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A Novel Approach to the Attitude Control of 
Axisymmetric Spacecraft* 

P. TSIOTRAS,t M. CORLESSS and J. M. LONGUSKIS 

A novel approach is proposed for the attitude stabilization and reorienta- 
tion of an axisymmetric spacecraft subject to two gas jet actuators. The 

approach is based on a new formulation of the attitude kinematics. 
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Abstract-We consider the problem of attitude stabilization 
of an axisymmetric spacecraft using two pairs of gas jet 
actuators. These actuators provide control torques about two 
axes spanning the two-dimensional plane orthogonal to the 
axis of symmetry. Using a new kinematic formulation, we 
derive a stabilizing control law that achieves arbitrary 
reorientation of the spacecraft under the assumption that the 
initial spin rate about the symmetry axis is zero. 

1. INTRODUCTION 

The problem of attitude stabilization of a 
rotating rigid body has been the subject of active 
research (see e.g. Mortensen, 1968; Crouch, 
1984; Salehi and Ryan, 1985; Wie et al., 1989; 
Bymes and Isidori, 1991a). Most of the existing 
results assume that three torques are available 
for control purposes, supplied either by gas jet 
actuators or by momentum exchange devices. In 
this case the complete stabilization/reorientation 
problem can be solved using linear (Mortensen, 
1968; Wie et al., 1989) or nonlinear controllers 
(Salehi and Ryan, 1985). On the other hand, the 
problem of attitude stabilization when less than 
three independent control torques are available 
has only recently been addressed (Krishnan et 
al., 1992, 1994; Tsiotras and Longuski, 1993, 
1994b; Walsh et al., 1994). The case with less 
than three independent control torques is of 
interest from both theoretical and practical 
points of view. On the theoretical side, when less 
than three control torques are available, the 
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linearized system is not stabilizable, so nonlinear 
control techniques need to be employed for the 
stabilization problem. Moreover, the nonlinear 
control is necessarily nonsmooth (see Byrnes and 
Isidori, 1991a). From a practical point of view, 
the case of less than three control torques is also 
of interest. Although most spacecraft are 
equipped with three control torques, the case 
with less than three control torques could 
correspond, say, to the situation when one or 
more of the actuators fail. 

Mortensen (1968) used Euler parameters 
(quaternions) to describe the kinematics of the 
attitude motion and derived linear globally 
asymptotically stabilizing control laws. Salehi 
and Ryan (1985) derived positively homoge- 
neous nonlinear feedback laws for the attitude 
stabilization problem; their results include those 
of Mortensen (1968) as a special case. Wie et al. 
(1989) presented a feedback regulator for 
eigenaxis rotational maneuvers. The control 
algorithm consists of linear feedback of error 
quaternions and body rates, and includes a 
decoupling control torque that counteracts the 
gyroscopic coupling. They also discuss the issue 
of robustness in the presence of initial body rate 
and inertia matrix uncertainty. Other standard 
references on the attitude stabilization problem 
include Meyer (1966) and, more recently, Wen 
and Kreutz-Delgado (1991). Again, we em- 
phasize that all these references assume three 
control torques. 

The first (and perhaps most complete) 
mathematical description of the attitude stabili- 
zation problem was given by Crouch (1984), who 
provided necessary and sufficient conditions for 
the controllability of a rigid body in the case of 
one, two and three independent control torques. 
These results can be summarized as follows. For 
three independent control torques the system is 
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completely controllable, although in the case of 
momentum wheel actuators a certain minimum 
control effort is required. A necessary and 
sufficient condition for complete controllability 
of a symmetric rigid body with control torques, 
supplied by two pairs of gas jet actuators, about 
axes spanning a two-dimensional plane, is that 
the axis orthogonal to this plane must not be a 
principal axis of symmetry of the spacecraft. In 
the nonsymmetric case the system is controll- 
able unless certain algebraic criteria hold; i.e. it 
is generically controllable. These criteria impose 
certain conditions on the relative magnitudes of 
the principal inertias, as in the case of stability 
considerations. For such a system, it is further 
shown that controllability is equivalent to local 
controllability at any equilibrium. When a 
spacecraft is controlled by less than three 
independent momentum wheel actuators, the 
system is not controllable, or even accessible at 
any equilibrium. 

More recently, Byrnes and Isidori (1991a) 
established that a rigid spacecraft controlled by 
two pairs of gas jet actuators cannot be 
asymptotically stabilized to an equilibrium using 
a continuously differentiable, i.e. smooth or @, 
feedback control law. Hence Byrnes and Isidori 
settled in the negative a longstanding problem 
concerning the existence of a smooth (static or 
dynamic) state feedback law that locally 
asymptotically stabilizes a rigid spacecraft with 
two controls. It is interesting to note that it was 
well known for some time, that, relative to a 
fixed desired reference attitude, this system is 
locally reachable and locally asymptotically 
null-controllable. What Byrnes and Isidori have 
shown is that there is no way to realize such 
open-loop strategies via smooth feedback. 
However, a smooth %’ feedback control law was 
derived in the same reference, which locally 
asymptotically stabilizes the spacecraft to a 
circular attractor, rather than to an isolated 
equilibrium. In a physical system this circular 
attractor corresponds to a steady rotation about 
the axis with no control authority. In the same 
work they demonstrated a more general result 
for a class of nonlinear systems, including the 
rigid spacecraft model of interest, namely that 
such a system is locally asymptotically stabiliz- 
able precisely when it can be linearized via state 
feedback transformations. 

The problem of attitude stabilization of a 
symmetric rigid spacecraft using only two control 
torques about axes spanning the two- 
dimensional plane orthogonal to the symmetry 
axis was considered by Krishnan et al. (1992, 
1994) for both gas jet actuators and momentum 
wheel actuators. The complete dynamics fail to 

be controllable or even accessible in this case; 
thus the methodologies of Crouch (1984) and 
Byrnes and Isidori (1991a) are not applicable. 
However, the spacecraft dynamics are strongly 
accessible and small time locally controllable in 
a restricted sense, namely when the spin rate 
remains zero; however, any stabilizing control 
has to be necessarily nonsmooth. In Krishnan ef 
al. (1992) such a nonsmooth control strategy was 
developed, which achieves arbitrary reorienta- 
tion of the spacecraft, for the restricted case of 
zero spin rate. This nonsmooth control law is 
based on previous results on the stabilization of 
nonholonomic mechanical systems (Bloch and 
McClamroch, 1989). 

