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For a drag-law witnessing a sharp increase in the transonic 
region, a more complex switching structure than the classical full- 
singular-coasting sequence may occur during the optimal burning 
program for the vertical climb of a rocket. 
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Abstract--Presently studied is the problem of maximizing 
the altitude of a rocket in vertical flight in a resisting 
medium, when the amount of propellant is specified, known 
as the Goddard problem. The case is studied in which the 
drag coefficient is a function of the Mach number, witnessing 
a sharp increase in the transonic region. Analysis shows the 
possibility of a more complex switching structure than the 
classical full-singular-coast sequence, with the appearance of 
a second full-thrust subarc in the transition from the subsonic 
to the supersonic region. Necessary conditions such as the 
Legendre-Clebsch condition for singular subarcs and the 
McDanell-Powers condition for joining singular and 
non-singular subarcs were checked, and were found to be 
satisfied. It is shown that the results obtained depend heavily 
on the assumed form of the drag law, and on the magnitude 
of the upper bound on the thrust. 

1. INTRODUCTION 

THE PROBLEM o f  optimum thrust programming 
for maximizing the altitude of a rocket in vertical 
flight, for a given amount of propellant, has been 
extensively analyzed over the past sixty years. 
Briefly, we can refer to the pioneering work of 
Goddard (1919), Hamel (1927), Tsien and Evans 
(1951) and Leitmann (1956, 1957). However, as 
Leitmann (1963) first pointed out, the problem's 
solution continued to be far from complete, 
mainly due to difficulty arising from the 
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requirement that the mass be monotonically 
non-increasing. In this work, the possibility of a 
more complex sequence of subarcs for the case 
of sharp transonic drag-rise was suggested. 

Solutions that meet this requirement have 
been obtained only in a few special cases, 
typified by the work of Miele and Cavoti (1958), 
and Miele (1955), who treated the cases of flight 
in vacuum and flight with a power law for drag, 
and later by Bryson and Ross (1958). Miele 
(1962), using a totally different approach, also 
proved the sufficiency of the optimal solution 
established by his predecessors, i.e. that the 
optimal burning program involves a rapid boost 
at the beginning of the flight, usually followed by 
a period of continuous burning (sustain phase) 
and ending with a zero-thrust period. Miele and 
Cicala (1956) were also the first to suggest the 
possibility of a more complex sequence of 
subarcs for the case of a general drag model. 

One of the most complete works on 
Goddard's problem is perhaps the extensive 
treatment by Garfinkel (1963), who proved that 
with impulsive boosts in the velocity admitted, 
and for the case of a general drag model, the 
solution contains a finite number of such boosts 
in the transonic velocity region, and contains no 
coasting arcs except the terminal one. 

As already has been established by previous 
researchers, the drag plays a significant role in 
the switching structure of the problem. In 
particular, it has been shown by Tsien and Evans 
(1951) and later by Miele (1955), that for the 
special case when drag is ideally zero, the 
variable-thrust subarc disappears from the 
extremal solution, which consequently reduces 
to subarcs flown with maximum engine output 
and coasting subarcs. Moreover, the approxima- 
tion Co ~-const. may be of use at low altitudes, 
when the speed of optimum climb still belongs to 
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the region of quasi-incompressible flow. As the 
altitude increases, both the velocity and the 
Mach number increase with such a rapidity that 
the hypothesis OCo/aM = 0  is soon no longer 
satisfied, and a more accurate drag model should 
be used. Constant drag coefficient Co is then 
replaced by a Mach-dependent drag coefficient 
featuring a sharp increase in the transonic 
region. When such a model is used, two optimal 
solutions for the singular surface arise: one in 
the subsonic-transonic region, and the other in 
the supersonic region of the velocity. For the 
case of level flight of a rocket-powered aircraft 
Miele and Cicala (1956) showed that another 
full-thrust subarc may occur during transition 
from the subsonic to supersonic region. 

