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a b s t r a c t

We address the problem of pursuit between a collection of targets and a team of pursuers distributed
in the plane subject to an environmental disturbance (e.g., wind, sea current). The objective of the
pursuers is to intercept the moving targets which, however, are not affected by the presence of the flow
field. We first solve the multiple-pursuers/single-target problem by assigning only one pursuer to chase
the target at every instant of time, based on a Voronoi-like partition of the plane. During the pursuit,
the pursuer assignment changes dynamically based on this partition. We then present an algorithm
to efficiently update this Voronoi-like partition on-line. The results are then extended to the multiple-
pursuers/multiple-targets case. Simulations are included to illustrate the theoretical results.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Consider a scenario where a group of helicopters or small UAVs
fly in the presence of a wind field and try to capture a group
of vehicles moving on the ground, or a team of small marine
or underwater vehicles attempting to intercept a ship which is
large enough so that the sea currents do not significantly affect its
motion. Given such a group of pursuers, we want to find a pursuit
strategy to intercept the target(s) in minimum time. Problems of
this nature fall under the general class of group pursuit. These
are difficult problems to solve, in general (Blagodatskikh, 2008,
2009; Pittsyk & Chikrii, 1982). Their solution is also based on the
information the pursuers and the targets/evaders have about each
other, resulting in either cooperative or non-cooperative strategies
(Bakolas & Tsiotras, 2012; Devillers & Golin, 1993; Krasovskiı̌ &
Krasovskiı̌, 1994; Pashkov & Terekhov, 1987; Vidal, Shakernia,
Kim, Shim, & Sastry, 2002; Yeung & Petrosjan, 2006). In order to
solve such problems, in this work we propose to use a sequential
pursuit strategy (Bakolas & Tsiotras, 2012). By sequential (or
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relay) pursuit we mean that for each target, only one pursuer is
assigned to chase this target at every instant of time. In addition to
simplifying significantly the group pursuit problem, a relay pursuit
strategy may be desirable in cases where the power or energy/fuel
consumption of the agents is an important consideration, when
the agents also play a dual role, both as pursuers as well as
guardians protecting a certain area, or in order to account for
possible deceptive strategies of an intelligent opponent.

For the multiple-pursuers/single-target problem, in contrast
to most existing similar problem formulations in the literature
(Bakolas & Tsiotras, 2012; Ibragimov, Salimi, & Amini, 2012; Jang
& Tomlin, 2005; Khaidarov, 1984; Pshenichnyi, 1976), where the
effect of the environment is not taken into consideration, in
our problem setup (only) the pursuers are affected by known
exogenous environmental conditions (e.g., the winds or currents).
As with all pursuit games, the solution of this problem depends
on the knowledge each pursuer has about the current and future
position of the target. In this paper it will be assumed that each
pursuer has a stroboscopic view of each target position. That is,
each pursuer knows the current position of the target but it knows
neither its velocity nor its future position. Our objective is to find
the optimal assignment to determine which pursuer to go after
which target at each instant of time so as to reduce, or minimize,
the overall capture time. No assumptions about the target strategy
are explicitly imposed a priori, other than the target moves with
maximum speed, the value of which is known to all pursuers.

Our solution strategy is based on a dynamic assignment of the
pursuers, by which the ‘‘best’’ pursuer to go after the target is
selected according to a Voronoi-like partition of the plane, called

http://dx.doi.org/10.1016/j.automatica.2017.03.015
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.03.015&domain=pdf
mailto:wsun42@gatech.edu
mailto:tsiotras@gatech.edu
http://dx.doi.org/10.1016/j.automatica.2017.03.015


254 W. Sun, P. Tsiotras / Automatica 81 (2017) 253–260
the Zermelo–Voronoi partition, or the Zermelo–Voronoi Diagram
(ZVD) (Bakolas & Tsiotras, 2010). Themajor difficulty in this setting
arises from the fact that, owing to the presence of the wind field, a
point in the plane can be close to a pursuer in terms of Euclidean
distance, but it may not be close in terms of minimum-time to
intercept. As a result, standard Voronoi partitions for this problem
may lead to erroneous conclusions.

The ZVD is based on time-to-intercept as the relevant
distance metric, instead of the Euclidean metric used in the
standard Voronoi diagram. Such Voronoi-like diagrams have been
previously introduced in Bakolas and Tsiotras (2010, 2012, 2013).
For instance, in Bakolas (2014) the author constructs a Voronoi-
like partition in a spatiotemporal flow field by taking the proximity
metric as the time required for each vehicle to reach an arbitrary
point using a line-of-sight (LOS) control law. Furthermore, as it is
shown later on, the use of the so-called Zermelo Navigation Law
(Eqs. (6)–(7) below) leads to a better solution (in terms of capture
time) than one that uses a classical LOS control law.

Voronoi-like diagrams have been used in the past to solve
group pursuit problems in the plane (Bakolas & Tsiotras, 2010,
2012). In Bakolas and Tsiotras (2012), the authors proposed a relay
pursuit problem where a group of pursuers aims at capturing a
target that follows a specific evading strategy. The assignment
problem is solved by dynamically assigning the pursuer whose
Voronoi cell contains the target. Although our work follows closely
the original work in Bakolas and Tsiotras (2012), where ZVDs
were first employed to generate the pursuer assignments in an
external wind field, our work differs from – and extends the
results of – this work as follows: First, and contrary to Bakolas
and Tsiotras (2012), we take into account the known disturbance
of the environment. Furthermore, this disturbance affects only the
pursuers, thus leading to asymmetric dynamics between the target
and the pursuers. The asymmetry of the agents’ dynamics does not
allow us to use a common reference frame to solve the problem,
as was done, for example, in Bakolas and Tsiotras (2010). Second,
we use a somewhat different Voronoi-like partition than the one in
Bakolas and Tsiotras (2012). Owing to the fact that the target and
the pursuers obey different dynamics, in our case we cannot check
the condition in Bakolas and Tsiotras (2012) to update the ZVD;
instead, we need to update the ZVD continuously. In the process,
we propose a numerically efficient algorithm to update the ZVD
on-the-fly that may be of independent interest (see Section 5).
Third, we assume minimal knowledge of the target state, namely,
only its instantaneous position is known to the pursuers. In Bakolas
and Tsiotras (2012), on the other hand, it was assumed that the
target implements a specific evading strategy, which is known to
all of the pursuers.