In this paper we first present a new 
formulation of the attitude kinematics using the 
attitude coordinates developed by Tsiotras and 
Longuski (1993, 1994a, 1995). The kinematic 
equations in these coordinates have a very 
simple and compact form, which permits the 
efficient design of control laws for the attitude 
motion of a rotating rigid body. As an 
illustration of the potential of these attitude 
coordinates in feedback control design, we again 
consider the problem treated by Krishnan et al. 
(1992). That is, we seek to asymptotically 
stabilize via feedback the attitude motion 
(angular velocity and orientation) of an axisym- 
metric rigid body (e.g. a spacecraft) when only 
two body-fixed torques are available. Without 
loss of generality, we assume that the two 
control torques are along principal axes 
perpendicular to the symmetry axis. Note that 
here the term axisymmetric implies inertial 
symmetry and not geometric symmetry. A 
geometrically symmetric uniform rigid body is 
inertially symmetric, but one may have an 
inertially axisymmetric body that is not geomet- 
rically axisymmetric (e.g. a uniform orthogonal 
parallelepiped with two equal sides). 

Using the new formulation of the kinematics, 
we first construct a manifold with the property 
that when the motion of the system is 
constrained to this manifold, all motions 
asymptotically approach zero. This manifold 
actually corresponds to the zero-dynamics 
manifold (Isidori and Moog, 1988) when one of 
the new attitude coordinates is taken as the 
system output. For the case when the spin rate is 
initially zero we first derive a feedback control 
law that drives the closed-loop system trajec- 
tories to this manifold. We then modify the 
control law such that, once on this manifold, the 
closed-loop trajectories go to the origin. The 
derived feedback control laws thus allow 
arbitrary reorientation of the spacecraft for the 
restricted case of zero initial spin rate. When the 
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initial spin rate is not zero, the best one can 
expect is asymptotic stabilization to a uniform 
rotation about the symmetry axis. This corres- 
ponds to the circular attractor of Byrnes and 
Isidori (1991b). The results of this paper can be 
easily extended to handle this case as well. 

The control law presented is very simple, and 
avoids the successive switchings of Krishnan ef 
al. (1992,1994). At the same time, in Krishnan et 
al. (1992) Eulerian angles are used to describe 
the kinematics of the motion, and, as a result, 
the control law is only valid within the set of 
applicability of this particular set of angles. On 
the other hand, the kinematic variables proposed 
in this paper do not possess this deficiency, since 
their domain of applicability is a dense subset of 
the configuration space-actually, the whole 
space except an isolated point. (The issue of 
singularities of the kinematic representations is 
briefly discussed in the next section.) Moreover, 
the control strategy presented in Krishnan et al. 
(1992) requires the transformation to a new set 
of coordinates that do not have any obvious 
physical interpretation. Thus, some of the insight 
into the problem is lost in the process. In 
contrast, the control law presented in this paper 
is derived in terms of coordinates which are 
amenable to physical interpretation. This is 
especially desirable if, in addition to stabiliza- 
tion, one requires some measure of performance 
from the control law. If this is the case then the 
performance measure has to be defined in terms 
of a set of variables or coordinates that have a 
physical or intuitive appeal, instead of some 
abstract algebraic quantities. On the other hand, 
the results in Krishnan et al. (1992) do not intend 
to address the spacecraft stabilization problem 
per se, but rather to illustrate a more general 
theory on stabilization of nonholonomic systems 
(Bloch and McClamroch, 1989); at the same 
time, they treat both cases of gas jet actuators 
and momentum wheels in the same framework. 

Although in this paper we only consider a 
specific control problem of practical interest, 
namely spacecraft stabilization using only two 
control torques, the main purpose of this work is 
more general-to expose the new formulation of 
the kinematics and to illustrate how it can 
facilitate the design of stabilizing control laws for 
more general attitude control problems. Other 
results on stabilization of symmetric and 
non-symmetric spacecraft subject to two and 
three control torques using this kinematic 
formulation are reported by Tsiotras and 
Longuski (1993, 1994b) and Tsiotras (1994). 

The structure of the paper is as follows. In the 
next section we review the dynamics (equations 
for the angular velocities) and the kinematics 

(equations for the orientation) for the rotational 
motion of a rigid body. After a brief discussion 
of the configuration space of rigid-body rota- 
tions, its structure group and its parameteriza- 
tions, we introduce a set of kinematic coordin- 
ates and discuss their relationship with the Euler 
angles. Section 3 includes the main results of the 
paper. In particular, Lemma 3.1 presents a linear 
feedback control law (in terms of the new 
coordinates) that achieves asymptotic stabiliza- 
tion of the spin axis when the angular velocity is 
treated as the control input for the kinematics. 
In terms of the Eulerian angles, this implies that 
two of these (4 and 19) are zero, while the third 
angle (+) is, in general, nonzero. Using this 
result, we then construct an integral manifold in 
terms of the Eulerian angles, which in essence 
presents a measure of mismatch between the 
final orientation using the previous control law 
and the desired (zero) orientation. Theorem 3.1 
presents a feedback control law (in terms of o) 
that guarantees that this mismatch is zero, i.e. it 
drives all the trajectories to the manifold, and 
then to the origin. This control law is nonsmooth 
(in fact, singular) at the origin; we can choose, 
however, the gains of the control law in such a 
way that this nonsmoothness does not create any 
problems in practice. Finally, Theorem 3.2 
implements the control law of Theorem 3.1 
through the dynamics, which for this problem 
turns out to be a simple integrator. In the last 
section we extend these results, and we show 
that, even for the general case of a nonsymmet- 
ric body or nonzero spin rate, the new 
formulation is attractive, facilitating the design 
of stabilizing feedback control laws. 

