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ABSTRACT

In this paper we present a design procedure for disturbance
attenuation with internal stability of a rotor supported by mag�
netic bearings� over the whole interval of the rotor operating
speeds� The nonlinear gyroscopic equations can be simpli�ed
to a set of linear� time�varying di�erential equations� owing to
the linear dependence of the rotor speed in the plant dynam�
ics� For rotors operating in high speeds� even small unbalanced
masses can create large synchronous disturbances� To alleviate
the forces produced due to imbalance the controller automati�
cally balances the rotor for each operating speed� The proposed
methodology addresses both the gyroscopic compensation prob�
lem due to change of the rotor speed as well as the automatic
balancing problem� The approach is based on the recently de�
veloped theory of self�scheduled H� controllers� Owing to the
linear dependence of the equations on the rotor speed� the com�
putation of the controller can be done very e�ciently using con�
vex optimization and Linear Matrix Inequalities �LMIs��

NOMENCLATURE

A area of each pole
Co convex hull
E� nominal voltage
�F external force in body frame
F� nominal force
G� nominal gap
Ja axial moment of inertia
Jr radial moment of inertia
M mass of the rotor
N number of coil turns
P parameter polytope
R coil resistance

IRn n�dimensional vector space
S system matrix polytope

�T external torque in body frame
�V velocity of center of mass in body frame
ej voltage across the jth coil
fij magnetic forces
gj gap length of jth coil
h pole width
� half the length of the shaft
p rotor speed
�� nominal airgap
� disturbance attenuation level
� angular displacement about Y axis
�� permeability of free space �	� � 
���H�m�
� angular displacement about Z axis
�j airgap magnetic �ux of jth coil
� angular displacement about X axis
	 angular velocity in body frame

INTRODUCTION

Magnetic bearings �MB� increasingly become the choice for
high�speed� high�performance rotating machinery because of
their frictionless characteristics� They utilize a magnetic �eld
generated by radially or axially placed electromagnets to gener�
ate the forces necessary to suspend and support a shaft without
any contact with its environment� Thus� magnetic bearings are
particularly useful in very high or very low temperature condi�
tions where a lubrication�free environment is necessary� The ad�
vantages of magnetic bearings are primarily their very low power
consumption �an order of magnitude lower than oil �lm bear�
ings� and their very long� maintenance�free life� Some applica�
tions where magnetic bearings o�er distinct advantages are high
speed turbomachinery� precision milling spindles� and combined
attitude control and energy storage for spacecraft and satellites�

Active magnetic bearings can support rotors without friction
but they require a sophisticated control system� since the un�
controlled magnetic bearing con�guration is open�loop unstable�






Although the addition of a controller is indispensable to the mag�
netic bearing design �complicating the overall design�� it o�ers
the ability of meeting speci�c performance requirements such as
automatic balancing of the shaft� rejection of unwanted distur�
bances� and vibration isolation� Several control methodologies
�both in frequency and time�domain� have been successfully used
in the past for active control of magnetic bearings� Most of these
techniques assume a linear time�invariant �LTI� plant� Such an
assumption is valid if the rotor is to operate at a �xed speed�
If� on the other hand� the speed of the rotor changes over a
wide range� the linear time�invariant assumption may no longer
be valid because the dynamics of the magnetic bearing change
when the rotational speed varies� Control techniques from linear
robust control theory �Mohamed and Busch�Vishniac� 
�� Fu�
jita et al�� 
�b� Fujita et al�� 
�a� and adaptive control meth�
ods �Knospe et al�� 
�� Shafai et al�� 
	� have been used to
attack this problem� Robust control methodologies can be� how�
ever� overly conservative for this problem� since they do not take
into account the actual time variation of the rotor speed�

Another approach is a control strategy that exploits avail�
able measurements of the speed to increase the performance and
robustness of the closed�loop system� In this paper we use the
recently developed methodology of gain�scheduled �better� self�
scheduled� H� controllers for linear parameter varying �LPV�
systems to attack this problem �Packard� 
	� Becker et al��

�� Apkarian and Gahinet� 
�� Apkarian et al�� 
��� The
idea behind this design technique is to solve a series of standard
H� problems at a speci�ed number of operating speeds� Using
a single Lyapunov function to show stability and �nite L��gain
at these selected points� one guarantees that these properties
will also hold for all operating speeds which are linear combina�
tions of the selected speeds� One can then interpolate between
these speeds to construct the desired controller� Performance
objectives �such as overshoot� disturbance rejection� robustness
to unmodeled dynamics� etc�� can be e�ectively incorporated in
this framework� The main ingredient that makes this approach
computationally attractive is the linear dependence of the system
matrix on the operating speed and thus� the controller can be
designed by solving a set of Linear Matrix Inequalities �LMIs��

MAGNETIC BEARING MODEL

The magnetic bearing con�guration considered in this paper
is shown in Fig� 
� Four pairs of electromagnets are used to
suspend and control the rotor� In Fig� 
 only the two pairs of
electromagnets in the X � Z plane are shown� Two more pairs�
lying in the Y � Z plane� are not shown in the �gure�

The general motion of the rotor system is one of a rotating
rigid body

M
d�V

dt
�M �	� �V � �F �
�

d �H

dt
� �	 � �H � �T ���

where M is the total mass of the rotor� �V is the velocity of the

mass center� �	 is the angular velocity of the mass center� �H is

the angular momentum in body frame� and �F and �T are the total
external force and moment about the mass center� The angular
velocity vector in body coordinates has components 	�
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Fig� �� Magnetic bearing con�guration�
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where �
 � and � are angles denoting the orientation of the body�
�xed frame about the axis Z� the Y and X axes respectively
�����
 Euler angles��

In this paper we are interested only in the rotational motion
of the bearing about the X and Y axes� The translational mo�
tion can be treated the same way� but the equations become more
complicated� The following assumptions will be made through�
out the paper� the rotor is assumed to be rigid� the rotor speed
can be measured in real�time� the motion of the rotor along its
longitudinal axis is negligible� all electromagnets are identical�

Since the angular deviations � and � are typically very small�
we have cos � � 
 and sin � � � and Eqs� ��� simplify to�

	�
	�
	�

�
�

�
cos� sin � �
� sin � cos � �
� � 


��� ��
��
��

�
� �	�

Substituting 	� and 	� from the previous equation in Eq� ���
one obtains�
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Ja
Jr

h
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��

�
�

�

Jr

h
M�

M�

i
���

where Ja is the moment of inertia of the rotor in the axial di�
rection� Jr is the moment of inertia in the radial direction� and
p � 	� � �� is the rotor angular velocity� Let the magnetic forces
produced by the magnetic bearings on the rotor be denoted by
fr�
 fr�
 fr�
 fr�
 fl�
 fl�
 fl�
 fl�� The body torques M� and M�

are related to the inertial torques through the equationh
M�

M�

i
�
h

cos � sin �
� sin � cos �

ih
fr� � fr� � fl� � fl� � fd�
fr� � fr� � fl� � fl� � fd�

i
���

In the previous equation fd� and fd� represent disturbance forces
caused by gravity� modeling errors� imbalances� etc� Rotor im�
balance� in particular� is a common source of vibration in mag�
netic bearing design�

The rotational motion of a magnetic bearing can �nally

�



be described by the equations �Mohamed and Busch�Vishniac�

��

�� �
pJa
Jr

�� �
�

Jr
�fr� � fr� � fl� � fl� � fd��

�� � �
pJa
Jr

�� �
�

Jr
�fr� � fr� � fl� � fl� � fd��

In order to complete the bearing model we also need the
equations which describe the electromagnetic circuit of the coils�
The voltages ej across the jth coil are functions of the airgap
magnetic �ux �j and the gap length gj and can be expressed as
follows

ej � N
d�j
dt

�
�R

��AN
gj�j 
 j � r

 ���
 r	
 l

 ��
 l	

Here N is the number of turns in each coil� R is the coil resis�
tance� and A is the area of each pole� Note that the electromag�
netic forces fj depend nonlinearly on the airgap �ux and the gap
length as

fj � k��j

�

 �

�gj
�h

	

 j � r

 ���
 r	
 l

 ��
 l	

where k is a constant and h is the pole width� The electro�
magnets generate a nominal force F� which � in the absence
of disturbances and modeling errors � balances the rotor� In
this con�guration� the nominal airgap �ux� gap length and volt�
age are given by ��
G� and E�� respectively� Assuming that
�fj
 ��j 
 �gj and �ej denote the deviation of the force� airgap
�ux� gap length and electromagnetic voltage from their nomi�
nal values and that the coil voltages are controlled such that
�er� � ��er�� �er� � ��er� �el� � ��el�� �el� � ��el� we can
write the linearized equations as follows

