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Abstract

In this paper, we consider the minimum-time reorienta-
tion problem of an axi-symmetric rigid spacecraft with
two independent control torques mounted perpendicu-
lar to the spacecraft symmetry axis. The spacecraft is
allowed to spin about its symmetry axis. All possible
control structures, including both singular and nonsin-
gular arcs, are studied completely by deriving the corre-
sponding formulae, and the necessary optimality condi-
tions. An efficient method for solving the optimal con-
trol problem numerically, based on a cascaded compu-
tational scheme, is also presented. Numerical examples
demonstrate optimal reorientation maneuvers with both
nonsingular and singular subarcs.

1. Introduction

In recent years, the time-optimal reorientation problem
of a rigid spacecraft has been extensively studied by
many researchers. In Ref. 1, the minimum-time atti-
tude slewing of a rigid spacecraft is considered. Quasi-
linearization is used to solve the Two-Point Boundary-
Value Problem (TPBVP) arising from Pontryagin’s Min-
imum Principle. An integral of a quadratic function of
the control inputs is used as the performance index in-
stead of the slewing time. The minimum slewing time
is determined by sequentially shortening the final time.
The corresponding fixed final time problem is solved un-
til the solution can no longer be obtained, or until all the
resulting controls are bang-bang. The Euler (eigenaxis)
rotation maneuver is used as the initial guess for the
numerical computation. Besides the fact that the bang-
bang solutions show that the minimum-time trajectories
are far from an eigenaxis rotation, numerical results also
make the authors suspect that singular controls may ap-
pear for a single principle axis rotation of a symmetric
body. The singular trajectory is then a rotation about a
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principle axis, i.e., an eigenaxis rotation. In their follow-
ing work2, the authors implemented their method to the
Naval Research Laboratory’s Reconfigurable Spacecraft
Host for Attitude and Pointing Experiment (RESHAPE)
three-axis maneuver facility. The results of these exper-
iments are presented in Ref. 2.

In Ref. 3, Bilimoria and Wie studied the time-optimal,
rest-to-rest, large-angle, principle-axis rotation of an in-
ertially symmetric rigid body. By solving the TPBVP
using a shooting method, they obtained a variety of bang-
bang controls which showed that the eigenaxis rotation
is not time optimal, in general. Singular controls are
considered only in the sense that all three controls can-
not be singular at the same time. Later, they extended
their work to an axi-symmetric body (with three con-
trol torques) and they also studied the principle axis
rotation4. The emphasis in this latter work is on exam-
ining how the gyroscopic terms in Euler’s equations af-
fect the minimum time. Comparing with the minimum
final time obtained for a system with the gyroscopic
terms dropped, they showed that the gyroscopic effect
increases the final time for a rod-like body and decrease
the final time for a disk-like body.

Seywald and Kumar5 extended the work in this area
by analyzing all the possible controls for a general mini-
mum-time reorientation problem of an inertially sym-
metric rigid body. An elegant derivation of all the possi-
ble controls, including bang-bang control subarcs, finite-
order singular control subarcs and infinite-order singular
control subarcs was developed. It was shown that for
rest-to-rest maneuvers, the eigenaxis rotation can appear
as a finite-order singular arc, but it is not optimal. It fol-
lows that an eigenaxis rotation can, in fact, appear as an
optimal infinite-order singular arc.

Scrivener and Thompson6 explored the minimum-
time reorientation of a rigid spacecraft numerically using
a direct method via collocation and nonlinear program-
ming. This method was first introduced by Hargraves
and Paris7. Instead of dealing with the necessary con-
ditions from Pontryagin’s Minimum Principle, the tra-
jectory is first discretized and the optimal trajectory is
found in the finite dimensional space of the states and
controls at each node using nonlinear programming. The
method is shown to be robust in the sense that it does not
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require accurate initial guesses. Scrivener and Thomp-
son applied this method to the time-optimal, rest-to-rest
maneuver of a rigid spacecraft. Comparison is made be-
tween their results and the ones in Ref. 4. The results
are consistent except the case when the maneuver has a
reorientation angle of less than 10deg. It turns out that
in this case – although the maneuver time is the same –
the switching structure is different indicating, possibly, a
multiple local minimum.

A few researchers have worked with a method called
Switching Time Optimization (STO). STO was origi-
nally proposed by Meier and Bryson8 to solve the time-
optimal control of a two-link manipulator. Byers9,10

used STO to solve the time-optimal rigid body reorienta-
tion problem. More recently, Liu and Singh11 addressed
the weighted time/fuel optimal control of an inertially
symmetric spacecraft performing a rest-to-rest maneu-
ver. The authors modified the STO method to determine
the switching times and total maneuver time of the bang-
off-bang control profiles. The results are compared with
those of Bilimoria et al. in Ref. 4. The effect of the
penalty on fuel in the cost on the number of switching
times is discussed and an interesting result is presented,
namely, as the fuel penalty is beyond a specific value, the
eigenaxis control with two switches is shown to be opti-
mal. An apparent drawback of STO is that the switching
structure, i.e., the number of switches and how the con-
trols switch, has to be guessed or known in advance.