2. EQUATIONS OF MOTION 

2.1. Dynamics 
The equations describing the rotational mo- 

tion of a rigid body are Euler’s equations of 
motion. If we choose the axes of the body-fixed 
reference frame along the principal axes of 
inertia of the rigid body with origin at the center 
of mass, Euler’s equations of motion take the 
simplified form 

(14 
12 - 13 M, 

il, =-w*w3+-, 
11 11 

13 - 4 M2 
h2=-fM3U~ +-, 12 12 (lb) 

4 - 12 M3 
h3=-~w102+- 

13 r, ’ 

where w,, 02, o3 denote the components of the 
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body angular velocity vector with respect to the 
body principal axes, M,, M2, M3 are the external 
torques, and the positive scalars Zi, Z2, Z, are the 
principal moments of inertia of the body with 
respect to its center of mass. For an axially 
symmetric body (I, = I,) with no external torques 
about the symmetry axis (here corresponding to 
I,), the equations can be written as 

w1 = aw203 + ul, (24 

6, = -ao3w1 + u2, (2b) 

h3 = 0, (2c) 

where a A (Z2 - Z,)/Z, is an inertia parameter and 
u1 A M,/Z,, u2 2 M2/Z2 are the control inputs. 

It should be clear from (2~) that, for a 
symmetric body, the component w3 of the 
angular velocity along the symmetry axis cannot 
be affected by the control inputs. In fact, o3 
remains constant for all time. Hence, as already 
mentioned, the system (2) is not controllable. 

Introducing the complex variables 

w~~i+io2, u 2 u1 + iu2, (3) 

one can rewrite (2a,b) in the compact form 

w = -lUwj@J + u 

where wjO A ~~(0). 

(4) 

Equations (2) or (4) describe the rotational 
dynamics of an axisymmetric rigid body. A 
complete characterization of the attitude motion 
also requires a description of the kinematics. In 
contrast to the dynamics formalism, there is 
more than one way to describe the rotational 
kinematics of a rigid body. 

2.2. Kinematics 
In principle, the orientation of a rigid body is 

described by the matrix relating a body-fixed 
reference frame and an inertial reference frame 
(Kane et al., 1983). The set of all such matrices 
form what is commonly known as the (three- 
dimensional) rotation group; it is denoted by 
SO(3) and consists of all matrices that are 
orthogonal and have determinant 1. That is, 
SO(3) is the subgroup of all invertible 3 X 3 
matrices, defined by 

SO(3) = {R E GL(3, [w) : RR’ = I, det R = l}, 

where GL(n, [w) is the general linear group of all 
n x n invertible matrices with real entries. 
Henceforth we shall refer to SO(3) simply as the 
rotation group. In fact, SO(3) carries an inherent 
smooth manifold structure, and thus forms a 
(continuous and compact) Lie group (Varadara- 
jian, 1984). 

The attitude history of a body-fixed reference 
frame with respect to an inertial reference frame 

can therefore be described by a curve traced by 
the corresponding rotation R(t) E SO(3) for 
t 2 0. The differential equation satisfied by R(t) 
while it is moving along this trajectory is given 
by the system of equations 

dR 
; = S(w,, w2,4R, 

where S(w,, 02, w3) is the skew-symmetric 
matrix 

and where explicit dependence on time has been 
suppressed for notational simplicity. 

Because of the six constraints associated with 
the orthogonality of the rotation matrix, there is 
more than one way to parameterize the rotation 
group, i.e. to specify a set of parameters such 
that every element R E SO(3) is uniquely and 
unambiguously determined (Stuelpnagel, 1964). 
Loosely speaking, each parameterization of the 
rotation group corresponds to a choice of (local) 
coordinates for the manifold SO(3). Commonly 
used parameterizations of SO(3) include the 
three-dimensional parameterization by Eulerian 
angles and the four-dimensional parameteriza- 
tion by quaternions (Kane et al., 1983). In this 
section we initially use Eulerian angles to 
describe the kinematics because of their physical 
significance, and also for comparison with the 
results of Krishnan et al. (1992). Then we 
introduce an alternative formulation of the 
kinematics that facilitates the design of feedback 
control laws for the attitude problem, and we 
show how such a formulation can be derived by 
stereographically projecting one of the columns 
of R onto the complex plane. As such, the new 
kinematic formulation does not depend on the 
particular parameterization of the rotation 
group, since it is directly derived from the 
differential equation for the rotation matrix R. In 
order to elucidate the motivation and the 
advantages behind the derivation of the new 
kinematic formulation, we develop in parallel an 
Eulerian angle description for the kinematics. 

Using a 3-2-l Eulerian angle sequence 
(@, 0, 4) for the description of the orientation 
(see Fig. l), one has the associated kinematic 
equations 

4 = w, + (w2 sin 4 + w3 cos 4) tan 8, (6a) 

4 = w2 cos 4 - w3 sin 4, (6b) 

(cl = (02 sin 4 + w3 cos 4) set 8. (6~) 
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Fig. 1. Eulerian angle sequence 3-2-l. 

The Eulerian angles provide a local coordinate 
system for the rotation group SO(3). Equations 
(6) exhibit a singularity at 8 = *$r. We 
therefore restrict the subsequent discussion to 
the set Ju defined by 

where S3 =S’ XS’X S’ and S’ is the usual 
mathematical notation for the unit circle. Using 
this parameterization of SO(3), the orientation 
of the body-fixed reference frame with respect to 
the inertial reference frame is found by first 
rotating the body about its 3 axis (or z axis) 
through an angle JI, then rotating about its 2 axis 
(or y axis) by an angle 8 and finally rotating 
about its 1 axis (or x axis) by an angle C#J (see Fig. 
1). Thus C$ and 0 determine the orientation of 
the local body-fixed 3 axis (the symmetry axis) 
with respect to the inertial 3 axis (2 axis), and $ 
determines (loosely speaking) the relative 
rotation about this axis. 