Contributions. The major contributions of the paper are
summarized below:

(a) Weprovide anew formulation for the solution of an asymmetric
group pursuit problem using the recently introduced concept
of Zermelo–Voronoi diagram (ZVD). The formulation leads to
a decentralized solution of the original group pursuit problem
by decomposing it to a sequence of simpler pursuit problems
that are much easier to solve.

(b) We provide conditions so that the well-known Zermelo
Navigation Law (ZNL) achieves capture against a maneuvering
target. This key result allows us to implement the ZNL in a
sequential manner against arbitrarilymaneuvering targets and
in the presence of unknown exogenous drift fields.

(c) We propose a decentralized algorithm for updating efficiently
the ZVD as the pursuit evolves based on the dual of the
Voronoi diagram, that is, the Delaunay Triangulation (DT) and
we provide a complexity analysis for updating the DT (and
hence also the ZVD). The updated ZVD is then used to provide
the best assignments of the active pursuer(s).
(a) A triangulation of 4 points. (b) DT of the same points.

Fig. 1. Flip-edge method for generating the Delaunay triangulation.

(d) One of the major benefits of the proposed approach is that
it scales well with the number of pursuers and the targets
involved. We propose two algorithms that address multiple-
pursuer/multi-target problems that make use of this nice
property of the proposed ZVD decomposition.

2. Preliminaries on plane tessellations

Given a finite number of distinct points in the Euclidean plane,
called the generators, we associate their locations with a set of
points in the plane, such that each point in this set is closer (with
respect to a given distance metric) to its own generator than to
any other generator. The result is a tessellation of the plane into a
set of regions associated with the given generators (Okabe, Boots,
Sugihara, & Chiu, 2009).

2.1. Delaunay triangulation

Given an (ordinary) Voronoi diagram of a point set in a generic
configuration (that is, no three points are on the same line and
no four points lie on the same circle), we may join all pairs of
generators whose Voronoi cells share a common edge. We thus
obtain a second tessellation consisting of only triangles, called the
Delaunay triangulation (DT) of VD. The Delaunay triangulation is
the dual graph of the Voronoi diagram.

A circle circumscribing any Delaunay triangle contains no
generator in its interior (Okabe et al., 2009). This is the Delaunay
property. Given any triangulation of a prescribed point set, we can
construct the DT by flipping the edges until no triangle violates the
Delaunay property. This method of generating the DT of a given
point set is called the flip-edge method (Roos, 1993) (see Fig. 1).

2.2. Zermelo–Voronoi diagram

The problem of obtaining the proximity relations between a set
of agents can often be recast as a set membership problem. For
instance, the question of determiningwhich of the agents is closest
(in terms of arrival time) to a static target at a particular instant
of time, reduces to a set membership problem, namely, one of
forming the so-called Zermelo–Voronoi Diagram (ZVD) (Bakolas &
Tsiotras, 2010), and then finding the cell inwhich the target resides
at the given time instant.

Given a finite number of agents at some time t , the ZVD is a
partition of the plane whose generalized distance is the minimum
time for the corresponding Zermelo navigation problem (Bryson &
Ho, 1975) from each agent’s current position (the generator) to the
agent’s terminal configuration.

To this end, let the index set I = {1, 2, . . . , n}, and consider
n agents starting from distinct initial positions X i

P0
∈ R2, i ∈ I ,

whose dynamics are given by

Ẋ i
= ui

+ w(X i, t), X i(0) = X i
P0 , i ∈ I, (1)



W. Sun, P. Tsiotras / Automatica 81 (2017) 253–260 255
where X i
= [xi, yi]⊤ ∈ R2 denotes the position of the ith agent,

ui
∈ R2 is the control input of the ith agent and w(X i, t) ∈ R2

represents the environmental disturbance (winds/currents). Given
X ∈ R2, let T i

∗
= T i

∗
(X i

P0
, X) denote the minimum time such that

X i(T i
∗
) = X , subject to the dynamics (1). As shown in Bryson andHo

(1975), the control lawui
ZN that solves thisminimum-timeproblem

is the Zermelo navigation law (ZNL) given in Eqs. (6)–(7) below.

Definition 2.1 (Zermelo–Voronoi DiagramBakolas&Tsiotras, 2010).
The Zermelo–Voronoi diagram (ZVD)2 (or Zermelo–Voronoi partition)
at time t ≥ 0, associated with the system (1), is a set partition of
the plane Zt

= {Z t
1, Z

t
2, . . . , Z

t
n} such that

(i) R2
=
n

i=1 Z
t
i ,

(ii) cl Z t
i = Z t

i for all i ∈ I .
(iii) int Z t

i ∩ int Z t
j = ∅ for all i, j ∈ I such that i ≠ j.

(iv) For each X ∈ int Z t
i , it follows that T i

∗
(X i(t), X) < T j

∗(X j(t), X)
for i ≠ j.