In relation to the work in this paper, two articles are of
particular interest. First, Chowdhry and Cliff12 consid-
ered the time-optimal reorientation of a rigid body with
two control torques. The existence of singular subarcs
was also studied. However, the authors only consid-
ered the time-optimal control of rigid body angular rates,
i.e., they considered only the dynamics of the motion.
Hermes and Hogenson13 studied the same system as the
one in this work. They applied feedback linearization
to transform the system to two uncoupled linear double-
integrators. The time-optimal controls can then be cal-
culated explicitly14. The result is then transformed back
to the original space to obtain the explicit feedback con-
trol for the original nonlinear system. However, due to
the complex nonlinear relationship between the origi-
nal controls and the transformed ones, the controls for
the original system are not necessarily time optimal, as
pointed out by the authors themselves in their conclu-
sions. In addition, since a double-integrator system has
only one switch and no singular subarcs (and the feed-
back linearization transformation between the original
and the resulting systems is continuous), this method
leads to time-optimal controls for the original nonlinear
system with at most two switches and no singular sub-
arcs. This is shown not to be true in this paper.

In this paper, we address the time-optimal reorienta-

tion problem for an axi-symmetric rigid body. The pur-
pose of the control is to drive the symmetry axis from
some initial orientation, with some specified angular ve-
locity, to another final orientation, with specified angular
velocity. We assume that the relative orientation of the
body about the symmetry axis is irrelevant and only the
location of the symmetry axis is of interest. This could
be the case when the symmetry axis coincides with the
boresight or line-of-sight of a camera or a gun barrel, for
example. Clearly, the relative rotation of the camera or
the barrel has no influence on the clarity of the photo-
graph or the accuracy of the projectile. Spin-stabilized
spacecraft also fall into this category.

For the axi-symmetric case it turns out that the objec-
tive of optimal reorientation of the symmetry axis can
be achieved using only two torques about axes that span
the plane perpendicular to the symmetry axis. Therefore,
without loss of generality, we consider the time-optimal
reorientation of an axi-symmetric rigid spacecraft with
two control torques acting perpendicular to the symme-
try axis and to each other. The spacecraft may be spin-
ning about its symmetry axis with a constant angular ve-
locity. The main effort in this paper is devoted on analyz-
ing the formulae for the possible bang-bang and singular
control subarcs and the corresponding necessary condi-
tions.

2. Problem Formulation

Consider an axi-symmetric rigid body with two control
torques as shown in Fig. 1. Without loss of generality,
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Figure 1: Axi-symmetric rigid body with two controls.

a body-fixed reference frame b̂ � �b̂1� b̂2� b̂3� is defined
with the unit vector b̂3 pointing along the symmetry axis.
The control system generates two control torques T1 and
T2 along the b̂1 and b̂2 axis, respectively, as shown in
Fig. 1. Let ω � �ω1�ω2�ω3�

T � R 3 denote the angu-
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lar velocity vector in the b̂ frame, and I1� I2� I3 be the
moments of inertia with respect to the three axes just
defined. Then Euler’s equations15 with respect to this
frame take the form

I1ω̇1 � �I2� I3�ω2ω3 �T1 (1a)

I2ω̇2 � �I3� I1�ω3ω1 �T2 (1b)

I3ω̇3 � �I1� I2�ω1ω2 (1c)

Since I1 � I2, if we let the initial condition ω3�0� �ω30,
ω3 will remain constant throughout the maneuver, and
the equations reduce to

ω̇1 � aω30ω2 �u1 (2a)

ω̇2 � �aω30ω1 �u2 (2b)

where a � �I2� I3��I1 and u1 and u2 are the new control
inputs given by ui � Ti�Ii� i� 1�2. Note that for physical
systems we always have that �1 � a � 1.

