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ABSTRACT

In this paper we present a design procedure for disturbance
attenuation with internal stability of a rotor supported by mag-
netic bearings, over the whole interval of the rotor operating
speeds. The nonlinear gyroscopic equations can be simplified
to a set of linear, time-varying differential equations, owing to
the linear dependence of the rotor speed in the plant dynam-
ics. For rotors operating in high speeds, even small unbalanced
masses can create large synchronous disturbances. To alleviate
the forces produced due to imbalance the controller automati-
cally balances the rotor for each operating speed. The proposed
methodology addresses both the gyroscopic compensation prob-
lem due to change of the rotor speed as well as the automatic
balancing problem. The approach is based on the recently de-
veloped theory of self-scheduled H controllers. Owing to the
linear dependence of the equations on the rotor speed, the com-
putation of the controller can be done very efficiently using con-
vex optimization and Linear Matrix Inequalities (LMIs).

NOMENCLATURE

A area of each pole

Co convex hull

FEy nominal voltage

7 external force in body frame
nominal force

nominal gap

axial moment of inertia
radial moment of inertia
mass of the rotor

number of coil turns
parameter polytope

coil resistance
n-dimensional vector space
system matrix polytope

T

external torque in body frame
velocity of center of mass in body frame
e; voltage across the jth coil
fi; magnetic forces

g; gap length of jth coil

h pole width

£ half the length of the shaft

p rotor speed
®y nominal airgap

v disturbance attenuation level

# angular displacement about Y axis
fto permeability of free space (47 x 1077 H/m)
¢ angular displacement about Z axis

¢; airgap magnetic flux of jth coil

¥ angular displacement about X axis

w angular velocity in body frame

INTRODUCTION

Magnetic bearings (MB) increasingly become the choice for
high-speed, high-performance rotating machinery because of
their frictionless characteristics. They utilize a magnetic field
generated by radially or axially placed electromagnets to gener-
ate the forces necessary to suspend and support a shaft without
any contact with its environment. Thus, magnetic bearings are
particularly useful in very high or very low temperature condi-
tions where a lubrication-free environment is necessary. The ad-
vantages of magnetic bearings are primarily their very low power
consumption (an order of magnitude lower than oil film bear-
ings) and their very long, maintenance-free life. Some applica-
tions where magnetic bearings offer distinct advantages are high
speed turbomachinery, precision milling spindles, and combined
attitude control and energy storage for spacecraft and satellites.

Active magnetic bearings can support rotors without friction
but they require a sophisticated control system, since the un-
controlled magnetic bearing configuration is open-loop unstable.



Although the addition of a controller is indispensable to the mag-
netic bearing design (complicating the overall design), it offers
the ability of meeting specific performance requirements such as
automatic balancing of the shaft, rejection of unwanted distur-
bances, and vibration isolation. Several control methodologies
(both in frequency and time-domain) have been successfully used
in the past for active control of magnetic bearings. Most of these
techniques assume a linear time-invariant (LTT) plant. Such an
assumption is valid if the rotor is to operate at a fixed speed.
If, on the other hand, the speed of the rotor changes over a
wide range, the linear time-invariant assumption may no longer
be valid because the dynamics of the magnetic bearing change
when the rotational speed varies. Control techniques from linear
robust control theory (Mohamed and Busch-Vishniac, 1995; Fu-
jita et al., 1993b; Fujita et al., 1993a) and adaptive control meth-
ods (Knospe et al., 1995; Shafai et al., 1994) have been used to
attack this problem. Robust control methodologies can be, how-
ever, overly conservative for this problem, since they do not take
into account the actual time variation of the rotor speed.
Another approach is a control strategy that exploits avail-
able measurements of the speed to increase the performance and
robustness of the closed-loop system. In this paper we use the
recently developed methodology of gain-scheduled (better, self-
scheduled) Ho, controllers for linear parameter varying (LPV)
systems to attack this problem (Packard, 1994; Becker et al.,
1993; Apkarian and Gahinet, 1995; Apkarian et al., 1995). The
idea behind this design technique is to solve a series of standard
Ho problems at a specified number of operating speeds. Using
a single Lyapunov function to show stability and finite £2-gain
at these selected points, one guarantees that these properties
will also hold for all operating speeds which are linear combina-
tions of the selected speeds. One can then interpolate between
these speeds to construct the desired controller. Performance
objectives (such as overshoot, disturbance rejection, robustness
to unmodeled dynamics, etc.) can be effectively incorporated in
this framework. The main ingredient that makes this approach
computationally attractive is the linear dependence of the system
matrix on the operating speed and thus, the controller can be
designed by solving a set of Linear Matrix Inequalities (LMIs).