In the current work, Goddard's problem is 
examined with relaxed restrictions on the 
assumed drag characteristics of the rocket. The 
relaxed assumptions allow for switching struc- 
tures that were previously not considered for the 
case of vertical climb. Invaluable insight to the 
problem was obtained via a transformation to 
a state-space of reduced dimension, where the 
problem becomes more tractable. The methodo- 
logy can be applied to other singular optimal 
control problems too, in order to determine the 
possible optimal solution structure, i.e. the 
number and the relative position of singular and 
bang-bang subarcs. 

2. PROBLEM FORMULATION 
The vertical flight of a rocket obeys the 

following system of differential equations: 

~-J6  
~ - - -  g 

n~ (1) 

where h, 0, th are the altitude, velocity and mass 
respectively, T denotes the engine thrust, /5 
denotes the aerodynamic drag, 6 represents the 
exhaust velocity of the gases from the rocket 
engine, and g is the gravitational acceleration. 
The second of the above equations simply states 
the force equilibrium along the flight path, the 
first equation is the kinematic relation between 
the altitude and the velocity, and the last states 
that the fuel consumption is proportional to the 
thrust. If we assume spherical earth with an 
inverse-square gravitational field, the above 
system of equations can be suitably nondimen- 

sionalized using the following quantities: 

/~=Re 
i = G - 1/2]~ 3/2 

0 = G1/2f1-1/2 (2) 

rh = mo. 

Here Re denotes the radius of the earth, G the 
gravitational constant, ~ the acceleration due to 
gravity at the surface of the earth, and r~ the 
launching mass of the vehicle. Using the above 
nondimensionalization factors, the equations of 
motion in nondimensionalized form become: 

/~=v 

T - D  
i J = - -  h -z 

m (3) 

T 
¢ 

If S is the characteristic cross-section area of 
the vehicle, and p denotes the atmospheric 
density, then the aerodynamic drag is given by 
the quadratic formula: 

O = CD(M)S p~2. (4a) 

If in addition, we assume that the density of the 
atmosphere reduces exponentially with the 
altitude, the nondimensionalized form of the 
drag force becomes 

D = Co(M)bv 2 exp (fl(1 - h)) (4b) 

where the factor bvZexp ( f l (1 -  h)) is numeri- 
cally equal to the product of the velocity head 
and the characteristic cross-section area of the 
aircraft, b, fl are constants, and M is the Math 
number defined as the ratio of the vehicle speed 
over the speed of sound. For simplicity it will be 
assumed that the speed of sound remains 
constant with altitude, an assumption which is 
actually valid only for stratospheric solutions. In 
(4) Co(M) is the zero-lift drag coefficient 
assumed to depend on the Mach number 
according to the following relationship: 

Co(M) = A1 tan -1 (A2(M - A3)) + A4. (5) 

This formula generates a quick transition from 
one value of Co in the subsonic region to 
another higher value of Co in the supersonic 
region. The A1, A2, A3, A4 are constants con- 
trolling when, and how fast, this transition takes 
place (Fig. 1). 

The initial conditions are specified for the 
three state variables as h0, v0 and m0. The final 
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Fro. 1. Variation of the drag coefficient Cn with Math 
number M. 

value of the mass is also given as mr. The 
problem is to determine the optimum trajectory 
of a rocket in vertical flight, from an assigned 
initial position on the surface of the earth to the 
final position where the altitude reaches its 
maximum value, i.e. we want to maximize the 
altitude at the terminal time. Hence, the 
performance index is given by 

a¢ = h (tf) (6) 

subject to the prescribed boundary condition 

v(/f) = 0 (7) 

and the dynamic equality constraints given by 
(3). The thrust is the control variable which is 
bounded according to the inequality: 

0_< T_< Tmax. (8) 

The aerodynamic data and the vehicle's 
parameters, with the exception of the value for 
Tm**, were taken from the work of Zlatskiy and 
Kiforenko (1983), and their nondimensionalized 
values are listed below: 

b = 6200 

fl = 500 (9) 

Tmax = 3.5. 