As it has been shown in Tsiotras and Longuski16, if
n̂� �n̂1� n̂2� n̂3� denotes the inertial reference frame, then
the position of the n̂3 inertial axis in the body fixed b̂
frame can be uniquely described by two variables w1 and
w2 which are defined as

w1 �
b

1� c
� w2 �

�a
1� c

(3)

where a, b, and c denote the direction cosines of axis
n̂3 with respect to b̂ frame, i.e., n̂3 � ab̂1 � bb̂2 � cb̂3.
It can be shown16 that w1 and w2 can be obtained by
stereographically projecting the unit vector n̂3 onto the
b̂1-b̂2 plane17. Moreover, w1 and w2 obey the following
differential equations16,17

ẇ1 � ω30w2 �ω2w1w2 �
ω1

2
�1�w2

1�w2
2� (4a)

ẇ2 � �ω30w1 �ω1w1w2 �
ω2

2
�1�w2

2�w2
1�(4b)

Given the system of Eqs. (2) and (4) we seek to mini-
mize the performance index

min
u�U

J � min
Z t f

t0
1 dt (5)

subject to the initial conditions

ω�0� � �ω1�0��ω2�0��T given

w�0� � �w1�0��w2�0��
T given

and final conditions

Ψ �ω�t f ��w�t f �� � 0 (6)

where Ψ : R 4 �� R k� k � 4 is a given smooth function
vector, and the control constraint set is given by

U � fu : juij � uimax� i � 1�2g (7)

with uimax � 0� i � 1�2�
This problem has the following physical interpreta-

tion. For an observer in the b̂ frame, the location of the
inertial n̂3 axis is given by w1 and w2. The time-optimal
control problem then consists of re-orienting the space-
craft to given relative locations of the n̂3 (expressed in
the body frame). We point out here that using Eqs. (2)
and (4) it is not possible to specify the absolute orienta-
tion of the spacecraft in the inertial frame. In particular,
it is not possible to know the relative orientation of the
spacecraft about the n̂3. That would require, of course,
a third attitude parameter to complement w1 and w2

16.
Applications where such “reduced” attitude information
may be sufficient is the case, for example, of reorienta-
tion of the symmetry axis of an axi-symmetric spacecraft
along a given direction.

3. Optimality Conditions

For simplicity, let the state vector �ω1�ω2�w1�w2�
T � R 4

be denoted by the vector �x1�x2�x3�x4�
T � R 4 and let

m � ω30. Then Eqs. (2) and (4) are re-written as

ẋ1 � amx2 �u1 (8a)

ẋ2 � �amx1 �u2 (8b)

ẋ3 � mx4 � x2x3x4 �
x1

2
�1� x2

3� x2
4� (8c)

ẋ4 � �mx3 � x1x3x4 �
x2

2
�1� x2

4� x2
3� (8d)

The Hamiltonian H for this problem is defined by

H � 1�λ1ẋ1 �λ2ẋ2 �λ3ẋ3 �λ4ẋ4

� 1�amλ1x2 �λ1u1�amλ2x1 �λ2u2

�mλ3x4 �λ3x2x3x4 �λ3x1�1� x2
3� x2

4��2

�mλ4x3 �λ4x1x3x4 �λ4x2�1� x2
4� x2

3��2

(9)

The co-state equations, defined by λ̇���∂H �∂x�T , are

λ̇1 � amλ2�λ3�1� x2
3� x2

4��2�λ4x3x4 (10a)

λ̇2 � �amλ1�λ4�1� x2
4� x2

3��2�λ3x3x4 (10b)

λ̇3 � �λ3x2x4�λ3x1x3 �mλ4�λ4x1x4 �λ4x2x3

(10c)

λ̇4 � �λ3x2x3 �λ3x1x4�mλ3�λ4x1x3�λ4x2x4

(10d)

with λ�t f � given by the transversality condition

λT �t f � � νT ∂Ψ
∂x�t f �

(11)

where ν � R k is a constant multiplier vector.
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From Pontryagin’s Minimum Principle14, the optimal
control u� is chosen such that the HamiltonianH is min-
imized, i.e.,

u��t� � arg min
u�U

H �x�t��λ�t��u�� � t � 0 (12)

Since both controls u1 and u2 appear only linearly in the
Hamiltonian H , the optimal control u�i is given by

u�i �

��
�

�uimax if λi � 0
�uimax if λi � 0 i � 1�2
singular if λi � 0

(13)

The transversality condition associated with the final
time t f is given by

H �t f � � 0 (14)

Equation (9) shows that the Hamiltonian H is not an ex-
plicit function of time t, hence H �t�� 0� for t � �t0� t f �.