MAGNETIC BEARING MODEL

The magnetic bearing configuration considered in this paper
is shown in Fig. 1. Four pairs of electromagnets are used to
suspend and control the rotor. In Fig. 1 only the two pairs of
electromagnets in the X — Z plane are shown. Two more pairs,
lying in the Y — Z plane, are not shown in the figure.

The general motion of the rotor system is one of a rotating
rigid body

v .

M=+ MaxV = F (1)
i . - .
W—i—wa = T (2)

where M is the total mass of the rotor, V is the velocity of the
mass center, @ is the angular velocity of the mass center, H is

the angular momentum in body frame, and F and T are the total
external force and moment about the mass center. The angular
velocity vector in body coordinates has components wi, w2, ws

fr4
Fig. 1: Magnetic bearing configuration.
given by
w1 ésin(b—l—z/}.coscb
way | = | fcos¢ —ysing (3)
w3 ¢+ Psinb

where ¢, 6 and 9 are angles denoting the orientation of the body-
fixed frame about the axis 7, the ¥ and X axes respectively
(3-2-1 Euler angles).

In this paper we are interested only in the rotational motion
of the bearing about the X and Y axes. The translational mo-
tion can be treated the same way, but the equations become more
complicated. The following assumptions will be made through-
out the paper: the rotor is assumed to be rigid; the rotor speed
can be measured in real-time; the motion of the rotor along its
longitudinal axis is negligible; all electromagnets are identical.

Since the angular deviations ¢ and 6 are typically very small,
we have cosf ~ 1 and sin 6 ~ 0 and Egs. (3) simplify to

w1 cos¢ sing 0 1/J
w2 | =| —sing cosd O 0 (4)
w3 0 0 1 ¢

Substituting w; and wy from the previous equation in Eq. (2)
one obtains

WP Ja 0 1 WP _ Y4 My
[é]“’f[—l 0][é]‘I[M9] (5)
where J, 1s the moment of inertia of the rotor in the axial di-
rection, J, is the moment of inertia in the radial direction, and
p=ws = (;5 is the rotor angular velocity. Let the magnetic forces
produced by the magnetic bearings on the rotor be denoted by
Jr1, fro, fra, fra, fun, fiz, fiz, fis. The body torques My and Me

are related to the inertial torques through the equation

[Mw]_[ cos ¢ Sin¢][fr1—fr2+f12—fl1+fde
My | = | —sing cos¢ fra — fra + fia — fiz + fau

In the previous equation fqs and fgy represent disturbance forces
caused by gravity, modeling errors, imbalances, etc. Rotor im-
balance, in particular, is a common source of vibration in mag-
netic bearing design.

The rotational motion of a magnetic bearing can finally



be described by the equations (Mohamed and Busch-Vishniac,
1995)

(frl fro+ fiz — fu1 + fas)

pJ
Jr

In order to complete the bearing model we also need the
equations which describe the electromagnetic circuit of the coils.
The voltages e; across the jth coil are functions of the airgap
magnetic flux ¢; and the gap length g; and can be expressed as
follows

12;:

(fr3 fra+ fuu — fiz + fay)

do, | 2R
dt " AN

Here N is the number of turns in each coil, R is the coil resis-
tance, and A is the area of each pole. Note that the electromag-
netic forces f; depend nonlinearly on the airgap flux and the gap
length as