Furthermore, the constants in (5) are chosen as 
follows: 

A1 = 0.0095 

A2 = 25 
(10) 

A3 = 0.953467778 

A 4 = 0.036. 

For the numerical solution it is assumed that the 
rocket is initially at rest at the surface of the 

earth, and that its fuel mass is 40% of the rocket 
total mass. 

3. PROBLEM ANALYSIS 
Define the state vector ~ = col (h, v, m), and 

the co-state vector ~ = col (Ah, ~ ,  A,,,). Then the 
variational Hamiltonian takes the form: 

~ ( L  x, T) = Ajh + A~b + Atom (11) 

where the propagation of the co-state vector 
obeys the equation 

= - ~ .  (12) 

Using (3) and (12), and noting that the control T 
appears linearly in the equations of motion, one 
obtains for the Hamiltonian the following form: 

~o = ~ o  -F T~°I = 0 (13) 

where ~o and ~1 are given by: 

~-0 ----- Ahl) -- Av (~- -1- h -2 ) (14) 

go Am 
~1 . . . .  (15) 

m c 

~1 is the "switching function" and governs the 
history of the control. Using Pontryagin's 
Maximum Principle (Pontryagin et al., 1962), 
three possibilities exist for an extremal control, 
depending on the sign of the switching function: 

T*=Tm~, when ~ 1 > 0  

0----- T* -< Tma x when ~1 = 0 (16) 

T * = 0  when ~1<0 .  

The second case indicates the possibility of an 
interval of singular control, i.e. an interval of 
finite duration over which the ~ vanishes 
identically. The following relationships must 
then be fulfilled simultaneously on a singular arc: 

~,  = ~1 = ~ . . . .  = 0. (17) 

The above equations along with (13) define a 
manifold E (v ,  m, h) = 0 in the three-dimensional 
state space of v, m, h. This manifold, often 
called the singular surface, represents the locus 
of all possible state trajectories, corresponding 
to singular control effort. Note also, that 
E ( v , m , h ) = O  is also the singular control 
switching boundary,  since any point of the state 
space which does not lie on it, must feature a 
bang-bang control. 

The three possible types of subarcs that may 
appear in the solution of an optimal trajectory 
have already been examined; however, the 
composite optimal trajectory consisting of these 
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three types of subarcs need to be determined. 
The analysis of the problem is complicated by 
the fact that the optimal solution, in general, 
consists of some combination of singular and 
non-singular subarcs, the number and sequence 
of which are not known a priori. In fact, the 
manner in which singular subarcs enter into 
composite candidates will be determined in part, 
by the specified two-point boundary conditions 
for the Euler equations. Hence, the determina- 
tion of the optimal composite trajectory involves 
the solution of a two-point boundary value 
problem, frequently by means of a trial and 
error procedure. The next section describes a 
methodology that simplifies problems involving 
both singular and nonsingular subarcs and that 
can be used to determine the possible composite 
optimal structure. 

4. TRANSFORMATION TO REDUCED STATE- 
SPACE 

A transformation approach suggested by 
Kelley (1964a, b) is sometimes helpful and 
permits analysis of singular arcs in a state space 
of reduced dimension. The singular arcs become 
nonsingular, thus the available necessary condi- 
tions can be applied. However, this approach 
has the practical shortcoming that the solution of 
the transformation requires a closed form 
solution to a system of nonlinear differential 
equations. Fortunately, this transformation can 
be obtained rather easily for the present 
problem, allowing the structure of the problem 
to be studied in a reduced, two-dimensional, 
state-space. This is quite attractive; the complete 
family of singular extremals for given initial 
conditions can be pictured in two-dimensional 
space. 