The sets Z t
i are the Zermelo–Voronoi cells at time t . The cell Z t

i
consists of all points that can be reached by the ith agent faster than
by any other agent, assuming that all agents use the same control
law ui

ZN.
The following proposition characterizes a useful property of the

ZVD that will be used later on.

Proposition 2.2 (Bakolas & Tsiotras, 2010). Let V = {Vi, i ∈ I},
be the partition of the ordinary Voronoi diagram with generators
P = {Pi, i ∈ I}. Assume that the dynamics of each agent initially
placed at the generator positions are given by (1), and assume that
w = w(t). Let the one-to-one, continuous function F : R2

→ R2

be defined by F(X) = fPi(X), X ∈ Vi, i ∈ I , where fPi(X) =

X +


|X−Pi|
0 w(τ) dτ , i ∈ I. Then Zi = F(Vi) and thus ZVD is the

image of VD under the mapping F .

In other words, when the external field is time-varying (but
not spatially varying) there exists a homeomorphism between
the ordinary Voronoi diagram and the Zermelo–Voronoi diagram
with the same generators. This results in fast numerical algorithms
for generating Zermelo–Voronoi partitions using well-established
algorithms for generating ordinary Voronoi partitions from
computational geometry (Okabe et al., 2009).

3. Problem setup

In this section, we formulate the dynamic pursuit problem
with multiple pursuers and a single target. Section 6 provides an
extension of the methodology to problems with multiple targets.
To this end, consider a group of n pursuers in the plane indexed by
the set I , and assume that at time t = 0 the pursuers are located at
n distinct positions in the plane, designated by P0 = {X i

P0
∈ R2, i ∈

I}. The kinematics of the pursuers are described by

Ẋ i
P = ui

P + w(t), X i
P(0) = X i

P0 , i ∈ I, (2)

whereX i
P := [xiP , y

i
P ]

⊤
∈ R2 denotes the position of the ith pursuer,

ui
P ∈ R2 is the control input of the ith pursuer such that ui

P ∈ UP ,
for all i ∈ I , and w(t) ∈ R2 represents the wind disturbance.
The set UP consists of all piecewise continuous functions whose
range is included in the set UP = {u ∈ R2, |u| 6 ū}. It is assumed,
furthermore, that there exists 0 < w̄ < ū such that |w(t)| 6 w̄, for

2 Note that in Bakolas and Tsiotras (2010) this is referred to as the dual
Zermelo–Voronoi diagram, not to be confused with the dual graph of the
Zermelo–Voronoi diagram.
all t > 0. The restriction on themagnitude of the wind disturbance
is imposed in order to ensure complete pursuer controllability,
namely, that the pursuers are able to reach any point on the plane
in finite time. The absence of controllability leads to complicated
behavior and requires a more detailed analysis (Bakolas & Tsiotras,
2010, 2013).

The objective of the pursuers is to intercept a target, whose
kinematics is given by

ẊT = uT , XT (0) = XT0 , (3)

where XT = [xT , yT ]⊤ ∈ R2 is the position of the target, and
uT is its control input such that uT ∈ UT , which consists of all
piecewise continuous functions whose range is included in the set
UT = {u ∈ R2, |u| 6 q̄}. Note that the target is not affected by the
wind field.

Remark 1. It is worth mentioning that the models (2) and (3)
also capture cases when the pursuers and the target are subject
to different disturbances. To see this, assume that the governing
equations for the pursuers and the target are given, respectively, by

Ẋ i
P = ui

P + w1(t) and ẊT = uT + w2(t). (4)

By letting the new states Z i
P(t) = X i

P(t)−
 t
0 w2(τ ) dτ and ZT (t) =

XT (t) −
 t
0 w2(τ ) dτ one obtains the system of differential equa-

tions for Z i
P and ZT that are of the same form as in (2) and (3), re-

spectively, with w(t) = w1(t) − w2(t).

Throughout this work, we assume that the pursuers do not
know how the target maneuvers a priori. Instead, they have
accurate measurements of the current position of the target at
every instant of time. One reasonable strategy for each pursuer is
therefore to use the Zermelo navigation law (Bakolas & Tsiotras,
2012; Bryson & Ho, 1975) in order to intercept the target. As
discussed in Bakolas and Tsiotras (2010), starting at time t = 0,
the optimal time of arrival T i

ZN of the ith pursuer from X i
P0

to XT0 is
given by

T i
ZN = min


T > 0 : ūT − |XT0 − X i

P0 −

 T

0
w(τ) dτ | = 0


. (5)

Then Zermelo’s navigation control can be obtained by

ui
ZN = ū(cos θ∗

i , sin θ∗

i )⊤, (6)
where

θ∗

i = Arg


XT0 − X i

P0 −

 T iZN

0
w(τ) dτ


, i ∈ I. (7)

3.1. Pursuer assignment

We only consider sequential, or relay, pursuit strategies. That
is, we assume that, at every instant of time, only a single pursuer is
chasing the target, i.e., at every time t > 0, there exists a unique i ∈

I , such that ui
P(t) = ui

ZN(t), whereas uj
P(t) = 0, for all j ∈ I, j ≠ i.

In such a case, we will call i the active pursuer at time t . Let At

denote the set of active pursuers at time t . Clearly, for a sequential
pursuit the set At is a singleton. Our goal is to find a sequence of
active pursuers to capture the target in the shortest possible time.
To this end, define a mapping σ : [0, ∞) → I , where σ belongs
to the set of all the right continuous, piecewise constant functions,
denoted as Σ , such that σ(t) = i if and only if i ∈ At . We call σ
the assignment function of the target.