L:kﬁ(1+§ﬁ) J=rl, .., 4,11, 14
wh

where k 1s a constant and h is the pole width. The electro-
magnets generate a nominal force Fy which — in the absence
of disturbances and modeling errors — balances the rotor. In
this configuration, the nominal airgap flux, gap length and volt-
age are given by ®o,Go and Fy, respectively. Assuming that
8f;,6¢5,6g; and be; denote the deviation of the force, airgap
flux, gap length and electromagnetic voltage from their nomi-
nal values and that the coil voltages are controlled such that
beras = —ber1, bers = —bers be;p = —beq1, beln = —beys we can
write the linearized equations as follows

e; =N g;%;, J=rl, .., r4 11, . 14

. Y
6 = J—(—4CQZ9 + 2c1¢6 + v1) (7a)
. ] Y
b = 1} T(—tety + 206y +02)  (TH)
Néo = eo+2d200 —digo (7c)
Noy = ey+2dalt) —digy (7d)
where ¢o = 6¢r1 — 6011, ¢y = bz — 8¢z, €6 = bep — ben,
and ey = ber3 — bey3. The constants ci1,c¢2,di,ds depend on
$o,Go, R, A, N, po and the geometry of the bearing as follows

c1 = 2]@@0 (1 —|— %) yC2 = Trh ,d1 = i?fﬁ,,dQ = i?jﬁ, (FOI a
more detailed exposition the interested reader may consult Mo-
hamed and Busch-Vishniac (1995) and the references therein).

Letting now x1 = €0, x2 = {p, x5 = 00, x4 = {3, x5 = oo,
Tg = ¢y U1 = €, U2 = €4, V1 = fas, v2 = fqy the linearized
equations of the magnetic bearing can be written in state-space
form as follows

$.1 = T3 (8&)

$.2 = T4 (8b)

. 4 Ja 1

Bo = — 2o 4 ptag 4 —x5 +—n (8¢c)
m Jr m

. 4 Ja 1

Ty = —ﬁm —p—um3 + —x6 + —u (8d)
m Jr m

. 1

s = N(’IM —|— 2d2$1 — d1$5) (86)

. 1

Te = N(UQ —|— 2d2$2 — d1$6) (8f)

where m := JT/Z2. In these equations wi, uz represent the con-
trol inputs (electromagnetic voltages) and v, v2 represent unde-
sirable disturbances.

Remark 1 The original, nonlinear rotational equations of the
rotor system including the gyroscopic terms in Eq. (2) can be
written in the form

o= Aww+ M (9)

where the matrix A(w) is a linear function of the state. The in-
teresting observation here is that w3 is completely determined by
¢ which can be measured in real-time and it is, therefore, known.
Since the time history of ws is given, this nonlinear system be-

comes, in fact, a linear, parameter-varying system (Shamma and
Athans, 1991; Becker et al., 1993; Packard, 1994).

PROBLEM FORMULATION

Our objective is to design a feedback controller that will
achieve automatic balancing of the rotor over all rotor speeds.
By automatic balancing we mean that no unbalance forces are
transmitted from the rotor to the stator. Automatic balancing is
desirable for rotor operation in vibration-free environments, such
as flywheel systems onboard high-precision pointing satellites or
spacecraft performing microgravity experiments. Elimination of
the forces between the rotor and the stator can be achieved by
allowing the rotor to rotate about its inertial axis. In Eqgs. (8)
z1 and 72 then denote deviations of the axis of rotation from the
inertia axis of the rotor (see Fig. 2).
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—
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Fig. 2: Rotor unbalance.

The purpose of the controller is to drive the displacements
#1 and x2 (equivalently, the angular deviations 6 and %) to zero
using moderate control effort. We assume that the only available
measurements the controller has at its disposal are the Y and
X displacements of the shaft 1 = £6 and x> = €4, respectively.
The unbalance response of the rotor is modeled as a sinusoidal
signal measured by the sensors (Mohamed and Busch-Vishniac,
1995)
wi = d cos

i+ 7) (10a)
in(pt+7) (10b)

wy = ds

where d is the magnitude of the unbalance and 7 corresponds
to some initial phase angle. No other forces act on the system



except the electromagnetic forces. Under this assumption the
system equations can be rewritten compactly in the form

& = A(p)z+ Bau (11a)
y Cor 4+ w (11b)

where ¢ = [CB1,1}2,1}3,$4,$5,1}6]T € IR® w = [un w2]T € IR? and
u = [u uQ]T c ]R2, and where the state matrices are given by