�� �
pJa
Jr

�� �
�

Jr
��	c���� �c��� � v�� ��a�

�� � �
pJa
Jr

�� �
�

Jr
��	c��� � �c��� � v�� ��b�

N ��� � e� � �d���� d��� ��c�

N ��� � e� � �d���� d��� ��d�

where �� � ��r� � ��l�� �� � ��r� � ��l�� e� � �er� � �el��
and e� � �er� � �el�� The constants c�
 c�
 d�
 d� depend on
��
G�
 R
A
N
�� and the geometry of the bearing as follows

c� � �k��




 � �G�

�h

�

 c� �

�k��
�

�h

 d� �

�RG�

��AN

 d� �

�R��
��AN

� �For a

more detailed exposition the interested reader may consult Mo�
hamed and Busch�Vishniac �
�� and the references therein��

Letting now x� � ��� x� � ��� x� � � ��� x� � � ��� x� � ���
x� � �� u� � e�� u� � e�� v� � fd�� v� � fd� the linearized
equations of the magnetic bearing can be written in state�space
form as follows

�x� � x� ��a�

�x� � x� ��b�

�x� � �
	c�
m

x� � p
Ja
Jr
x� �

�c�
m

x� �



m
v� ��c�

�x� � �
	c�
m

x� � p
Ja
Jr
x� �

�c�
m

x� �



m
v� ��d�

�x� �



N
�u� � �d�x� � d�x�� ��e�

�x� �



N
�u� � �d�x� � d�x�� ��f�

where m �� Jr��
�� In these equations u�
 u� represent the con�

trol inputs �electromagnetic voltages� and v�
 v� represent unde�
sirable disturbances�

Remark � The original� nonlinear rotational equations of the
rotor system including the gyroscopic terms in Eq� ��� can be
written in the form

�	 � A�	�	�M ��

where the matrix A�	� is a linear function of the state� The in�
teresting observation here is that 	� is completely determined by
�� which can be measured in real�time and it is� therefore� known�
Since the time history of 	� is given� this nonlinear system be�
comes� in fact� a linear� parameter�varying system �Shamma and
Athans� 

� Becker et al�� 
�� Packard� 
	��

PROBLEM FORMULATION

Our objective is to design a feedback controller that will
achieve automatic balancing of the rotor over all rotor speeds�
By automatic balancing we mean that no unbalance forces are
transmitted from the rotor to the stator� Automatic balancing is
desirable for rotor operation in vibration�free environments� such
as �ywheel systems onboard high�precision pointing satellites or
spacecraft performing microgravity experiments� Elimination of
the forces between the rotor and the stator can be achieved by
allowing the rotor to rotate about its inertial axis� In Eqs� ���
x� and x� then denote deviations of the axis of rotation from the
inertia axis of the rotor �see Fig� ���
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Air
gap

Fig� �� Rotor unbalance�

The purpose of the controller is to drive the displacements
x� and x� �equivalently� the angular deviations � and �� to zero
using moderate control e�ort� We assume that the only available
measurements the controller has at its disposal are the Y and
X displacements of the shaft x� � �� and x� � ��� respectively�
The unbalance response of the rotor is modeled as a sinusoidal
signal measured by the sensors �Mohamed and Busch�Vishniac�

��

w� � �d cos�p t� � �
�a�

w� � �d sin�p t� � �
�b�

where �d is the magnitude of the unbalance and  corresponds
to some initial phase angle� No other forces act on the system

�



except the electromagnetic forces� Under this assumption the
system equations can be rewritten compactly in the form