The pursuer–target assignment problem can then be stated as
follows: Given a target and a set of pursuers in the plane, determine
an assignment function σmin ∈ Σ to minimize capture time under
the assumption that each pursuer is using a stroboscopic strategy
based on the target’s current location.
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4. Analysis and implementation of the pursuer–target assign-
ment problem

Before proceeding with the solution of the optimal pursuer
assignment problem, we first need to determine the conditions on
the target’s maneuverability such that there exists an assignment
function leading to finite capture time. Below we provide a
sufficient condition for the existence of capture time.

The robust line-of-sight navigation law (RLOS) steers a pursuer
towards a target at every instant of time, while maximizing
the speed along the ensuing path. This is the optimal strategy,
among all control strategies that force the pursuer to move along
the current line-of-sight (Bakolas & Tsiotras, 2012). The RLOS
navigation law of the ith pursuer can be expressed as Bakolas and
Tsiotras (2012)

ui
RLOS(t, Y

i) =


ū2 − ⟨w(t), ei2(t)⟩2e

i
1(t) − ⟨w(t), ei2(t)⟩e

i
2(t),

(8)

where Y i(t) = XT (t) − X i
P(t) is the vector from the pursuer to the

target, ei1(t) = Y i(t)/|Y i(t)| and ⟨ei2(t), e
i
1(t)⟩ = 0 for all i ∈ I and

t ≥ 0.
The following result is adapted from Bakolas and Tsiotras

(2012).

Proposition 4.1. Let ϵ > 0, and assume that the dynamics of each
pursuer is given by (2) and the dynamics of the target is given by (3).
Then, for each pursuer i, and for all initial conditions X i

P0
and XT0 ,

there exists a finite time T i
RLOS(X

i
P0

, XT0) > 0 such that the ith pursuer
driven by the RLOS navigation law (8) enters the set {X ∈ R :

|X − XT (T i
RLOS)| 6 ϵ}, provided that

|⟨w(t) − uT (t), ei1(t)⟩| <

ū2 − w̄2, for all t > 0. (9)

The following corollary is immediate from Proposition 4.1.

Corollary 4.2. Assume that (9) holds for all i ∈ I . Any sequential pur-
suit strategy in which each active pursuer employs the RLOS naviga-
tion law (8) leads to capture of the target by at least one pursuer.

Proposition 4.1 implies that the minimum-time intercept
problem using Zermelo’s navigation law in (6)–(7) always has a
solution, for all initial conditions for the pursuers and the target.
Furthermore, applying Zermelo’s navigation law instead of (8)
results in a smaller intercept time, that is, t iZN ≤ t iRLOS for all i ∈ I .
This, in turn, suggests that a sequential strategy that uses Zermelo’s
navigation law for each pursuer will eventually lead to capture.
By imposing an alternative condition we can actually prove the
following result.

Proposition 4.3. Let ϵ > 0, and assume that the dynamics of each
pursuer is given by (2) and the dynamics of the target is given by (3).
Furthermore, assume that there exists w̃ > 0 such that, for all t ≥ 0
and T > 0,

1
T

 t+T

t
w(τ) dτ < w̃. (10)

Then, for each pursuer i, and for all initial conditions X i
P0

and XT0 ,
there exists a finite time t iZN(X i

P0
, XT0) > 0 such that the ith pursuer

driven by the robust Zermelo navigation law enters the set {X ∈ R :

|X − XT (t iZN)| 6 ϵ} provided that

q̄ < ū − w̃. (11)
Proof. Let Y i(t) = XT (t)−X i
P(t) be the vector from the ith pursuer

to the target. Assume that at time t = tk the ith pursuer and
the target are located at positions X i

P(tk) and XT (tk) respectively. It
follows from (5) that the time-to-intercept of a stationary target
at XT (tk) is given by T i

ZNk
= min{T > 0 : ūT − |Y i(tk) − tk+T

tk
w(τ) dτ | = 0}. In particular,Y i(tk) −

 tk+T iZNk

tk
w(τ) dτ

 = ūT i
ZNk

, (12)

and the corresponding optimal control at tk is given by

ui
ZN(tk) =

1
T i
ZNk


Y i(tk) −

 tk+T iZNk

tk
w(τ) dτ


. (13)

At the next time step t = tk + δt , we get

X i
P(tk + δt) = X i

P(tk) +

 tk+δt

tk
w(τ) dτ

+
δt
T i
ZNk


Y i(tk) −

 tk+T iZNk

tk
w(τ) dτ


,

and, similarly, XT (tk + δt) = XT (tk) + uk
T δt , where uk

T = uT (tk).
Thus,

Y i(tk + δt) = Y i(tk) + uk
T δt −

 tk+δt

tk
w(τ) dτ

−
δt
T i
ZNk

Y i(tk) +
δt
T i
ZNk

 tk+T iZNk

tk
w(τ) dτ . (14)

The time-to-intercept at time step t = tk + δt is given by T i
ZNk+1

=

min{T > 0 : ūT − |Y i(tk + δt) −
 tk+δt+T
tk+δt w(τ) dτ | = 0}. In

particular,

|Y i(tk + δt) −

 tk+δt+T iZNk+1

tk+δt
w(τ) dτ | = ūT i

ZNk+1
. (15)

Pick δt = ϵ/(ū + w̄), where ϵ > 0 and assume that there exists
k > 0 such that T i

ZNk
≤ δt . Then from (13) one obtains |Y i(tk)| ≤

|ui
ZN(tk)|T i

ZNk
+ |

 T iZNk
0 w(τ)dτ | ≤ (ū + w̃)T i

ZNk
≤ (ū + w̃)δt ≤ ϵ.

This shows that the pursuer is in the ϵ ball centered at the evader’s
position and capture has occurred.