0 0 1 0 0 0
0 0 0 1 0 0
_4cg 0 0 pJa 2¢y 0
m Jr m
A(p) = 0 —i2 _plk 0 2c; (12)
2d " " d ™
%0 0 0 a0
0 ~ 0 0 0 -
By =~ [ ex2 =11 O ] (13)
N Ip ’ %
In Eq. (11) y = [11 y2]T € IR? is the measured output available
to the controller.
Controller Plant
r o, e u C,x
- error control system
signal signal output
Yy
+¥, w
-——
sensor signal sinusoidal
sensor
disturbance

Fig. 3: Block diagram of system interconnection.

The regulated output is

5= [ CZ’E ] (14)

and includes a penalty on the actuator effort. The matrix A(p)
is affine in the parameter p and can be written in the form

A(p) = Ao+ pA, (15)

where Ap and A, are easily obtained from (12).

Given the plant Egs. (11) and (14) our objective becomes
then one of designing a controller that will reduce the map from
w to z as much as possible; and at the same time, will guaran-
tee asymptotic stability (in the absence of any external distur-
bances). To this end, notice that if the angular velocity of the
rotor p were fixed, then the system in Eqs. (8) is a linear time-
invariant (LTT) system and the previous disturbance attenuation
problem can be conveniently cast as an H., optimization prob-
lem. For the case of a rotor with changing operating speed, p is
not fixed and Eqgs. (8) represent a linear time-varying (LTV) sys-
tem. Ho controllers for linear time-varying systems have been
reported in (Ravi et al.,, 1991). From a practical point of view,
however, the implementation of such controllers is demanding.
They require the solution of a system of matrix Riccati differen-
tial equations.

Although p is, in general, time varying, it is also measurable
on-line. This implies that the system (8) has the form of a linear
parameter-varying (LPV) system (Shamma and Athans, 1991).

Linear parameter varying systems differ from general linear time-
varying systems in the sense that the time variation of the system
matrix is not known a priori but the actual time variation can be
determined from parameter measurements which are available in
real time. Therefore, knowledge of p can be used for controller
design. In particular, p can be used to adjust the controller gains
on line, i.e, it can play the role of a gain-scheduling parameter.

BACKGROUND THEORY

In this paper we use the methodology of Apkarian et al.
(1995) and Apkarian and Gahinet (1995) in order to design self-
scheduled LTT controllers (with respect to the parameter p) for
the magnetic bearing system described by Eqgs. (11). To this
end, consider a general polytopic linear parameter-varying sys-

tem (LPV) of the form
P o= Alp(t)a + Bp(o)u (162)
y = Cl@)z+ D(p(t)u (16b)
whose system matrices are fixed affine functions of some time-

varying parameter vector p(t) which takes values in a polytope
P of vertices p1,p2, ..., Pr; that is,

T T
P = Co{p1,p2,...,pr} = Zaiﬁi o >0, Zai =1
=1 =1

where Co{-} denotes the convex hull. Owing to the affine depen-
dence of the system matrices A(p), B(p), C(p) and D(p) on the
parameter p, these matrices range in a matrix polytope, whose
vertices are the ones calculated at the vertices of the parameter
polytope P.

A useful indication of performance for LPV systems is the
notion of quadratic H, performance (Apkarian et al., 1995).

Definition 1 (Quadratic H., performance.) The LPV sys-
tem in Eqgs. (16) is said to have quadratic Hoo performance v if
and only if there exists a positive definite matrix X > 0 which
satisfies the following linear matrix inequality (LMTI)

AT (p)X + XA(p) XB(p) C"(p)
BT(p)Xx —~I  DT(p) | <0 (17)
C(p) D(p) I

for all values of the parameter vector p € P.

Quadratic Ho performance guarantees global asymptotic
stability and L2-gain of the map from « to y less than v

Il < vllull2 (18)

for all possible parameter trajectories p(t) € P. Therefore,
quadratic He, performance establishes internal stability and ro-
bust performance in the sense of inequality (18).