Omitting for brevity the theory of the 
transformation, Kelley et al. (1967) have shown, 
that the transformation of the original state 
vector ~ to the canonical form leads to the new 
state vector ~ with components 

Zl = h Z 2 = v z3 = me ~/~. (18) 

The differential equations in the new state 
space are derived directly from (3) and (18). 

21 = Z 2 

T - D  
22 = exp ( Z 2 / C )  - -  Z I  2 

z3 (19) 

D z3 
23 = - -- exp (z2/c) - -- zi -2. 

c c 

The Hamiltonian for the new system is given 
by 

= r~,21 + r~22 + r~23 (20) 

where ~ = col (rz,, rz 2, r~ 3) is the co-state vector 
of the new state-space, satisfying the differential 
equations 

iCz'= ~cz--~3 [ exp  (z2/c)  -- 2z3z]-3] 

_ /(z2[__Z31 OD 2z]-3] exp (zz/c) + 

iczz=--lCZl +-~-~exp(z2/c)[-~zZ2 + o ]  (21) 

exp(z2/c)[aD T c D  ] 
-- I¢z2 Z3 aZ2 + - -  

- 1 i% - rZ~ z~2 - r~: 2 exp (z2/c) . 
c z 3 

Notice from (19) that the control T appears only 
in one of the state equations, namely in the 
equation for 22. One can therefore discard this 
equation, for analysis of the singular portion of 
the trajector, and consider the z2 variable as a 
new "control-like" variable, in the reduced 
state-space of variables Zl and z3. This change 
occurs through the identical vanishing of the 
Lagrange multiplier associated with the second 
equation of the state. Indeed, the switching 
function of the transformed problem is given as 

~1 = 0 ~ _  r~exp  (z2/c) (22) 
OT z3 

and along a singular arc we require 

rz2 -= 0 (23) 

because, throughout the trajectory, 

exp (z2/c) 4= 0 always. (24) 
Z3 

The vanishing of r~ 2, along the singular 
portion of the trajectory, can be verified through 
an analogous transformation for the co-state 
vector Z of the original state space as follows: 
Optimal control theory indicates that the 
co-state variables have a special meaning; as 
Breakwell (1961), and Cicala (1957) have 
pointed out, the value at some time t of the 
Lagrange multiplier Zi, associated with the 
variable xi is just O~/Oxi(t), where ~ is the 
"payoff" function with t regarded as a starting 
time. This interpretation of the co-states is very 
instructive and it will be used extensively later 
on. Requiring that the cost function and the 
Hamiltonian remain unchanged under the 
transformation, and using the chain rule of 
differentiation, the following relationship must 
hold along the trajectory: 

= = 

&~ 0.~ 0_~" (25) 
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According to the interpretation mentioned 
earlier, 

O~ (26) 

is the co-state vector for the new state space and 

[Jl=  

is the Jacobian of the transformation, 
elements 

azj 
Jq=-~xi i , j =  1, 2, 3. 

(27) 

with 

(28) 

Assuming that the transformation is nonsingu- 
lar, the inverse of the Jacobian matrix exists, and 
the system of (25) has the unique solution 

= [ J ] - ~  (29) 

which can be written analytically as 

l(z2I• : 1 -m/c  (30) 
r~3J 0 e -°~c J LL.J 

or in expanded form 

x~, = )~h (31a) 

x~2  = 3,~ - -  m Am (31b) 
c 

x~ = 3.me -°/c. (31c) 

Notice that since 

det [J] = e °/c :/: 0 (32) 

the transformation is nonsingular everywhere. 
Equation (31b) offers another justification for 
the vanishing of r,2 along a singular arc. 
Comparing (15) and (31b) we see that the 
co-state r~2 is just the switching function of the 
original problem times the mass; consequently, 
along the singular arc r~, should be identically 
zero. The co-state equations reduce to 

a~e OD 31 
i%= OZl c exp(zz/C)~zl-2z3z7 J (33a) 

O~= rz.......~3 Z12 (33b) 
kZ3 -- OZ 3 C 

and the Hamiltonian simplifies to 

= xz, Zz - ~-~ [D exp (Z2/C) + Z3Z12]. (34) 

Notice that the new control z2 does not appear 
linearly in the system of state and co-state 
equations, and the classical Legendre-Clebsch 
necessary conditions can be applied successfully 
in the reduced-state-space problem. 