Every choice of Eulerian angles has the 
disadvantage of singularity in the associated 
kinematic equations, and this is also true for 
every other three-dimensional parameterization 
of the rotation group. If one requires a 
nonsingular description of the kinematics, one 

has to necessarily increase the order of the 
parameterization, using for example the four- 
dimensional parameterization of quatemions. 
This four-dimensional parameterization is not 
however, l-l, since SU(2), the unitary group of 
complex 2 X 2 matrices with unit determinant 
(where quatemions naturally live, S3 = SU(2)) 
gives a double (universal) covering of SO(3), 
thus providing a 2-l way of parameterizing the 
rotation group. A l-l universal parameteriza- 
tion is possible only if we increase the order of 
the parameterization to five; however, this is 
rarely done, and in most cases the four- 
dimensional quatemion representation is enough 
for a nonsingular description of the kinematics, 
since this 2-l correspondence between the 
quaternions and the elements of SO(3) is a local 
homeomorphism (Stuelpnagel, 1964). 

Tsiotras and Longuski (1994a, 1995) presented 
an alternative formulation of the kinematics of 
the rotational motion of a rigid body that 
simplifies (6). This formulation has been used by 
Longuski and Tsiotras (1993) to derive analytic 
solutions for the attitude motion of a rigid body 
subject to large angular displacements. In addi- 
tion, this kinematic formulation has proved to be 
extremely useful in control problems (Tsiotras 
and Longuski, 1993, 1994b; Tsiotras, 1994). 
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2.3. New coordinates 
Introducing the complex kinematic variable, 

w = w1 + iw,, defined by 

A sin 4 cos 8 + i sin 19 
w= 

1+ cos 4 cos 8 ’ 
(7) 

one can readily show that w satisfies the 
following complex differential equation: 

GJ + if.+w = fw + $Ww2 (8) 

where o is defined in (3) and the over bar 
denotes complex conjugate. This is a scalar 
Riccati equation with time-varying coefficients. 
Equation (7) is derived using stereographic 
projection of the unit sphere S* = {(x1, x2, x3) E 
R3$ +xs +xs = 1) in R3 onto the complex 
plane. In fact, (7) represents the stereographic 
projection of the third column of the rotation 
matrix (the one that is independent of the cyclic 
coordinate 9 for this choice of Eulerian angles) 
onto the complex plane C. An equation similar 
to (8) first appeared in Darboux (1887) in 
connection with some problems in classical 
differential geometry. More recently, Walsh ef 
al. (1994) used a kinematic formulation that 
closely resembles the one in this paper in order 
to solve the (more difficult) problem of attitude 
stabilization of a nonsymmetric spacecraft using 
only two control torques; their results, however, 
are only local. 

From (7), the real and imaginary parts of w 
are given by 

sin 4 cos 8 sin 8 
w, = 

i+c0scbc0se' w2'i +COS~COS~ 
(9) 

and they satisfy the differential equations 

rit1= 03wz + W.zWIWZ + io*(l + w: - w;), 

4 = -w3w1+ OlWlW2 + $W*(l + w; - 4). 

The transformation (7) is not restricted to the 
particular Eulerian angle set used here, or any 
other parameterization of the rotation group. In 
fact, since (8) can be derived directly from (5) 
using the method of stereographic projection of 
the unit sphere S* onto the complex plane, it is 
independent of the particular parameterization 
of SO(3). Note also that the differential equation 
for J/ in the (0, w) space is given by 

(w + @(l-t [WI’) 
9 = ti(o - 0) (1 + w2)(1 + *‘) 9 WY 

where 1.1 denotes the magnitude of a complex 
number, i.e. lw(2 = r3w. The variables 

(wl, w2, +) can therefore serve as a local 
coordinate description of SO(3). In the next 
section we introduce another variable z, such 
that (w,, w2, z) are local coordinates of SO(3), 
locally diffeomorphic to (4, 8, +), in such a way 
that z will be the ‘natural’ complement of w in 
the description of the kinematics. 

Note that, by construction, w1 = w2 = 0 implies 
that the body 3 axis is aligned with the inertial 3 
axis, i.e. it implies that 4 = 8 = 0. Therefore 
stabilization about w = 0 in the complex plane 
corresponds to stabilization of the (symmetry) 3 
axis. In Tsiotras and Longuski (1993, 1994b) 
globally asymptotically stabilizing control laws 
for this problem, namely for the reduced system 
of equations (4) and (8) (equivalently, (4) and 
(6a,b)) were derived, for both the cases of zero 
and nonzero spin rate 03. Consideration of this 
reduced system is possible because JI is an 
ignorable (cyclic) variable for the system of 
equations (6) and thus does not affect the 
solutions of these equations. For this reduced 
system, stabilization about the origin in the 

(ol, w2, 4, e) state space corresponds to 
stabilization of the symmetry axis, with the body 
orientation about this axis being indeterminate. 
In the extended (ol, 02, 4, 8, +) state space this 
implies stabilization about the one-dimensional 
manifold 

N={( wl, w2, 4,e, +) E R* x AC: 
ol=w2=~=e=o), (ii) 

rather than an isolated equilibrium. Feedback 
stabilization about a reduced equilibrium 
manifold has received attention recently, since it 
appears to be an important extension of 
stabilization about an equilibrium yielding 
bounded trajectories (Byrnes and Isidori, 1991a). 

Consider now the case of the complete system 
of equations (4) and (6) assuming that ~~(0) = 0. 
As already mentioned, in this case the equations 
are strongly accessible and small-time locally 
controllable at any equilibrium. Thus arbitrary 
reorientation of the spacecraft can be achieved if 
~~(0) = 0; if ~~(0) #O, reorientation of the 
spacecraft is not possible. Of course, smooth 
stabilization about the one-dimensional manifold 
X is always possible, regardless of the value of 

w3(0)* 

3.FEEDBACK CONTROL STRATEGY 

3.1. Stabilization of the kinematics 
Assuming a priori that 030 = 0, the system to 

be driven to the origin takes the form 

&I = Ul, (12a) 

bj, = u*, (12b) 
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with kinematics 

4 = 0i + o2 sin 4 tan 8, (134 

b= 02cosr#J, (13b) 

tj~ = w2 sin 4 set 8, (I3c) 

or, in the complex notation introduced 
previously, 

&J = u, (14a) 

*,=&J+&jw2 2 O4b) 

(w + W)(l + Iw12) 
+ = ti(w - W) (I + w2)(1 + @“) . (144 

These equations have the form of a cascade 
system, so we concentrate first on the problem of 
stabilization of the subsystem (14b,c), regarding 
o as the control input, and then we implement 
this control law through the integrator (14a). 