Remark 2 Quadratic H performance is a more conservative
notion than standard H., performance for each fixed p, since it
requires the existence of a fized (parameter-independent) Lya-
punov function for the entire operating range. Quadratic Heo
performance does incorporate, however, a constraint on the in-
duced L3-gain of the system via the inequality (18).

In general, it is not an easy task to check the existence of a
matrix X such that the inequality (17) will be satisfied for all
admissible parameter values p in an arbitrary set. In the case
of polytopic LPV systems, however, it is easily shown that (17)
will hold for all A(p), B(p),C(p), D(p) for some fixed X if and



only if it holds at the vertices A;, B;, C;, D; for i =1, ..., (Boyd
et al., 1994). Based on this observation Apkarian and Gahinet
(1995), and Apkarian et al. (1995) developed a computationally
efficient algorithm for the solution of the quadratic Ho perfor-
mance problem for LPV systems.

SELF-SCHEDULED CONTROLLERS

In this section the synthesis problem for polytopic LPV sys-
tems is reviewed. We consider (polytopic) LPV systems of the
form

& = A(p)r+ Bi(p)w + Ba(p)u (19a)
z = Ci(p)s+ Dii(p)w + Di2(p)u (19b)
y = C(p)z+ Da(p)w+ Daz(p)u (19¢)

The system matrices are assumed to belong to the polytope &

defined by

Ai B B
S§:=Co Cii Dii D |,i=1,..,r (20)

Coi Dari Daas
where A;, B1j,..., denote the values of the matrices
A(p), B1(p), ... at the vertices p; of the parameter polytope P.

Henceforth we will assume that in Eqs. (19) the system matrices
Ba(p), C2(p), D12(p) and D21(p) are parameter-independent. In
addition, the disturbance does not affect the performance output
and there is no feedthrough term from the input to the measured
output, i.e., D11(p) = D22(p) = 0. These simplifying assump-
tions can be relaxed, at the expense of increased complexity in
the resulting formulas (Apkarian et al., 1995).

Under the natural assumption that the pairs (A(p), Bz)
and A(p)T,Cf) are quadratically stabilizable over the poly-
tope P (see Corless (1993) for a definition of quadratic stabil-
ity /stabilizability) we seek a controller that establishes quadratic
Ho performance for the closed-loop system. In particular, we
are interested in LPV controllers, that is, controllers with state
space representation

o= ( oxts) D) ) 2y

where Ax,Bx,Cr,Dx are affine in p. The closed-loop system
can be compactly written in the form

thl = Acl(p)xcl + Bcl(p)'w (22&)
z = Ccl (P)ﬁcl + Dcl(p)w (22b)

where Aq(p) = Ao(p) + Bﬂ(p)é, Bcl(p)~ = By + BQ(p)D21
Cu(p) = Co + D1292(p)C Du(p) = D11 + D129(p) D21 and
0

= (40 ) e () e ()

Co=(C 0), B:(O 32),

o=(&B). pamt o)

In the previous equations k is the order of the controller
(k < n). The important observation here is that the controller
is uniquely characterized by €(p) which enters the closed-loop
equations in an affine way. Moreover, since both €(p) and Aq(p)
depend affinely on p, the closed-loop system (22) also depends

affinely on the parameter p. This observation leads us to the
following result (Apkarian et al., 1995).

Theorem 1 Consider the polytopic LPV plant (19) and let N'r
and N denote bases of the null spaces of the matrices (BQT, D1T2)
and (Cz, D31) respectively. There exists an LPV controller guar-
anteeing quadratic Hoo performance v along all parameter tra-
jectories in the parameter polytope P if and only if there exist
two symmetric matrices R and S in IR™*™ satisfying the system

of 2r +1 LMIs

N 1o\ A;R+ RAT Rcl | B
( OR 1) CiiR —~T | Dui | x
B, Diy | =1

(ASR ?)<0, i=1,...,r (23)

N 1o \? ATS 154, 8By | COF
( T ) BLS —I | D, | x
Cy, D | =1
Ns | o .
( 0 I)<0 i=1,...,7 (24)
R I
( Ja ) 20 (25)

Moreover, there exist a kth-order LPV controller solving the
same problem if and only if R and S satisfy, in addition, the
rank constraint

rank(I — RS) <k (26)