�x � A�p�x� B�u �

a�

y � C�x� w �

b�

where x � �x�
 x�
 x�
 x�
 x�
 x��T � IR� w � �w� w��T � IR� and
u � �u� u��

T � IR�� and where the state matrices are given by

A�p� �

�
������

� � 
 � � �
� � � 
 � �

� �c�
m

� � pJa
Jr

�c�
m

�

� � �c�
m

� pJa
Jr

� � �c�
m

�d�
N

� � � � d�
N

�
� �d�

N
� � � � d�

N

�
� �
��

B� �



N

h
����
I�

i

 C� � � I� ���� � �
��

In Eq� �

� y � �y� y��
T � IR� is the measured output available

to the controller�
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Fig� �� Block diagram of system interconnection�

The regulated output is

z �
h
C�x
u

i
�
	�

and includes a penalty on the actuator e�ort� The matrix A�p�
is a�ne in the parameter p and can be written in the form

A�p� � A� � pAp �
��

where A� and Ap are easily obtained from �
���
Given the plant Eqs� �

� and �
	� our objective becomes

then one of designing a controller that will reduce the map from
w to z as much as possible� and at the same time� will guaran�
tee asymptotic stability �in the absence of any external distur�
bances�� To this end� notice that if the angular velocity of the
rotor p were �xed� then the system in Eqs� ��� is a linear time�
invariant �LTI� system and the previous disturbance attenuation
problem can be conveniently cast as an H� optimization prob�
lem� For the case of a rotor with changing operating speed� p is
not �xed and Eqs� ��� represent a linear time�varying �LTV� sys�
tem� H� controllers for linear time�varying systems have been
reported in �Ravi et al�� 

�� From a practical point of view�
however� the implementation of such controllers is demanding�
They require the solution of a system of matrix Riccati di�eren�
tial equations�

Although p is� in general� time varying� it is also measurable
on�line� This implies that the system ��� has the form of a linear
parameter�varying �LPV� system �Shamma and Athans� 

��

Linear parameter varying systems di�er from general linear time�
varying systems in the sense that the time variation of the system
matrix is not known a priori but the actual time variation can be
determined from parameter measurements which are available in
real time� Therefore� knowledge of p can be used for controller
design� In particular� p can be used to adjust the controller gains
on line� i�e� it can play the role of a gain�scheduling parameter�

BACKGROUND THEORY

In this paper we use the methodology of Apkarian et al�
�
�� and Apkarian and Gahinet �
�� in order to design self�
scheduled LTI controllers �with respect to the parameter p� for
the magnetic bearing system described by Eqs� �

�� To this
end� consider a general polytopic linear parameter�varying sys�
tem �LPV� of the form

�x � A�p�t��x� B�p�t��u �
�a�

y � C�p�t��x�D�p�t��u �
�b�

whose system matrices are �xed a�ne functions of some time�
varying parameter vector p�t� which takes values in a polytope
P of vertices �p�
 �p�
 � � � 
 �pr � that is�

P � Cof�p�
 �p�
 � � � 
 �prg �

�
rX
i	�

�i�pi � �i � �


rX
i	�

�i � 


�

where Cof�g denotes the convex hull� Owing to the a�ne depen�
dence of the system matrices A�p�
B�p�
 C�p� and D�p� on the
parameter p� these matrices range in a matrix polytope� whose
vertices are the ones calculated at the vertices of the parameter
polytope P�

A useful indication of performance for LPV systems is the
notion of quadratic H� performance �Apkarian et al�� 
���

De�nition � �Quadratic H� performance�� The LPV sys�
tem in Eqs� �
�� is said to have quadratic H� performance � if
and only if there exists a positive de�nite matrix X � � which
satis�es the following linear matrix inequality �LMI��

AT �p�X �XA�p� XB�p� CT �p�
BT �p�X ��I DT �p�
C�p� D�p� ��I

�
� � �
��

for all values of the parameter vector p � P�

Quadratic H� performance guarantees global asymptotic
stability and L��gain of the map from u to y less than �

kyk� � �kuk� �
��

for all possible parameter trajectories p�t� � P� Therefore�
quadratic H� performance establishes internal stability and ro�
bust performance in the sense of inequality �
���

Remark � Quadratic H� performance is a more conservative
notion than standard H� performance for each �xed p� since it
requires the existence of a �xed �parameter�independent� Lya�
punov function for the entire operating range� Quadratic H�
performance does incorporate� however� a constraint on the in�
duced L��gain of the system via the inequality �
���

In general� it is not an easy task to check the existence of a
matrix X such that the inequality �
�� will be satis�ed for all
admissible parameter values p in an arbitrary set� In the case
of polytopic LPV systems� however� it is easily shown that �
��
will hold for all A�p�
B�p�
 C�p�
D�p� for some �xed X if and

	



only if it holds at the vertices Ai
Bi
 Ci
Di for i � 

 ���
 r �Boyd
et al�� 
	�� Based on this observation Apkarian and Gahinet
�
��� and Apkarian et al� �
�� developed a computationally
e�cient algorithm for the solution of the quadratic H� perfor�
mance problem for LPV systems�

SELF�SCHEDULED CONTROLLERS

In this section the synthesis problem for polytopic LPV sys�
tems is reviewed� We consider �polytopic� LPV systems of the
form

�x � A�p�x�B��p�w �B��p�u �
a�

z � C��p�x�D���p�w�D���p�u �
b�

y � C��p�x�D���p�w�D���p�u �
c�

The system matrices are assumed to belong to the polytope S
de�ned by

S �� Co

��
Ai B�i B�i

C�i D��i D��i

C�i D��i D��i

�

 i � 

 ���
 r

�
����

where Ai
 B�i
 ���� denote the values of the matrices
A�p�
B��p�
 ��� at the vertices �pi of the parameter polytope P�
Henceforth we will assume that in Eqs� �
� the system matrices
B��p�
 C��p�
D���p� and D���p� are parameter�independent� In
addition� the disturbance does not a�ect the performance output
and there is no feedthrough term from the input to the measured
output� i�e�� D���p� � D���p� � �� These simplifying assump�
tions can be relaxed� at the expense of increased complexity in
the resulting formulas �Apkarian et al�� 
���

Under the natural assumption that the pairs �A�p�
B��
and A�p�T 
 CT

� � are quadratically stabilizable over the poly�
tope P �see Corless �
�� for a de�nition of quadratic stabil�
ity�stabilizability� we seek a controller that establishes quadratic
H� performance for the closed�loop system� In particular� we
are interested in LPV controllers� that is� controllers with state
space representation

 �p� ��
�

AK�p� BK�p�
CK�p� DK�p�

	
��
�

where AK�BK�CK �DK are a�ne in p� The closed�loop system
can be compactly written in the form

�xcl � Acl�p�xcl �Bcl�p�w ���a�

z � Ccl�p�xcl �Dcl�p�w ���b�

where Acl�p� � A��p� � �B �p� �C� Bcl�p� � B� � �B �p� �D��

Ccl�p� � C� � �D�� �p� �C Dcl�p� � D�� � �D�� �p� �D�� and

A��p� �
�

A�p� �
� �k�k

	

 B� �

�
B�

�

	

 �D�� �

�
�

D��

	
C� � � C� � � 
 �B �

�
� B�

Ik �

	



�C �
�

� Ik
C� �

	

 �D�� � � � D�� �

In the previous equations k is the order of the controller
�k � n�� The important observation here is that the controller
is uniquely characterized by  �p� which enters the closed�loop
equations in an a�ne way� Moreover� since both  �p� and A��p�
depend a�nely on p� the closed�loop system ���� also depends

a�nely on the parameter p� This observation leads us to the
following result �Apkarian et al�� 
���

Theorem � Consider the polytopic LPV plant ���� and let NR

and N s denote bases of the null spaces of the matrices �BT
� 
D

T
���

and �C�
 D��� respectively� There exists an LPV controller guar�
anteeing quadratic H� performance � along all parameter tra�
jectories in the parameter polytope P if and only if there exist
two symmetric matrices R and S in IRn�n satisfying the system
of �r � 
 LMIs

�
NR �
� I

�T �� AiR�RAT
i RCT

�i B�i

C�iR ��I D��i

BT
�i DT

��i ��I

�
A�

�
NR �
� I

�
� �
 i � 

 � � � 
 r ����

�
N S �
� I

�T

�
� AT

i S � SAi SB�i CT
�i

BT
�iS ��I DT

��i

C�i D��i ��I

�
A�

�
N S �
� I

�
� � i � 

 � � � 
 r ��	�

�
R I
I S

	
� � ����

Moreover	 there exist a kth�order LPV controller solving the
same problem if and only if R and S satisfy	 in addition	 the
rank constraint

rank�I �RS� � k ����

Once the matrices R and S have been found� the Lyapunov
matrix Xcl and the vertex controllers  i are obtained as follows�

Controller Synthesis

Step � Compute full�rank matrices M
N � IRn�k such that

MNT � I �RS ����

Step � Compute Xcl as the unique solution to the matrix equa�
tion !� � Xcl!�� where

!� ��

�
S I
NT �

�

 !� ��

�
I R
� MT

�
����

Step � Compute the vertex controllers  i by solving the convex
feasibility problem�

� AT
cl��pi�Xcl �XclAcl��pi� XclBcl��pi� CT

cl��pi�

BT
cl��pi�Xcl ��I DT

cl��pi�

Ccl��pi� Dcl��pi� ��I

�
A � � ���

for i � 

 �
 � � � 
 r� where now Xcl is known�

If Eq� ��� holds� a possible choice of an LPV controller is

�



the polytopic controller given by

 �p� �

rX
i	�

�i i �

rX
i	�

�i

�
AKi BKi

CKi DKi

	
����

where ���
 � � � 
 �r� is any solution of the convex decomposition
problem p �

Pr

i	�
�i�pi�

MAGNETIC BEARING APPLICATION

In this section we apply Theorem 
 to the magnetic bearing
system as described by Eqs� �

� and �
����
��� Our �rst objec�
tive is to formulate the equations of the magnetic bearing�rotor
system as in Eqs� �
�� There is only one parameter here �the
rotation speed of the shaft� which is assumed to be between pmin

and pmax� Therefore the polytope P in this case is simply the
line segment P � fp � pmin � p � pmaxg�

For the automatic balancing problem� the state�space realiza�
tion of the magnetic bearing�rotor system is given by Eqs� �

��
�
��� A state�space realization of the disturbance in Eq� �
�� is
given by

Aw �
h
� �p
p �

i

 Bw �

�



�

�

 Cw � I� ��
�

The noise w is then given by

�xw � Awxw �Bw
�d ����

w � Cwxw ����

This model is easily incorporated into the system since the ma�
trix Aw is a�ne in p� The augmented system is formed as

�xau � Aau�p�xau �B�au
�d� B�auu ��	a�

z � C�auxau �D��auu ��	b�

y � C�auxau ��	c�

with xau �
h

x
xw

i
and

Aau�p� �
h
A�p� �
� Aw�p�

i

 B�au �

h
B�

����

i
����

B�au �
h
����
Bw

i

 C�au �

h
C� ����
���� ����

i
����

C�au � �C� Cw �
 D��au �
h
����
I�

i
����

The parameter p contributes both in the plant system matrix due
to gyroscopic e�ects� as well as in the synchronous unbalance
disturbance model� Note that the augmented system matrix
Aau�p� is still a�ne in p� The performance measure z consists
of the control e�ort of the X and Y actuators and the axial
displacements in the X and Y directions� This model can be
further re�ned through the addition of output shaping �lters as
follows

�z � diag�Wz�s�
Wu�s��z ����

The �lters Wu and Wz can be used to place constraints on the
control u and on the plant output C�x� The complete system is
shown in Fig� 	�

Zero steady�state error from the command input r� can be
accommodated� if necessary� by adding an integrator at the

K

z

y u

P

w d
~~

z Wz
Wu

Wc

Ws

Fig� �� Block diagram of H� system

controller input �not considered here and hence not shown in
Fig� 	�� Once in this format� and given a disturbance atten�
uation level �� the computation of a feasible controller is de�
termined by the solution of the �ve LMIs in Eqs� ��������� for
i � 

 �� where A� � Aau�pmin�� A� � Aau�pmax�� The solution
of these equations will provide two controllers  � �  �pmax�
and  � �  �pmax� at the vertices of P� Writing for any
pmin � p � pmax one obtains

p �

�
pmax � p

pmax � pmin

�
pmin �

�
p� pmin

pmax � pmin

�
pmax ���

Thus� �� �



pmax�p

pmax�pmin

�
and �� �



p�pmin

pmax�pmin

�
in Eq� �����

For every operating speed the self�scheduled H� controller is
therefore computed by