Stabilization of systems in cascade form has 
received attention recently as an effective way of 
stabilizing nonlinear systems (Coron and Praly, 
1991; Bacciotti, 1992; Kanellakopoulos et al. 
1992). However, we cannot use these results 
here, since our system is not smoothly 
stabilizable. Instead, we have to derive the 
stabilizing controller for the system (14) directly. 
We start with the following result concerning the 
subsystem (14b) (Tsiotras and Longuski, 1993). 

Lemma 3.1. The feedback control law 

W=-KW (15) 

(K > 0) globally exponentially stabilizes the 
subsystem (14b) with rate of decay $K. 

With the control law (15), the closed-loop 
subsystem corresponding to (14b) takes the form 

ti = -$K(l + lW12)W. (16) 

In the (4, 0) variables this control law can be 
written as 

sin 4 cos e 

0’=-Ki+c0s~c0se3 

sin e 

02=-Ki+c0s~c0se9 

(17) 

and the corresponding closed-loop system in the 
(4, 0, I+?) variables takes the form 

&Z-K sin I$ 

cos e(i + cos 4 cos e) ’ (184 

b=-K 
sin e cos tp 

i+c0s4c0se’ 

@_K sin $J tan e 

i+c0s4c0se’ 

Q8b) 

Vc) 

As t + ~0, the Eulerian angles 4 and 0 go to 
zero, but $ tends to some unspecified value &., 
which is, in general, nonzero. If we could 
calculate this value I,&, we might be able to 
devise a feedback control law that would impose 
4, = 0, and the problem would be solved. It 
turns out that such a strategy is possible, and is 
based on the rather surprising fact that one is 
able to analytically integrate the system of 
nonlinear differential equations (18) in closed 
form. Given any initial angles f& = 4(O), 
8” = e(0) and I& = r,+(O), we can therefore 
calculate the final value of 4. In addition, by 
considering the initial angles that result in zero 
for the final value of I/J, we construct an 
invariant manifold that can be used to derive 
stabilizing control laws for the complete 
kinematics (13). 

We now proceed to the derivation of this 
manifold. Eliminating time from (18), we obtain 

* = sin e 
de sin e cos e 

d+ ’ i$= tan4 . 
(19) 

Integrating the last equation yields 

or 

ln(z)=ln(z), 

tan e = a0 sin 4, 

where a, A tan B,/sin 40. From this equation, 
along with the first of (19), we have 

dll, a0 sin $J 

d%=Yl +aisin24’ 

Integrating this equation yields 

+!I + arcsin (p. cos 4) = q. + arcsin (p. cos 40), 

where p. 2 a,/m. If the state of the system 
(18) asymptotically converges to the origin, we 
must have 

$. + arcsin (p. cos 4,) - arcsinp, = 0. (20) 

For the case when b. = 0 (and - $c < 0, < 4~) it 
can be easily shown that the previous equation 
simplifies to the statement that Jlo = 0. The 
choice of 4 as the new independent variable is 
justified by the fact that it decreases monotoni- 
cally to zero. Indeed, from (18a) and (7), one 
can write the differential equation for #J as 

4 = - KWI/COS2 8. 

Now 0 E (-$r, &r), and if 4 = 0 for some time 
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t* < m, we have wr(t*) = 0. However, this is not 
possible, because from (16) the magnitude of w1 
decreases monotonically (exponentially) to zero. 
The monotonicity of 4(t) is also evident from 
the phase portrait of the system of equations 
(18a,b), which is depicted in Fig. 2. 

Equation (20) yields an expression for the 
initial conditions from which the feedback law 
w = -KW will drive the system (18) to the origin. 
We now introduce the manifold 

YA ((4, 0, $) E A:z(+, 0, #) = O>, 

where the function z: A+ R is defined by 

z (4, 0, $) b $ + arcsin (p cos 4) - arcsin p, 

(21a) 

P=q&> 
tan 8 a=- 
sin 4 ’ 

(2lb) 

Clearly, Y is an invariant manifold for the 
system (18). Moreover, by construction, every 

trajectory of Y satisfies heir (d(t), 0(t), I/J(~)) = 0. 

It is therefore advantageous to consider the 
utility of this manifold in achieving stabilization 
to the origin 4 = 0 = JI = 0. Note that Y is 
independent of the control gain K; therefore, 
once on this manifold, any positive K will lead to 
the origin. The manifold Yis shown in Fig. 3. 

The derivative of z along trajectories of (14) 
can be computed to be 

i = -w2w1 + w1w2 = Im (wW). (22) 

As expected, the choice of w = -KW maintains 
i ‘0, and a trajectory reaching Y remains 
there. 

In order to render 9’ an attracting manifold, 
we restrict consideration to w # 0 and propose 
the following control law 

CL 
w=-KW-i~z (23) 

W 

PHASE PORTRAIT OF CLOSED-LOOP SYSTEM 

-3 -2 -1 0 1 2 3 
phi @ad) 

Fig. 2. Phase portrait of reduced system. 

with p > 0. With this control law, the closed- 
loop system becomes 

V+ = -$K(l + lW[*)W - $i/Lz $ - W 
( > 

, Pa) 

2 = -pz, (24b) 

with (w, z) E (C\(O)) X R. Moreover, o + KW = 0 
for z = 0. Therefore, as long as w # 0, the 
control law (23) drives all trajectories of the 
subsystem (24) to the origin, for arbitrary initial 
conditions. Care should be taken in implement- 
ing (23), because the control law is not defined at 
points where w = 0. We shall return to this point 
shortly. We now have the following result 
regarding the system (24). 