Suppose now that T i
ZNk

> δt for all k > 0. In this case, using (14),
and after some algebraic manipulations, one obtains the following
expression for the term on the left-hand-side of (15)

Y i(tk + δt) −

 tk+δt+T iZNk+1

tk+δt
w(τ) dτ

=


1 −

δt
T i
ZNk


Y i(tk) −

 tk+T iZNk

tk
w(τ) dτ


−

 tk+δt+T iZNk+1

tk+T iZNk

w(τ) dτ + uk
T δt.

Letting Θk = Y i(tk) −
 tk+T iZNk
tk w(τ) dτ , and

Hk = −

 tk+δt+T iZNk+1

tk+T iZNk

w(τ) dτ + uk
T δt, (16)

Eq. (15) can be written as |αΘk + Hk| = ūT i
ZNk+1

, where α =

1 − δt/T i
ZNk

> 0, whereas (12) can be written |Θk| = ūT i
ZNk

.
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Subtracting the last two equations yields −ū1Tk = |Θk|− |αΘk +

Hk|, where 1Tk = T i
ZNk+1

− T i
ZNk

. We claim that 1Tk < 0 for all
k > 0 such that T i

ZNk
> δt . To this end, note that using the triangle

inequality, yields−ū1Tk ≥ |Θk|−α|Θk|−|Hk| = ūδt−|Hk|, where
wehavemadeuse of the fact that (1−α)|Θk| = δt/T i

ZNk
|Θk| = ūδt .

Hence, |Hk| ≥ ū(1Tk + δt). From (10) and (16) we also have

|Hk| = |uk
T δt −

 tk+δt+T iZNk+1

tk+T iZNk
w(τ) dτ | ≤ q̄δt + w̃|1Tk + δt|. Thus,

we get

ū(1Tk + δt) ≤ |Hk| ≤ q̄δt + w̃|1Tk + δt|. (17)

If1Tk ≥ 0, for some k > 0 such that T i
ZNk

> δt , then it follows from
the previous expression that ū(1Tk + δt) ≤ q̄δt + w̃(1Tk + δt) or
that (w̃ − ū)1Tk ≥ (ū − q̄ − w̃)δt, which leads to a contradiction
since the left-hand side of the previous inequality is non-positive
and the right-hand side is positive. It follows that T i

ZNk+1
− T i

ZNk
=

1Tk < 0 as claimed. This inequality implies that the sequence
{T i

ZNk
}
∞

k=1 is strictly decreasing, and since it is also bounded from
below, it converges. Hence, limk→∞ 1Tk = 0. Taking the limit as
k → ∞ in (17) yields ūδt ≤ (q̄ + w̄)δt or that ū ≤ q̄ + w̃,
contradicting (11). �

Note that, in general, w̃ ≤ w̄ and the two bounds are equal for
the case of a constant external field. The condition (11) is rather
restrictive since it implies that all pursuers dominate the target
even in the presence of the external field. However, this condition
is necessary in case the wind field is not known a priori and one
needs to ensure capture against any exogenous field of (only)
known upper bound. To see this, just consider the extreme case
where a single pursuer goes after a single target under a constant
wind drift w = w̄(XP0 − XT0)/|XP0 − XT0 |.

The next corollary follows immediately from Proposition 4.3.

Corollary 4.4. Assume that (11) holds for all i ∈ I . Any sequential
pursuit strategy in which each active pursuer employs Zermelo’s
navigation law (6)–(7) leads to capture of the target by at least one
pursuer.

At this point, it is important to compare Corollaries 4.2 and
4.4. None of the conditions (9) and (11) imply the other, although
condition (11) is, in general, less restrictive than (9). However,
owing to the optimality of the ZNL it is clear that (9) (with
uT = 0) should be sufficient for capture even for the case of
ZNL. Although capture is ensured in both cases using a sequential
pursuit strategy, in light of the discussion immediately after
Corollary 4.2, it should be clear that the use of the sequential
ZNL strategy leads to a shorter capture time than the use of a
sequential RLOS strategy. This is confirmed in Section 7 where
numerical examples comparing the two alternative relay pursuit
strategies (that is, the RLOS and the ZNL) are presented. The
fact that for stationary target the ZNL leads to capture is trivial
since the ZNL is the optimal strategy. Ensuring, however, that the
repeated use of the ZNL against an unknown maneuvering target
will lead to capture requires additional assumptions along with a
more detailed analysis, which is provided as part of the proof of
Proposition 4.3.

Armed with Corollary 4.4 and similarly to Bakolas and Tsiotras
(2012), we propose a sequential (or relay) pursuit assignment
strategy based on the target’smembership in the Zermelo–Voronoi
cell of one of the pursuers. Without loss of generality, we assume
that XT (0) ∈ int Z0

i for some i ∈ I . Assuming that each active
pursuer chooses the Zermelo navigation law, wemay now propose
the following algorithm to assign the active pursuer:
Case 1: Multiple-pursuers/single-target

(a) For each t ≥ 0, set σ(t) = i if XT (t) ∈ int Z t
i .

(b) If σ(t−) = i and XT (t) ∈ int Z t
j with i ≠ j, let σ(t) = j.

(c) If |X i
P − XT (t)| > ϵ, go to step (b). Otherwise, terminate the

procedure and return the assignment function σ .

In other words, the algorithm at each time t ≥ 0, assigns the ith
pursuer to be the active pursuer if the target resides in the interior
of the corresponding Zermelo–Voronoi cell Z t

i at time t .