The extremals, then, of the transformed 
problem are the singular extremals of the 
original, and those extremals satisfying the 
strengthened version of the classical Legendre- 
Clebsch condition are maximizing, at least over 
short intervals. The stationary solution of the 
transformed problem corresponding to the 
singular subarc of the original problem occurs 
then, when 

8-~z = r~, - --c exp (h/c)  Oz 2 ] = 0 

(35) 

and the Legendre-Clebsch necessary condition 
requires, for a maximizing extremal 

02~( rZ3 exp (z2/c) F D[_~ 2 0D 02D] 
az - c + c az--S ---°" 

(36) 

The latter relationship assures the convexity of 
the Hamiltonian in the neighborhood of a 
solution of (35), i.e. an optimal control obtained 
by (35) provides at least a local maximum of ~. 

5. NECESSARY CONDITIONS 
The fact that a trajectory satisfies the Euler 

differential equations and the first-order neces- 
sary conditions, only guarantees its stationary 
character. To determine whether a maximum is 
attained, further investigation is in order. Thus, 
the Legendre-Clebsch, Weierstrass and Jacobi 
conditions must be checked. Each of these three 
conditions is a necessary condition for a 
maximum. All of them, suitably strengthened, in 
combination with the first-order necessary 
conditions, provide a sufficient condition. In this 
section, we will briefly review the available 
necessary conditions for the optimality of the 
trajectory, in the case when singular subarcs are 
considered as possible candidates. 
Kelley condition. The mere presence of singular 
members of the state-Euler system solutions 
does not assure the appearance of such subarcs 
in an optimal trajectory. In fact, as Johnson and 
Gibson (1963) pointed out, a singular solution 
may not be optimal even locally. To determine 
local optimality a further investigation is in 
order. Thus, the so-called Generalized 
Legendre-Clebsch, or Kelley-Contensou condi- 
tion must be checked; see Kelley (1964a) and 
Robbins (1967). This condition can be stated as 
follows: 

8 d 2q 
( -1)q-~[d- - -~  (~T~)] ~ 0  (37) 

where q is the order of the singularity of the arc. 
Junction conditions. An admissible control must 
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satisfy other requirements, in addition to 
satisfying the given physical constraints. If the 
solution is totally nonsingular, or totally 
singular, necessary conditions for optimality 
testing are available in a large number of cases. 
The continuity of ~( t )  and the continuity of 3.(t) 
across junctions between subarcs, the so-called 
Weierstrass-Erdmann corner condition, is per- 
haps the most important. However, the charac- 
ter of optimal trajectories which include both 
singular and nonsingular subarcs is less easily 
decided. The first results concerning the 
behavior of the optimal control at a junction 
between singular and nonsingular subarcs were 
derived by Kelley et al. (1967), and may be 
summarized as follows: If q is the order of the 
singular subarc, then 

If q is odd a jump discontinuity in control may 
occur at a junction between a locally 
minimizing singular subarc, i.e. a subarc on 
which the generalized Legendre-Clebsch con- 
dition is satisfied in strengthened form, with a 
nonsingular subarc. 
If q is even, jump discontinuities in control 
from singular subarcs satisfying the strength- 
ened form of the generalized Legendre- 
Clebsch condition are ruled out. 

Johnson (1967) recognized the conflict be- 
tween the generalized Legendre-Clebsch condi- 
tion and the junction condition for q even, and 
showed that analytic junctions with jumps can 
occur only if q is odd, but he did not identify the 
character of junctions between nonsingular and 
q even singular subarcs. 