Theorem 3.1. Consider the closed-loop system 
(24) with 

/.GiK 

and consider any initial condition (w(O), z(0)) E 
C x R with w(0) # 0. Then the following hold: 

(i) w(t)#O for all tr0; 
(ii) the trajectory (w(e), z(e)) is bounded and 

lim (w(t), z(t)) = 0; 
,+m 

(iii) the control history w(e) is bounded and has 
bounded derivative. 

Proof. We first show that if w(0) f 0 then 
w(t) # 0 for all t 2 0. 

Since 

$ [WI* = 2 Re (SW), 

one readily obtains that lwl* satisfies the 
differential equation 

$ ,W,* = -K (Wl*(l + [WI’). (25) 

Using the transformation v g l/)wj*, one can 
integrate (25) to obtain 

Iw(t)l = (,,,! _ 1)1’2’ 
where c0 2 (Iw(O)l’ + l)/lw(O)1*. Clearly, w(t) # 0 
for all t 2 0 and lim,_, w(t) = 0. In fact, the 
magnitude of w(t) is bounded between two 
exponential functions as follows: 

lw(O)[ eeKr’* 2 [w(t)1 > cg1’2e-rr/2 Vtr 0. (26) 
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w b-ad) 

Fig. 3. The two-dimensional manifold 9 

From (24b), it should be clear that 

z(t) = z(O)e-@. 

Hence z,(a) is bounded and lim,,, z.(t) = 0. 
We now show that o(e) and (j(e) are bounded. 

Let Y 2 z/ii;. Since co > 1, one has 

Iv(t)1 = z 
W 

I [z(O)1 e-“‘(coeK’ - 1)‘” 

< lz(O)l c~ne-(Y-Kn)f Vt 2 0. 

Since A 2 CL - $K > 0, Y decays exponentially to 
zero with rate at least equal to h. Thus 
lim,, Y(?] = 0, and Y is bounded by Iv(t)1 < 
lz(O)I CAD = PI for all f 2 0. Hence o is 
bounded as 

IfiJ( < K [W(o)1 + /.L IZ(o)l C;” 2 & Vt 2 0. 

Direct calculation shows that the derivative Q is 
bounded as 

IWI < (P + P‘J lz(O)l 4” 4 P3 w 2 0, 

where p4 2 $~(l + lw(0)12) + $.L(~z(O)I + &c~~), 
and the derivative of w is bounded as 

h+(t)/ 5 +K(L + 1”‘(0)12) /W(O)1 

+ &-@I + Iz(O)l Iw(O)l) + Ps w 2 0. 

Therefore the derivative of o is bounded as 
Iti(t)l < K& + & for all t 2 0. This completes 
the proof. 0 

Note that IwI and z decay exponentially fast to 
zero for all values of K >O and p >O. The 
condition p > $K is required in order to ensure 
that the control w and its derivative are bounded. 
We therefore have lim,, (w(t), z(t)) = 0 which 

implies that lim,,, (9(t), e(t), $(t)) = 0. If, on 
the other hand, w(0) = 0, the control law has to 
be slightly modified, as will be shown later. 

3.2. Stabilization of the complete system 
This section contains the main results of the 

paper. Let 8? be the open set @X (C\(O)) x R. 

Given any compact subset W c 8!‘, we present a 
controller that generates u for the full system 
(14) and that has the property that, for any 
initial condition in W, the resulting trajectory 
converges asymptotically to zero. 

The proposed controller is given by 

U = U, = -$K(O + OW2) - ipg(w, w, 2,) 

(27) 

where 

A Im(fM) z 
g(w, w, z) = 

w 
- 3 (0 + wW2) (28) 

and the scalars (Y, K and p are chosen to satisfy 

K >o, P>K, a>i(K+p), (29) 

with p satisfying 

z (1 + hvl2)“2 
o+KW+iE*.T 

W PI 
~PV(W,W,Z)E w. 

(30) 

The main idea behind the proposed control 
law is to approximately implement the control 
law (23) through the integrator (14a), by 
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choosing the gain (Y ‘large enough’. Indeed, implies that Is(t)1 5 p Ifi( for all t 2 0, where @ 
introducing the variable satisfies the differential equation 

sPO+Kw+iPi, (31) 

we can rewrite the closed-loop system in the 
form 

; Iti,* = -(K + p)(l + jPij]I”) 1ti’1*, C(O) = w(0). 

(34) 

s = -ffs, 

1 

(32a) 
Since 1Re (sW)l I 1st lwl and Is1 4 j? )G 1, it follows 
from (33) that 

6 = _$K(l + Iwl’)w - &z $ - w 
( 1 

+ is + &*, 

(32b) 

i = -pz + Im (SW). (32~) 

Note that for large (Y the s subsystem can be 
considered as a boundary-layer system for (32). 
The outer layer, corresponding to s = 0, is in fact 
the system (24), which, as shown in Theorem 
3.1, is globally exponentially stable for p > $K in 
(C\(O)) X R. Therefore, for large (Y and since the 
boundary-layer subsystem (32a) is globally 
exponentially stable, one expects the overall 
system to behave like the system of Theorem 
3.1. This statement is made precise in the 
following theorem. 

; ,W,* 2 -(I + jWl’)(K [WI* + p [W( 1+[). (35) 

From (34) and (35), [w(t)1 5 I@(t)1 implies that 

Since lw(O)l = l@(O)l, it follows that [w(t)1 L Iti 
for all t I 0. Now, according to (34), G(t) # 0 for 
t10. Thus w(t)#Ofor tr0. 

Next we show that lim,,, w(t) = 0. Since 
[w(t)1 2 I@(t)1 for all t 20, where @ decays 
exponentially with rate $(K + p), we have 

1°-(K+fl)/21f Vt 2 0. (36) 

Theorem 3.2. Consider the closed-loop system 
(32) with (Y, p and K satisfying (29) and consider 
any initial condition (w(O), w(O), z(0)) E W. 
Then the following hold: 

Since (Y > $(K + p), this term is eXpOnentiidly 

decreasing. Moreover, since Re (SW) 5 1st Jw 1, 
one obtains from (33) 

(9 

(ii) 

(iii) 

w(t) # 0 for all f 2 0; hence the control law 
(27)-(30) is well defined for all t 2 0; 
the trajectory (s(e), w(e), z(*)) is bounded 
and 

lim (s(t), w(t), z(t)) = 0; 
t-m 

the control history u(o) is bounded and 
satisfies lim,,, u(t) = 0. 