5. Update algorithm for ZVD

In order to implement the previous algorithmwe need, at every
instant of time, to know the ZVD in order to determine which
Zermelo–Voronoi cell the target resides in. We can either build a
ZVD from scratch at each time step, or update the ZVD from the
previous time step. Since at every time interval, only one generator
moves relatively to the rest, it is expected that the latter optionwill
be more efficient. Hereby, we present an algorithm that updates
the ZVD from one time step to the next when only a single pursuer
has moved.3

Utilizing Proposition 2.2, our strategy for updating the ZVD is to
update the ordinary VD corresponding to the same generators first
and then form the ZVD through this transformation. However, in
order to update the ordinary VD we will, instead, update its dual
graph, namely, its Delaunay Triangulation. We use a modification
of the algorithm introduced in Guibas and Russel (2004) for
updating DT since it is relatively efficient and it fits our problem.

In order to update the DT from the previous time step to the
current time step, a straightforward way would be to put all
the points in a queue and every time we push a point out from
the queue, we remove this point from the original triangulation
and then insert it back at the new location at the present time
(Kao, 1991). Each deletion and insertion of the DT preserves the
Delaunay property, so the procedure would yield a valid DT.
However, the procedure is not very efficient since even if all the
points remain static during the time interval, we still need to
delete and insert all the points to complete the update. Moreover,
removing a point from a DT is a fairly expensive process. Given
the previous considerations, we propose an alternative approach
to deal with moving generators, which most of the times leads to
an efficient updating of the DT.

We want the update algorithm to take advantage of the fact
that part of the DT structure has not changed from the previous
time step. To this end, denote by DTk, and DTk+1 the Delaunay
Triangulation at time steps tk and tk+1 respectively. Assume that
the corresponding generator sets are given by Pk and Pk+1. Our
goal is to update DTk into DTk+1 with as few deletions as possible.
To this end, we first check whether we can generate DTk+1 from
DTk using only the flip-edge method. The flip-edge method can
be applied when DTk is an embedding (Guibas & Russel, 2004).
Recall that, given a point set, a triangulation is an embedding if
the triangulation associated with this point set has no overlapping
triangles. If a triangulation is not an embedding, we say that it is an
unembedding. Fig. 2(a) shows a DT associated with a given point
set, and Fig. 2(b) shows the DT associated with a new point set,
where point 5has changed its location. Some triangles overlapwith
each other in Fig. 2(b). Thus, the DT in Fig. 2(b) is an unembedding.
Also notice that if an unembedding occurs, there exists at least one
triangle that has changed its orientation. For example, the triangle
with vertices 3, 4, and 5 in Fig. 2(a) has a clockwise orientation.

3 This algorithm can also be applied to the case where more than one generator
moves (see Section 6).
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In Fig. 2(b), on the other hand, the orientation of the triangle
with the same vertices has counter-clockwise orientation, i.e., its
orientation has changed.

We introduce the orientation certificate to check whether DTk
is an embedding or not (Guibas & Russel, 2004). If the orientation
certificate is passed, we can simply use the flip-edge method to
update the DT. Otherwise, we need to remove the points that cause
the unembedding and then check the orientation certificate until
it is passed. After this iteration, we obtain a triangulation with no
overlaps, and we can then use the flip-edge method to transform
it into a DT. Finally, we insert the removed points to their current
locations and form DTk+1. The difference between this procedure
and the method introduced in Guibas and Russel (2004) is that in
the latter reference the authors remove the points randomly to get
the triangulation candidate, whereas in our case we only remove
the moving points since they are the only possible generators that
may cause unembedding.

The algorithm for updating the Zermelo–Voronoi diagram from
the previous time step to current time step is given in Algorithm 1.

Algorithm 1 Update Zermelo–Voronoi Diagram
Input: Coordinates Pk−1 of the generators at the previous time step
and the corresponding Delaunay triangulation DT, coordinates Pk
of point set at current time step.
Output: Updated Zermelo–Voronoi Diagram and Delaunay Trian-
gulation at the current time step.

1: procedure Update_DT(DT,Pk−1,Pk)
2: while the triangulation DT is not embedded under current

coordinates Pk do
3: Update DT by removing one of the points that cause the

unembedding (in our case the active pursuer);
4: store the current coordinates of removed points into the

set R;
5: end while
6: if R is not empty then
7: flip the remaining triangulation into a Delaunay triangu-

lation;
8: end if
9: for i = 0 to length(R) do

10: Update DT by inserting the ith point in R into the
triangulation;

11: end for
12: Transform DT into an ordinary Voronoi diagram VD;
13: Transform VD into the ZVD at current time through the

coordinate transformation of Proposition 2.2.
14: return ZVD and DT.
15: end procedure

5.1. Complexity analysis

The complexity of the previous algorithm is dominated by the
deletion and insertion of generators during the ZVD update. To
remove a point from the standard Delaunay Triangulation, we use
the deletion method introduced in Devillers (1999) and to insert a
point into theDT,we choose the algorithmgiven in Kao (1991). The
complexity of deleting a generator through themethod in Devillers
(1999) is O(k log k), where k is the degree of the deleted generator
(that is, the number of edges associated with this generator).
When the generator is randomly picked, the expected value of k
is 6, without any assumption on the point distribution (Devillers,
1999). Given a base set of points, any sequence of insertions to the
Delaunay triangulation can be performed in expected amortized
(a) Delaunay Triangulation of 9
generators.

(b) Generator 5 changed its location
and caused unembedding.

Fig. 2. Unembedding caused by relocation of a generator.

time O(log n) for each insertion (Kao, 1991), where an algorithm is
said to have an amortized time complexity of f (n) if the total cost
of any sequence ofN operations divided byN isO(f (n)). As a result,
the overall complexity of the algorithm is of order O(log n) when
n ≫ k or O(k log k) when n is close to k. This is better than the
complexity O(n log n) of constructing the ZVD from scratch at each
instant of time (Kao, 1991). The flip-edge algorithm introduced
in De Berg, Cheong, Van Kreveld, and Overmars (2008) can also
be used in practice, instead of the deletion and insertion of the
generator, although it has worst case complexity O(n2). However,
this is only achieved if O(n2) edges need to be flipped, which is
rarely the case. Owing to the continuous movement of the active
pursuer(s), much fewer edge flips are required to transform a DT in
the previous time step to the DT in the current time step. In all our
numerical simulations it was observed that the flip edge method
performed consistently well irrespective of the number of targets.