McDanell and Powers (1971), motivated by 
the preliminary results obtained by Kelley et al. 
(1967) and Johnson (1967), considered the 
problem concerning the continuity and smooth- 
ness properties of the optimal control at a 
junction between singular and nonsingular 
subarcs in more detail, and generalized the 
previous conclusions, with one important excep- 
tion; they proved the possibility of a continuous 
junction for control saturation with zero slope 
for q odd problems, a possibility which had not 
been included by Kelley et al. and which was 
later ruled out for q > 1 by Berschchanskiy 
(1979). Their main result was that--for analytic 
junctions--the sum of the order of the singular 
subarc and the order of the lowest time 
derivative of the control which is discontinuous 
at the junction must be an odd integer when the 
strengthened generalized Legendre-Clebsch 
condition is satisfied. 

In the McDanell and Powers results, the 
assumption that the control is piecewise analytic 
is not to be taken lightly because the junction is 

typically nonanalytic not only for q even, but 
also for q odd with q > 1. In fact, according to 
Bershchanskiy, the McDannell-Powers neces- 
sary conditions are actually of interest only for 
q = 1. As was shown in his work, for q even 
problems or for q odd problems with q > 1 the 
transition from a nonsingular to a singular subarc 
is associated with chattering junctions, i.e. 
controls that switch rapidly between the upper 
and the lower bound faster and faster, with a 
point of accumulation, and which although 
measurable, are nonanalytic. 
Jacobi and Jacobi-like conditions. Testing of the 
second variation, on the other hand, such as 
Jacobi and Jacobi-like testing is rarely carried 
out for nonsingular extremal candidates, and 
even more rarely for candidates with isolated 
singular points, possibly corners, as pointed out 
by Kelley and Moyer (1985). Extremals cor- 
responding to the second case, so-called broken 
extremals, have been studied with generality, 
detail and rigor by Larew (1919), Reid (1935) 
and Caratheodory (1967). Moyer (1965, 1970) 
using this idea, developed a computational 
technique in the case of a nonsingular extremal 
exhibiting corners, and used this approach 
successfully in an orbital transfer. However, 
Jacobi-like testing for composite Euler solutions 
including singular subarcs is still a research area, 
and the few attempts made in this direction, 
mainly due to McDanell and Powers (1970), are 
limited to the case of a totally singular arc. Very 
few methods have been also developed for the 
more complex case of a composite extremal, 
mainly by Speyer and Jacobson (1971a, b) and 
Moyer (1973). 

All the above conditions, though only 
necessary, help to eliminate some of the possible 
subarc-sequence candidates. 

6. CONTROL-LOGIC ANALYSIS 
Only the free-time case was studied, but the 

method of solution is applicable also for any 
value of fixed final time. Due to the sharp 
increase of the partial a C o / a M  near Mach 1, the 
singular surface witnesses also a peak in the 
same region (Fig. 2). Moreover, projections of 
the singular surface into mass-velocity and 
altitude-velocity planes reveal the existence of a 
nonadmissible portion of the variable thrust arc, 
since it corresponds to increasing mass (shown 
by a dashed line in Figs 3 and 4). Therefore, an 
optimal switching structure cannot include a 
singular arc in the transonic region, on account 
of the violation of the requirement the mass be 
monotonically nonincreasing. 

The problem becomes more transparent if 
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FIG. 2. Singular surface E ( v ,  m, h) = 0 for Mach dependent  
drag coefficient. 

one uses the transformation to zl and z3 state- 
space described before. It should be noted 
however, that such an approach is equivalent to 
admitting jump discontinuities in the new control 
variable z2 = v. Such discontinuities, occurring at 
corner points of the solution, imply impulsive 
behavior of the thrust T. Such impulsive 
behavior would be admissible in the absence of 
inequality constraints on T, but in practice, there 
is always a limit on the available thrust output. 
However, thrust impulses, while not physically 
possible, are convenient idealizations to very 
rapid burning of fuel. Thus, an optimal solution 
obtained in the z-space would still be of 
importance as an approximation to the case of a 
very high magnitude of the throttle setting, and 
in addition to this, it could provide physical 
insight to the problem. 