 �p� � �� �pmin� � �� �pmax� �	��

The methodology of the previous sections establishes the fea�
sibility of a self�scheduled controller for some prescribed perfor�
mance attenuation level �� By decreasing � until the feasibility
problem is not solvable we can in fact solve the disturbance at�
tenuation �sub�optimal problem� we can �nd the self�scheduled
controller which gives the best quadratic H� performance for
the magnetic bearing� This minimization problem only slightly
increases the computational burden since it involves only an ad�
ditional line search on the scalar parameter ��

NUMERICAL SIMULATIONS

The following system parameters� shown in Table 
� were
chosen for the magnetic bearing example�

Table �� System parameters

Par� Value Par� Value

A 
��
�� mm� h 	� mm
G� ���� mm Jr ����� kg �m�

Ja ���
�� kg �m� � ��
� m
k 	�������� � 
�
 N 	�� turns
R 
	�� Ohm �� ��� � 
��� Wb

These parameters were taken from Mohamed and Busch�
Vishniac �
��� The rotor is expected to operate be�
tween pmin � �
� rad�sec ��
 ��� rpm� and pmax �


 
�� rad�sec �
�
 ��� rpm�� For this system� an imbalance

�
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Fig� 	� Closed loop frequency response of LPV con

troller�

of �d � 
��� 
���m is assumed in Eq� �
��� To meet the control
design requirements� two shaping �lters Wu�s� and Wz�s� are
added to the performance measure for the H� synthesis as in
Eq� ����� The following �lters were chosen after some trial and
error

Wu�s� � 
��
�
s� 
���

s � 
����

	�
I�
 Wz�s� � ���� I�

The zero at 

 ��� rad�sec adds an increased penalty to con�
trol e�ort at frequencies beyond the expected operating speed by
rapidly decreasing the controller bandwidth with roll�o� �	�dB�
The pole at 
�
 ��� rad�sec is included to make the augmented
plant proper� a requirement for the synthesis software� Given the
system data Aau� B�au� B�au� C�au� D��au� C�au as in Eqs� ��	�
a controller was computed using Eqs� ����� ����� ��� and �����
The actual calculations were performed using the Lmi toolbox
of Matlab �Gahinet et al�� 
��� The results are plotted in
Figures ����
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Fig� �� Output response of LPV controller�
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Fig� � Output response of H� controller�

Figure � shows the closed�loop singular value plots from
the disturbance to the plant output for eight di�erent operat�
ing speeds ��
�
 	��
 ���
 ���
 ���
 ���
 �� and 

�� rad�sec��
Figure � shows the output response to sinusoidal synchronous
disturbance� The controller successfully rejects the sinusoidal
disturbance over all speeds�

For comparison� we have have also calculated a standard �not
gain�scheduled� H� robust controller for a constant speed "p �
��� r�s� �This is the geometric mean of pmin and pmax�� The
corresponding results are shown in Figures � and �� The �xed�
speed controller cannot handle very well operating points away
from the design speed "p�

CONCLUSIONS

In this paper we apply the recently methodology of self self�
scheduled H� controllers to a magnetic bearing supporting a
rotating rigid shaft� The controller is naturally gain�scheduled
on the angular velocity of the rotor and provides �sub�optimal

�



disturbance attenuation to external forces and to alleviate the
e�ect of gyroscopics over all operating speeds� Moreover� the re�
sulting controller is guaranteed to be stabilizing over the whole
range of speeds� The main advantage of this method is the abil�
ity for casting the controller synthesis problem in terms of linear
matrix inequalities which can be solved very e�ciently using
existing convex optimization packages� Finally� in light of Re�
mark 
 the self�scheduled procedure can also be used for plants
with nonlinear dynamics of the form �x � A�x�x � Bu as long
as some a priori knowledge of the system state response is avail�
able� If� for instance� one knows that the state trajectories of the
system do not leave a certain polytope P� one can treat them
as parameters and apply the results of �Apkarian and Gahinet�

�� and �Apkarian et al�� 
��� This requires� of course� that
the states entering the A matrix are measurable on�line�
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