6. Sequential pursuit of multiple targets

In this section, we extend the previous results to the case of
a pursuit problem with multiple pursuers and targets. To this
end, consider a group of n pursuers in the plane, denoted by
{P1, P2, . . . , Pn}, and m targets, denoted by {T1, T2, . . . , Tm}. Let
J = {1, . . . ,m} denote the index set of the targets. The objective
of the pursuers is to intercept the targets. It is assumed that after
a pursuer intercepts a target, it is still capable of going after other
targets. The kinematics of the ith pursuer, i ∈ I , are described by
(2) and the kinematics of the jth target is given by

Ẋ j
T = uj

T , X j
T (0) = X j

T0
, (18)

where X j
T = [xjT , y

j
T ]

⊤
∈ R2 is the position of the jth target, and

uj
T is its control input such that uj

T ∈ U
j
T , which consists of all

piecewise continuous functions whose range is included in the set
U j
T = {v ∈ R2, |v| 6 q̄j}. Note that the targets are not affected by

the wind field.
At this point, we are ready to extend the previous pursuer

assignment algorithm of the multiple-pursuers/single-target case
to the problemwithmultiple targets. In particular, we present two
methods to assign the pursuers to the targets.

Without loss of generality, we assume that none of the targets
lie on the boundary of the ZVD at time t = 0 and thus each
target has been initially assigned to one of the pursuers. Let the
assignment function for the multi-target case be denoted by σ =

(σ1, . . . , σm) ∈ Σm where each σj is the assignment function
corresponding to target j ∈ J . The two algorithms proceed as
follows.
Algorithm 2a: Multiple-pursuers/multiple-targets case

(a) For each t ≥ 0, and for each j ∈ J , let aj ∈ I be such that
X j
T (t) ∈ int Z t

aj . In this case, set σj(t) = aj. If aj1 = · · · = ajs = i
for some j1, . . . , js ∈ J we set σjk(t) = i where i is such that
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T i
ZN(X i

P , X
jk
T ) ≤ T i

ZN(X i
P , X

jℓ
T ) for all ℓ = 1, . . . , s, and we also

set σjℓ(t) = 0, for all jℓ ≠ jk. That is, we assign to the jth
target the pursuer corresponding to the ajth ZV cell and if there
are multiple targets inside Zaj we assign to the ajth pursuer the
target that is closest (in terms of intercept time) to the pursuer,
whereas all other targets remain unassigned.

(b) At every time step, afterwe update the ZVD and the locations of
the pursuers and the targets, we repeat the procedure outlined
in step (a) and we check the distance between each target
and its assigned pursuer. Specifically, for each j ∈ J , if |X

aj
P −

X j
T (t)| ≤ ϵ, let J = J \ {j}. Check if J ≠ ∅ in which case return

to step (a).
Otherwise, the procedure is terminated and the assignment

function σ is returned.
In this algorithm, when one pursuer is paired to multiple

targets, the pursuer always goes after the target whose current
location can be reached by this pursuer in the shortest amount
of time under Zermelo’s control law. The targets whose distances
from the assigned pursuer become smaller than ϵ are removed
from the target set and the pursuit continues with the remaining
targets. The procedure terminates when the distances between all
pursuers and the corresponding targets become smaller than ϵ.

This methodmay result in a case where one pursuer is assigned
tomultiple targets. Consequently, some targetsmaynot be actively
pursued until other targets have been captured and the respective
active pursuers become available. When the number of pursuers is
larger than the number of targets, we can avoid this situation by
applying the following alternative algorithm.
Algorithm 2b: Multiple-pursuers/multiple-targets case
(a) For each t ≥ 0, and for each j ∈ J , let aj ∈ I be such that

X j
T (t) ∈ int Z t

aj . In this case, set σj(t) = aj. If aj1 = · · · = ajs = i
for some j1, . . . , js ∈ J we set σjk(t) = i where i is such that
T i
ZN(X i

P , X
jk
T ) ≤ T i

ZN(X i
P , X

jℓ
T ) for all ℓ = 1, . . . , s, and we also set

σjℓ(t) = 0, for all jℓ ≠ jk. If there exists an unassigned target at
the end of this process, then go to (b); otherwise, go to (c).

(b) Generate the new ZVD from the set of unassigned pursuers at
the end of step (a). For each target j ∈ J with σj(t) = 0, repeat
the procedure in (a).

(c) Check the distance between each target and its assigned
pursuer. That is, for each j ∈ J , if |X

aj
P −X j

T (t)| ≤ ϵ, let J = J \{j}.
If J ≠ ∅ return to step (a). Otherwise, terminate and return the
assignment function σ .
In the previous algorithm each pursuer is assigned to a single

target. If more than one pursuers are assigned to multiple targets,
each of these pursuers is assigned to the target whose current
location can be reached by the pursuer in the shortest time.
All other assignments between this pursuer and the rest of the
targets are discarded, and a new ZVD is generated excluding those
pursuers and targets that have already been assigned. As with
the first algorithm, the targets whose distances from the assigned
pursuer get smaller than ϵ are removed from the target set and
the pursuit continues with the remaining targets. The procedure
terminates if the distances between all active pursuers and the
corresponding targets become smaller than ϵ.