The analysis can be stated briefly as follows: 
examine the singular arc by transforming to 
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FIG. 3. Projection of the trajectory on the mass-velocity 
plane for T=** = ~. 
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FIG. 4. Projection of the trajectory on the altitude-velocity 
plane for Tm~ ~ = 0o. 

z-space with a new control-like variable, z2, 
which maximizes the new Hamiltonian. The 
variation of the Hamiltonian vs the velocity 
along the extremal, corresponding to the 
singular arc of the original problem, reveals that 
along this singular arc the Hamiltonian has three 
stationary values, corresponding to three solu- 
tions of the equation of the singular surface 
E(v, m, h)= O. Two of those correspond to a 
maximum, and the other corresponds to a 
minimum value of the Hamiltonian. The first 
maximum corresponds to the subsonic branch, 
the minimum corresponds to the transonic 
branch, screened out, and the second maximum 
corresponds to the supersonic branch of the 
singular surface. Henceforth we shall use the 
terms "subsonic maximum" or "subsonic solu- 
tion", and "supersonic maximum" or "super- 
sonic solution" to distinguish between the two 
cases of interest. Thus, points corresponding to 
the transonic solution cannot be included in an 
optimal trajectory for a second reason, since 
such points provide a local minimum rather than 
a maximum for the Hamiltonian. 

From Fig. 5 we notice that there is a point in 
time tsw when both solutions provide the same 
maximum to the Hamiltonian, and the velocity 
then jumps from the subsonic to the supersonic 
solution. That is, 

~(Vs,b(t,w)) = ~ ( U s u p ( t s w ) )  (38) 

where the subscript "sub" denotes the subsonic 
solution, and the subscript "sup" denotes the 
supersonic solution. Hence, 

Z2(/ )  = l)sub for t --< ts~ (39a) 

and 
Z2(t) = ~3sup for t --> t~. (39b) 
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That is because, although both the subsonic and 
the supersonic solution give a relative maximum, 
an optimal control should correspond to the 
absolute maximum of the Hamiltonian. How- 
ever, the result is limited to the case in which no 
upper bound on thrust is imposed. 

7. COMPOSITE OPTIMAL T R A J E C T O R Y  

The previous analysis indicates that an optimal 
trajectory should start with a full-thrust subarc 
until the subsonic solution of the singular surface 
is reached. Then a variable-thrust subarc using 
this solution is used up to the point when both 
the subsonic and the supersonic branches 
provide the same maximum to the Hamiltonian. 
A switching then to the supersonic branch 
occurs, and the trajectory remains on the 
singular surface until the time when the fuel is 
exhausted. Then a final coasting arc is used, until 
the terminal boundary conditions are satisfied. 

Although this thrust history would provide the 
optimal switching structure for the case of 
Tm~x = 0% this will not be necessarily true for the 
case of bounded thrust. In such a case 
discontinuities in the velocity are of course 
unacceptable, and the validity of the solution 
depends on the value of the upper bound of the 
thrust. Thus, the structure of the optimal 
trajectory is still in question. This is the topic of 
the following section. 

satisfying the same boundary conditions. The 
question is: which of this family extremals is to 
be preferred from the point of view of 
maximizing the altitude? For the case of 
unbounded thrust the answer has already been 
given: At a time t = tsw, when the Hamiltonian 
in the reduced z-space switches from its subsonic 
to its supersonic maximum. Although valid only 
for unbounded thrust, nevertheless, this remark 
gives us a hint; an optimal trajectory must 
accelerate from the subsonic to the supersonic 
region. Since the variable-thrust case must be 
ruled out, our only choice is the use of full thrust 
between the two solutions of E(v, m, h ) = 0 .  
Furthermore, because for a realistic case 
Tmax < o% the switching from the variable-thrust 
to the second full-thrust subarc must take place 
somewhere before the time tsw, and such that the 
switching function vanishes at the points of 
departure and arrrival to the singular surface 
(points B and D in Figs 3 and 4). In addition to 
this, the switching function should remain 
positive all along the full-thrust subarc in order 
to satisfy the optimality condition of (16). 