Once the matrices R and S have been found, the Lyapunov
matrix X.; and the vertex controllers €2; are obtained as follows:

Controller Synthesis

Step 1 Compute full-rank matrices M, N € IR"** such that
MN" =1—-RS (27)

Step 2 Compute X; as the unique solution to the matrix equa-
tion Il = X ,II;, where

H212<A}ST é), H1Z:<é AfT) (28)

Step 3 Compute the vertex controllers €2; by solving the convex
feasibility problem

Az;(ﬁz)Xcl + XclAcl(ﬁi) Xcchl(ﬁi) Cg;(ﬁz)

Ba(pi)Xa -yl Da(pi) | <0 (29)
Car(pi) Dei(pi) -1
fore=1,2,...,r, where now X is known.

If Eq. (29) holds, a possible choice of an LPV controller is



the polytopic controller given by
- - Arxi Bri
Qp) = Zaiﬂi = Zai ( Ci"i D;’i ) (30)
=1 =1
where (a1, ...

, ) is any solution of the convex decomposition
problem p =57

. o;Pi.

=

MAGNETIC BEARING APPLICATION

In this section we apply Theorem 1 to the magnetic bearing
system as described by Egs. (11) and (12)-(13). Our first objec-
tive is to formulate the equations of the magnetic bearing/rotor
system as in Egs. (19). There is only one parameter here (the
rotation speed of the shaft) which 1s assumed to be between pmin
and pmax. Therefore the polytope P in this case is simply the
line segment P = {p : pmin < P < Pmax}-

For the automatic balancing problem, the state-space realiza-
tion of the magnetic bearing/rotor system is given by Egs. (11)-
(13). A state-space realization of the disturbance in Eq. (10) is
given by

Aw=[2 _{)’], sz[é], Co=1I (31)
The noise w is then given by

Gw = Aww—+ Bud (32)

w = Cuzy (33)

This model is easily incorporated into the system since the ma-
trix A, is affine in p. The augmented system is formed as

Ctau = Aau(p)xau + Blau(i‘i' B2auu (343)
z = Clau%au + Disauu (34b)
Y = C2auxau (34C)
with T4, = [ xx ] and

Alp 0 B
Aau(p) = |: E) ) Aw(p) :| ’ Boou = |: 0252 :| (35)

_ [ Oex1 _ Cy  O2x2
Blau — |: Bw :| 3 Clau — |: 02><6 02><2 :| (36)

0

Coqu = [02 Cw], Disau = |: 2]22 :| (37)

The parameter p contributes both in the plant system matrix due
to gyroscopic effects, as well as in the synchronous unbalance
disturbance model. Note that the augmented system matrix
Aau(p) is still affine in p. The performance measure z consists
of the control effort of the X and Y actuators and the axial
displacements in the X and Y directions. This model can be
further refined through the addition of output shaping filters as
follows

z = diag(W.(s), Wu(s))z (38)

The filters W, and W, can be used to place constraints on the
control « and on the plant output Cyz. The complete system is
shown in Fig. 4.

Zero steady-state error from the command input r, can be
accommodated, if necessary, by adding an integrator at the

z | [y z W[y I d
<_|_ z W 1 ] ¢ <—I—I
| u W
| P s
| - |
| |
| |
e ]
Y u

Fig. 4: Block diagram of H. system

controller input (not considered here and hence not shown in
Fig. 4). Once in this format, and given a disturbance atten-
uation level v, the computation of a feasible controller is de-
termined by the solution of the five LMIs in Egs. (23)-(25) for
i =1,2, where A1 = Aqu(Pmin), A2 = Aau(Pmax). The solution
of these equations will provide two controllers €2; = Q(pmax)
and Q2 = Q(pmax) at the vertices of P. Writing for any
Pmin < P < Pmax One obtains

p= (M) Prnin + (m) Prmax (39)
Pmax — Pmin Pmax — Pmin

Thus, o1 = (ﬁ) and ap = (ﬁ) in Eq. (30).