Both of the previous two algorithms have their own advantages
and disadvantages. The first algorithm does not have a restriction
on the number of pursuers, but when the number of pursuers
is relatively large, multiple targets may still be assigned to one
pursuer and the unassigned pursuers are not utilized to reduce the
time-to-capture of all the targets. In the second algorithm, each
target is chased by a single pursuer at every instant of time. This
tends to reduce the time-to-capture of all the targets under the
assumption of sequential pursuit.

The following result gives a sufficient condition for the
multiple-pursuers/multiple-targets assignment scheme to termi-
nate in finite time.
Corollary 6.1. Assume that maxj∈J q̄j < ū − w̃. Then any sequential
pursuit strategy in which each active pursuer employs the robust
Zermelo’s navigation law (6)–(7) leads to capture of all the targets by
at least one pursuer.

Proof. Since maxj∈J q̄j < ū − w̃, it follows that q̄j < ū − w̃, for all
j ∈ J . By Corollary 4.4, each evader can be captured by at least one
pursuer in finite time. Therefore, for a finite number of evaders, the
sequential pursuit scheme terminates in finite time. �

7. Simulation results

We consider a scenario with 12 pursuers and 3 targets. The
initial positions of the targets are given by X1

T0
= [3, 5], X2

T0
=

[6, 7], X3
T0

= [4.5, 6]. Without loss of generality, we assume that
each target moves in a straight line with velocity [0.4, 0.6]⊤. The
pursuers are initially located at distinct positions determined by P0
and are shown in Fig. 3. The wind field that affects the pursuers is
given by w(t) = [−0.2 − 0.2 cos(t), 0.3]⊤.

Fig. 3 depicts the trajectories of the pursuers and targets when
the first algorithm in Section 6 is applied.4 The pursuit process can
be summarized as follows. At the start of the pursuit, Targets 1 and
3 are paired with Pursuer 2 and Target 2 is paired with Pursuer
4. Pursuer 2 goes after Target 1 in the beginning since the time it
takes for Pursuer 2 to arrive at the location where Target 1 resides
in is smaller than the time to arrive at the initial location of Target
3. Pursuer 4 chases Target 2 since it is the only target paired with
this pursuer. At time t1 = 0.75, Target 3 switches its assignment
from Pursuer 2 to 5, because it enters the Zermelo–Voronoi cell of
Pursuer 5 at this time step. At time t2 = 1.60, the original Target 1
is captured by Pursuer 2 and removed from the target set. One of
the two remaining targets is captured at time t3 = 1.80. The last
evading target is eventually captured at t4 = 4.65 by Pursuer 5.

In order to compare the robust ZN law proposed in this paper
with the naïve RLOS navigation law, we repeat the previous
example where now the ZNL is replaced with the RLOS strategy.
The time-to-capture under this condition is t4 = 5.0, which is
larger than the previous time-to-capture when the robust ZN law
is applied (t4 = 4.65).

The pursuit process under the second algorithm5 is presented in
Fig. 4. A summarized description of the pursuit process is given as
follows. At t = 0 Pursuers 2, 4 and 5 are assigned to Targets 1, 2 and
3, respectively. Both Targets 1 and 3 are in the Zermelo–Voronoi
cells of Pursuers 2 at t = 0, and Pursuer 2 is assigned to Target 1
since it can reach the location of Target 1 faster than that of Target 3
via the use of Zermelo’s navigation law. Hence, Target 3 is assigned
to one of the pursuers other than Purser 2 or 4. This leads to
assigning Target 3 to Pursuer 5. Target 1 is captured by Pursuer 2
at t1 = 1.60 and Target 2 is captured by Pursuer 4 at t2 = 1.80.
The last target (Target 3) is captured by Pursuer 5 at t3 = 3.55.

For this problem a RLOS strategy leads to capture at t4 = 3.6,
which is, again, larger than the capture time resulting from the use
of the sequential ZNL.

8. Conclusions

Under the assumption that at most one pursuer is actively
chasing amoving target at every instant of time, we have proposed

4 An animated version can be found at http://dcsl.gatech.edu/movies/
MPMTalgo1.avi.
5 An animated version can be found at http://dcsl.gatech.edu/movies/

MPMTalgo2.avi.
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Fig. 3. Trajectories of pursuers and evaders by applying the first algorithm. Red
curves in the background represents the ZVD at t = 0. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Trajectories of pursuers and evaders after applying the second algorithm.
Red curves in the background represents the ZVD at t = 0. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

a target–pursuer assignment strategy to capture several moving
targets by a set of pursuers in a wind field, when the only
information about the targets known to the pursuers are their
current locations at every instant of time. The targets are not
affected by the wind field, resulting in asymmetric pursuer/target
dynamics. We take advantage of the fact that the problem of
assigning a pursuer to the moving target can be associated with
a dynamically changing Zermelo–Voronoi partitioning problem.
This partition assigns to each pursuer the points that can be
intercepted faster than any other pursuer, using the minimum-
time Zermelo’s navigation law. We use the Zermelo–Voronoi
diagram (ZVD) to dynamically assign the active pursuers at each
instant of time.

Several extensions of this work are possible. One of the
challenges is to remove the restriction that only one pursuer
chases a target at every instant of time. This problem can be
easily solved by constructing the ZVD having as its generators
the targets (instead of the pursuers). Multiple pursuers may then
be included in each target cell, in which case a natural question
would be to consider cooperation among these pursuers in order
to intercept the target faster. Another promising direction is to
develop new ZVD update algorithms as well as consideration of
more complicated flow fields, including pursuit-evasion scenarios
with obstacles. For some initial results along this direction, see Sun,
Tsiotras, Lolla, Subramani, and Lermusiaux (2017).
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