Thus, a trial-and-error procedure is needed to 
determine the points B and D. The result 
obtained, using the boundary-problem solver 
BOUNDSOL (Bulirsch, 1971), was rather 
disappointing; an optimal switching from the first 
varible-thrust subarc to the second full-thrust 
subarc (point B), should take place before the 
switching of the first full-thrust subarc to the first 
variable-thrust subarc (point A). Therefore, for 
the case of T~ax=3.5, an optimal trajectory 
cannot have this switching structure, but rather 
must have the simpler full-singular-coast se- 
quence, with the singular subarc corresponding 
to the supersonic solution of E(v, m, h) = O. 

However, when an analogous calculation for 
the case Tmax = 6 was performed, the new, more 
complex, sequence of subarcs full-singular-full- 
singular-coast, gave indeed a higher final altitude 
than the full-singular-coast sequence (Table 1). 
In Figs 6-8 is shown the history of the three 
components of the nondimensionalized state 
vector £=(h ,  v, m) respectively, for the op- 
timum burning program corresponding to Tm~x = 
6. The switching sequence for this optimum 
thrust program is depicted in Fig. 9. Notice the 

8. B O U N D E D - T H R U S T  CASE 

The analysis so far shows that the variational 
problem has a special mathematical structure, in 
so far as the occurrence of two optimal solutions 
of E(v, m, h ) = 0  implies the existence of an 
infinite number of composite solutions, in the 
passing through the transonic region, all 

TABLE 1. COMPARISON BETWEEN THE CLASSICAL FULL- 
SINGULAR-COAST SEQUENCE AND THE NEW FULL-SINGULAR- 
FULL-SINGULAR-COAST SEQUENCE INVOLVING A FULL THRUST 
SUBARC AT THE TRANSONIC REGION, FOR THE CASE OF Tma x = 6 

Finalt ime Final altitude 

F-S-C 0.197374 1.0132976 
F-S-F-S-C 0.198978 1.0133038 
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corner points during the velocity and mass 
evolution, that correspond to the points of 
discontinuity of the thrust. This is the result of 
the control variable T entering directly to the 
right-hand side of the equations of motion for 
the velocity and mass, (3). On the other hand, 
the evolution of the state variable representing 
the altitude is smooth, since the thrust does not 
appear to the corresponding state equation. 

10. C O N C L U S I O N S  

The problem of maximizing the final altitude 
of a vertically ascending rocket has been 
analyzed for the case of bounded thrust, and 
quadratic drag law, with the drag coefficient as a 
function of the Mach number, witnessing a sharp 
increase in the transonic region. A more 
complex switching structure, with an intermedi- 
ate full-thrust subarc in transition through the 
transonic region, was required owing to the 

requirement that the mass should be monotoni- 
cally nonincreasing. The results are identical 
with those of Garfinkel, for the Tmx = ~ case, 
although a totally different approach was used. 
The solution, using a transformation to a 
reduced two-dimensional state space, showed 
that the optimality of the solution depends on 
the assumed upper bound on the thrust. 
Numerical results obtained verified the superior 
performance of the new thrust program, over the 
classical full-singular-coast sequence, at least for 
a sufficiently high upper bound on the thrust. 

The Kelley necessary condition for singular 
arcs, and the McDanell and Powers condition for 
joining singular and nonsingular subarcs were 
checked, and were found to be satisfied. 

A companion paper by the authors examines 
time-of-flight constraint effects in the problem 
(Tsiotras and Kelley, 1988). 
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