Proof We first show that if w(0) # 0 then 
w(t) # 0 for all t 2 0. From (32b), the magnitude 
of w obeys the equation 

ilw12 = -(l + IWl”)[K lwl* - Re (SW)]. (33) 

From the definition (30) of p and the condition 
(29) on (Y, we have 

Is(t), = Is(O)1 e-*’ 5 /3 [ ,,‘iT)l: l]1’2e-(“+P)“2 

vtzo. 

Recalling (25) and (26), the last inequality 

-$ ,W,* 5 -(I + IWl”) jW[*( K - ;). (37) 

From (36) lim,,, (Is(t)l/lw(t)l) = 0; hence one 
can readily show that lim,_, w(t) = 0. Since w is 
continuous, it must also be bounded. 

We now show that the variable 7 = z/lw12 is 
bounded and converges asymptotically to zero. 
The evolution of v is governed by 

q = -(/A - K)T/ + K lWl* ?j 

- (1 + 1~1’) Re (5)~ + Im (5). (38) 

Since lim,, w(t) = 0, lim,,, s(t)/w(t) = 0 and 
p - K > 0, one can now readily show that q(e) is 
bounded and lim,,, q(t) = 0. 

It now follows that z.(a) is bounded and 
converges asymptotically to zero. We have 
therefore shown that the solutions of (32) are 
bounded, and that lim,,, (s(t), w(t), z(t)) = 0. 

Since lim,,, 7)(t) = 0, one also has from (31) 
that lim,,, o(t) = 0. It is easy to check that g in 
(27) is bounded and tends to zero as t + 03. 
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Therefore u is bounded and lim,_, u(t) = 0, as at the time when no such control torque is 
claimed. This completes the proof. cl available. 

Corollary 3.1. Under the hypotheses of 
Theorem 3.2, we have 

lim (wi(r), @2(f), M), e(t), $0)) = 0. 
I-m 

So far, we have demonstrated that for initial 
conditions with w(O) ZO, it is possible to 
construct a control law that drives the system 
(12), (13) to the origin, with (4, 8, 4) avoiding 
the one-dimensional manifold 

The previous methodology cannot be used if 
the initial condition is such that 4(O) = e(O) = 0 
and q(O) ZO (i.e. w(O) = 0 and z(0) Z 0). 
Linearization of the system (14a,b) about w = 0, 
however, results in 

Remark 3.1. Equation (7) establishes a smooth 
change of coordinates (i.e. a diffeomorphism) 
between (wr, w2) and (4, r3), for all (9, 0) that 
do not correspond to an ‘upside-down’ con- 
figuration of the rigid body (0 = 0, $I = it); 
otherwise, w = w. This permits the use of (8) 
instead of (6a,b) in stabilization problems, since 
stability of w implies that w(t) < ~0 for all t > 0 
and thus avoidance of the singularity at w = ~0. 
Of course, one has to take into consideration the 
case when the rigid body initially has this 
singular configuration; however, we can always 
avoid this problem by simply turning the 
thrusters on to move away from this initial 
orientation before using (40). 

4. SOME EXTENSIONS 

&I=24 , (394 

I4 = $.tA WJb) 

This linearized system is completely controll- 
able, and by choosing, for example, a constant 
control u = u, E C, one can move away from X’. 
Once away from JV, one can use the control (27) 
to drive the system to the origin. We summarize 
the control strategy that drives the system (12), 
(13) to the origin w1 = o2 = $J = 8 = + = 0 from 
arbitrary initial conditions: 

Note that when the initial spin rate is not zero 
(wjO # 0), stabilization about the equilibrium 
manifold J-the ‘circular attractor’ of Byrnes et 
al., (1988) and Byrnes and Isidori (1991a)--can 
be easily accomplished using the linear control 
law 

U = -KlOJ - KzW, (41) 

where K, >O and K2 > 0. In this case the 
closed-loop equations become 

W = -lUW30W - KIW - K2W, 

w = -1Iw3ow + &d + $ww*, 

(424 

(42b) u, E c 
u= 

if w(O) =0 and z(O)#O, 

&(o, w, z) if otherwise. 
(40) 

Note that the difference between the current 
control strategy and the control strategy of 
Krishnan er al. (1992), where the same problem 
is investigated, is that in the latter the authors 
intend to render the one-dimensional manifold 
x’ attractive, whereas in the current work we 
intend to avoid X’ and render the invariant 
manifold Y attractive. We have demonstrated a 
control strategy that for initial conditions 
(+,,, 8,,, I&I z X’ drives the system to the origin 
with the proper choice of feedback gains. If the 
initial conditions are on .F” then one must first 
move away from JV in order to go to the origin, 
i.e. the control strategy is nonlocal in nature. 
This can be achieved either by the methodology 
described earlier or by the techniques of 
Krishnan et al. (1992). Physically, this nonlocal 
control strategy implies that, starting from initial 
conditions r#~(0) = 0(O) = 0, $(O) # 0, one is not 
able to reach the origin 4 = 8 = $ = 0 by 
maintaining 4 = 8 = 0. Such a condition would 
require a pure rotation about the symmetry axis, 

and one can show global asymptotic stability 
using the Lyapunov function 

V(w, w) = $lwl* + K2 In (1+ lwl’) 

and a LaSalle-type argument. Therefore we have 
the following theorem. 

Theorem 4.1. The linear control law (41) 
globally asymptotically stabilizes the system (42) 
about the origin. Equivalently, the control law 
(41) globally asymptotically stabilizes the system 
(2), (6) about the equilibrium manifold (11). 