For every operating speed the self-scheduled Ho, controller is
therefore computed by

Qp) = A1(Prain) + @2(Praax) (40)

The methodology of the previous sections establishes the fea-
sibility of a self-scheduled controller for some prescribed perfor-
mance attenuation level v. By decreasing v until the feasibility
problem is not solvable we can in fact solve the disturbance at-
tenuation (sub)optimal problem: we can find the self-scheduled
controller which gives the best quadratic Hs performance for
the magnetic bearing. This minimization problem only slightly
increases the computational burden since it involves only an ad-
ditional line search on the scalar parameter «.

NUMERICAL SIMULATIONS

The following system parameters, shown in Table 1, were
chosen for the magnetic bearing example.

Table 1: System parameters

| Par. | Value || Par. | Value
A 1531.79 mm? h 40 mm
Go 0.55 mm T, 0.333 kg - m°
Ja 0.0136 kg - m? £ 0.13 m
k 4.6755576 x 10° N 400 turns
R 14.7 Ohm By | 2.09 x 107 Wb

These parameters were taken from Mohamed and Busch-
Vishniac (1995). The rotor is expected to operate be-
tween pmin = 315 rad/sec (3,000 rpm) and pmax =
1,100 rad/sec (10,500 rpm). For this system, an imbalance
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Fig. 5: Closed loop frequency response of LPV con-
troller.

of d = 1.3 x 10™°m is assumed in Eq. (10). To meet the control
design requirements, two shaping filters W, (s) and W.(s) are
added to the performance measure for the H. synthesis as in
Eq. (38). The following filters were chosen after some trial and
error

2
W (s) = 100 ( s + 1500 ) 2,

s 410000

The zero at 1,500 rad/sec adds an increased penalty to con-
trol effort at frequencies beyond the expected operating speed by
rapidly decreasing the controller bandwidth with roll-off —40dB.
The pole at 10,000 rad/sec is included to make the augmented
plant proper, a requirement for the synthesis software. Given the
system data Aqu, Brau, B2au, Crau, D12au, Coau as in Egs. (34)
a controller was computed using Eqs. (27), (28), (29) and (30).
The actual calculations were performed using the LMI TOOLBOX
of MATLAB (Gahinet et al., 1993). The results are plotted in
Figures 5-6.

W.(s) = 5000 I

1 T T T T T T T T

X1 & X2 (m)

6 i i i i i i i i i
0 0.02 0.04 006 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time (sec)

Fig. 6: Output response of LPV controller.
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Fig. 7: Closed loop frequency response of H., controller.
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Fig. 8: Output response of H. controller.

Figure 5 shows the closed-loop singular value plots from
the disturbance to the plant output for eight different operat-
ing speeds (315, 426, 538, 650, 763, 875, 987 and 1100 rad/sec).
Figure 6 shows the output response to sinusoidal synchronous
disturbance. The controller successfully rejects the sinusoidal
disturbance over all speeds.

For comparison, we have have also calculated a standard (not
gain-scheduled) H, robust controller for a constant speed p =
587r/s. (This is the geometric mean of pmin and pmax.) The
corresponding results are shown in Figures 7 and 8. The fixed-
speed controller cannot handle very well operating points away
from the design speed p.

CONCLUSIONS

In this paper we apply the recently methodology of self self-
scheduled Ho controllers to a magnetic bearing supporting a
rotating rigid shaft. The controller is naturally gain-scheduled
on the angular velocity of the rotor and provides (sub)optimal



disturbance attenuation to external forces and to alleviate the
effect of gyroscopics over all operating speeds. Moreover, the re-
sulting controller is guaranteed to be stabilizing over the whole
range of speeds. The main advantage of this method is the abil-
ity for casting the controller synthesis problem in terms of linear
matrix inequalities which can be solved very efficiently using
existing convex optimization packages. Finally, in light of Re-
mark 1 the self-scheduled procedure can also be used for plants
with nonlinear dynamics of the form z = A(x)x + Bu as long
as some a priori knowledge of the system state response is avail-
able. If, for instance, one knows that the state trajectories of the
system do not leave a certain polytope P, one can treat them
as parameters and apply the results of (Apkarian and Gahinet,
1995) and (Apkarian et al., 1995). This requires, of course, that
the states entering the A matrix are measurable on-line.
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