and tracking with
(asymptotic) exponential convergence rates for all initial
conditions. In addition to the previous results, we give an
algorithm for feasible trajectory generation for an under-
actuated axi-symmetric rigid body. These feasible trajec-
tories can then be used as reference trajectories for the
tracking problem. The proposed algorithm is especially
simple and is based on the di!erential #atness of the
corresponding di!erential equations. The whole ap-
proach can be readily automated and can thus be used
for autonomous, on-line trajectory generation and track-
ing without user intervention. One of the novelties of the
proposed approach is the use of a recently developed,
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nonstandard coordinate attitude parameterization which
can be used to isolate the motion of the underactuated
axis from the general motion of the body.

Acknowledgements

This work has been supported by the National Science
Foundation under Grant CMS-96-24188.

Appendix

Consider the curve in the y
1
}y

2
plane given by

y
2
"a

0
#a

1
y
1
#a

2
y2
1
#a

3
y2
1
, (A.1)

where a
0
, a

1
, a

2
, a

3
are given by the solution to the fol-

lowing linear set of equations:

C
1 y

10
y2
10

y3
10

1 y
1&

y2
1&

y3
1&

0 1 2y
10

3y2
10

0 1 2y
1&

3y2
1&
DC

a
0

a
1

a
2

a
3
D"C

y
20

y
2&

w2
0

w2
&
D (A.2)

and where y
10

, y
1&

, y
20

,w2
0

and w2
&

are positive constants,
with y

1&
'y

10
.

We will show that, under these conditions, there al-
ways exist a y

2&
large enough (positive), such that

dy
2

dy
1

50. (A.3)

To this end, calculation of the previous derivative gives

y@
2
"a

1
#2a

2
y
1
#3a

3
y2
1
. (A.4)

Clearly,

miny@
2
"y

2
(yH

1
)"a

1
!

a2
2

3a
3

, (A.5)

where yH
1

as in Eq. (64). Since by assumption, y@
2
(y

10
)'0

and y@
2
(y

1&
)'0, then Eq. (A.3) holds if and only if

a
1
!a

2
/3a

3
50.

A tedious but straightforward calculation shows that
a
1
, a

2
and a

3
are linear functions of y

2&
given by

a
1
"!6

y
10

y
1&

(y
1&
!y

10
)3

y
2&
#c

1
, (A.6a)

a
2
"3

y
10

#y
1&

(y
1&
!y

10
)3

y
2&
#c

2
, (A.6b)

a
3
"!2

1

(y
1&
!y

10
)3

y
2&
#c

3
, (A.6c)

where c
1
, c

2
and c

3
are constants independent of y

2&
.

Substituting Eqs. (A.6) in the r.h.s. of Eq. (A.5) and for
large enough y

2&
, one obtains that

a
1
!

a2
2

3a
3

+

3

2(y
1&
!y

10
)
y
2&
#c, (A.7)

where c is a constant independent of y
2&

.
Since by assumption y

1&
!y

10
'0, the last equation

shows that for y
2&

large enough we have that y@
2
(y

1
)50

and the proof is complete.
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