One can also think of (7) and (21) as defining 
a diffeomorphism between (4, 8, I,$) E & and 
(w,, w2, z) E R3. Under this transformation, one 
can re-derive the differential equation for z for 
the general case (when w3 is not identically zero) 
and obtain the result that 

i = Im (0W) + 03. (43) 

We have already seen that, for w3 =O, the 
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differential equation for z reduces to (22); 
however, there is no a priori reason to expect 
that for w3 ZO the only contribution to the 2 
equation is just the last term in (43). This 
surprisingly simple result implies that (43) along 
with (8), which we rewrite here as 

li, = -io 
3 
w + 10 + l&w2 

2 2 J (9 

can be used as an alternative new description of 
the kinematics of attitude motion. It should be 
mentioned here that although (44) has been 
introduced previously (Tsiotras and Longuski, 
1994a), by itself it is not enough to describe the 
rotation of a rigid body, since it gives 
information about the time evolution of just a 
single column of the rotation matrix (i.e. 
information about the time evolution of one of 
the body axes in inertial space). Such informa- 
tion is not enough to reconstruct the rotation 
matrix; knowledge of at least one more element 
is necessary. (Then one can construct the 
rotation matrix as follows: first find the second 
column using the conditions of unit length and 
the orthogonality to the first column, and 
subsequently take the third column as the 
cross-product of the previous two columns.) 

Equation (43) has an additional desirable 
property that ‘naturally’ complements (44) in the 
following sense. From (44), one sees that the 
magnitude of w obeys the differential equation 

i (wi2 = (1 + [WI’) Re (wW). (45) 

The duality in which the product wW appears in 
(43) and (45) can be used in stabilization 
problems; the two equations (43) and (45) are 
effectively ‘decoupled’ from w, and the linear 
control law 

w=-w, w3=-z (46) 

renders the closed-loop system exponentially 
stable. Implementation of this linear control law 
through the dynamics is easy in the case of three 
control torques, but a very challenging problem 
when less than three independent control 
torques are available (Walsh et al., 1994). These 
and other issues related to the attitude 
stabilization of general (nonsymmetric) rigid 
bodies will be addressed in a forthcoming paper. 
Note, however, that if we allow three indepen- 
dent control torques, one feedback control law 
that achieves global asymptotic stability for the 
complete attitude equations described by (1) 
(43) and (44) is given as follows. 

Theorem 4.2. The feedback control law 

M = --o - w - izw, M3 = -w3 - z, (47) 

where M = Ml + iM2, globally asymptotically 
stabilizes the system (l), (43), (44). 

Pro05 Consider the following candidate Lyapu- 
nov function for the closed-loop system corres- 
ponding to (47): 

V( 0, 03, w, z) = gz*w: + 120; + z34 

+ In (1 + 1~1’) + $z2. (48) 

This is a positive-definite function. Computing 
the derivative of (48) along the trajectories of 
the closed-loop system, one obtains 

V = -16J12- w:. (49) 

Since v-0 if and only if w,=w2=w3=w,= 
w2 = z = 0, global asymptotic stability follows 
directly from a straightforward application of 
LaSalle’s Theorem (Hahn, 1967). 0 

The complete derivation of (43) and (44), their 
relation to the classical attitude representations, 
as well as their physical significance are discussed 
in Tsiotras and Longuski (1995) and Tsiotras 
(1994). Other results on the rigid-body stabiliza- 
tion problem using the (w, z) coordinates and 
another set of stereographic coordinates, derived 
from Euler parameters, can be found in Tsiotras 
(1994). 

5. NUMERICAL EXAMPLE 

We illustrate the results of this paper with a 
numerical example. We consider the same 
example as that in Krishnan et al. (1992), mainly 
for the sake of comparison. Specifically, we 
consider a large-angle maneuver of an 
axisymmetric spacecraft that is initially at rest 
(w,(O) = ~~(0) = 0) and with initial orientation 
given by 4(O) = n, 8(O) = 0.25x, $ = -0.5~. 
These large initial conditions correspond physi- 
cally to an almost upside-down configuration. 

The purpose of the controller is to reorient the 
spacecraft to its rest position 9 = 8 = (cr = 0 and 
keep it there. The data of the problem 
correspond to an initial condition not on the 
manifold Y (see Fig. 3). The control law (27) 
therefore first drives the trajectory to Y 
(approximately at 4 s in Fig. 5) and then-while 
on Y-to the origin. The feedback gains are 
chosen as K = 0.5, p = 1.25 and (Y = 2, and the 
results are shown in Figs 4 and 5. 

6. CONCLUDING REMARKS 

We have presented a novel formulation of the 
attitude kinematics of a rotating rigid body, 
which promises to be very useful for control 
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Fig. 4. Angular velocity components w, and oz. 

purposes. We have demonstrated this by 
deriving a simple control strategy that achieves 
arbitrary reorientation of a rotating axisymmet- 
ric spacecraft, when the two available control 
torques span the two-dimensional plane 
perpendicular to the axis of symmetry and the 
initial spin rate is zero. A two-dimensional 
manifold has been constructed, which is used to 
derive a feedback control that drives the 
complete system to the origin from arbitrary 
initial conditions. The control law asymptotically 
stabilizes the complete attitude equations from 
all initial conditions inside an a priori arbitrary 
large compact set. Controllers that satisfy this 
property have been proposed and derived by 
Bymes and Isidori (1991b), where the term 
stabilization on compacta for this stabilization 
property was also introduced. This is an 
important extension of the notion of global 

Ome el(O)=O (Ime a2(0)=0 
Phi?O)=Pi, ihetajO)=Pi/4, Psi(O)=-Pi/2 

Fig. 5. Eulerian angles 4, 13 and $, 

stabilizability, since controllers achieving stabili- 
zation on compacta essentially provide asympto- 
tic stabilization from all ‘practical’ initial 
conditions, assuming that the feedback gain is 
sufficiently large. Unfortunately, in the general 
case there is no explicit formula for a lower 
bound on the control gain (e.g. (Y in (32a)) that 
achieves stabilization on compacta, or an explicit 
characterization of the corresponding compact 
set of initial conditions. In this paper, however, 
we have provided such explicit formulas for both 
the lower bound on the control gain and the 
associated compact set of initial conditions for 
the problem addressed. 
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