4. Singular Control Analysis

Let Si� i � 1� 2 be the switching functions, defined by

Si �
∂H
∂ui

� i � 1�2 (15)

Here Si � λi� i � 1� 2. From Eq. (13), u�i is singu-
lar whenever Si � 0 during a nonzero interval �t1� t2� �
�t0� t f �. In this case the control component u�i is deter-
mined implicitly by the condition Si � 0. Indeed, u�i
can be obtained by differentiating Si� 0 until the control
component ui appears explicitly18. For u�i to be optimal,
it is required that Si be differentiated an even number of
times until the control ui appears19. Therefore, u�i can be
determined by solving

u�i � arg

��
d2kiSi

dt2ki

�
� 0

�
� i � 1�2 (16)

where 2ki is the least number of differentiations of Si that
are required so that the corresponding ui shows up. It is
also evident that the switching functions and their time
derivatives up to �2ki�1�th order are zero along the sin-

gular subarc �t1� t2�, i.e., Si � Ṡi � � � �� S�2ki�1�
i � 0� t �

�t1� t2�. In addition, Kelley’s optimality condition20,21

(also known as the Generalized Legendre-Clebsch con-
dition)

��1�ki
∂
∂ui

�
d2kiSi

dt2ki

�
� 0 (17)

has to be satisfied along an optimal singular subarc.
A complete analysis of all possible singular control

cases, i.e., with two and only one control being singular,
is presented in the following two subsections. Before

proceeding with this analysis, recall that Ṡ1 and Ṡ2 are
given by Eqs. (10a) and (10b), respectively, and that

S̈1 � am2λ1 �m�1�a�λ̇2��λ3x4�λ4x3�x2 (18a)

S̈2 � am2λ2�m�1�a�λ̇1� �λ3x4�λ4x3�x1 (18b)

Henceforth it will be assumed that m 	� 0 and a 	� 0,
namely, the rigid body is not inertially symmetric and
it is spinning about its symmetry axis with a nonzero
angular velocity ω3 � m. The cases a � 0 and/or m � 0
are treated separately in Section 5.

4.1. Case I: both u1 and u2 are singular

From Eq. (13), when both u1 and u2 are singular during
t � �t1� t2�� �t0� t f �, we have

S1 � λ1 � 0� S2 � λ2 � 0 (19)

which imply that

Ṡ1 � λ̇1 � 0� Ṡ2 � λ̇2 � 0 (20)

Substitution of Eqs. (19) and (20) into Eq. (9) yields

H � 1�m�λ3x4� x3λ4� (21)

and substitution of Eqs. (19) and (20) into Eq. (18)
yields

S̈1 � �λ3x4�λ4x3�x2� S̈2 ���λ3x4�λ4x3�x1 (22)

From Eqs. (3) and (21), we have that H � 0 implies that
�λ3x4� x3λ4� 	� 0. Thus, during the singular arc �t1� t2�
Eqs. (22) imply x2 � 0 and x1 � 0. Taking the third time
derivative of S1 and S2 and using Eqs. (8a) and (8b), we
get explicit expressions for controls u1 and u2. In partic-

ular, S�3�
1 � 0 implies that u2 � 0 and S�3�

2 � 0 implies that
u1 � 0. The control u2 appears in the third time deriva-
tive of S1 and u1 appears in the third time derivative of
S2. Since the controls appears after differentiating the
switching functions an odd number of times, the controls
are not optimal22,19.

The previous analysis has shown that the case when
both u1 and u2 are singular is ruled out. Nevertheless, a
more careful look reveals that this case may be very close
to optimal for large values of the spin-rate m. To this end,
recall that along a singular arc, the conditions λ1 � λ2 �
λ̇1 � λ̇2 � 0 should be satisfied. Thus, Eqs. (10a) and
(10b) imply that�

��1� x2
3� x2

4��2 �x3x4

�x3x4 ��1� x2
4� x2

3��2

��
λ3

λ4

�
� 0

(23)
Since �λ3�λ4� 	� �0�0� the previous coefficient matrix
must be singular. Calculating the determinant of this ma-
trix, one obtains that a singular arc with both u1 � u2 � 0
can occur if and only if x2

3 � x2
4 � 1.
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Using the fact that x1 � x2 � 0 we have that along a
singular arc the system equations are given by

ẋ3 � mx4 (24a)

ẋ4 � �mx3 (24b)

The solution of the previous system is given by
�

x3�t�
x4�t�

�
�

�
cosm sinm
�sinm cosm

��
x3�0�
x4�0�

�
(25)

Note that if x2
3�0�� x2

4�0� � 1 then x2
3�t�� x2

4�t� � 1 for
all t � 0. This implies that singular subarcs indeed ex-
ist for specific boundary conditions. From the defini-
tion of the state vector, x2

3 � x2
4 � 1 corresponds to the

case when the inertial n̂3 and the body b̂3 axes are per-
pendicular to each other. For an observer in the space-
craft frame, the inertial n̂3 axis rotates at a constant rate
ω3 � m rad/sec in the b̂1� b̂2 plane. Both initial and fi-
nal conditions correspond to different locations of the n̂3

axis in the b̂1� b̂2 plane. The singular solution suggests
letting the body coast from the initial to the final posi-
tion by a pure rotation about the b̂3 axis. This situation is
shown in Fig. 2. The time to complete the maneuver can

O

b̂1

b̂3

b̂2

n̂3�0�
n̂3�t f �

mt

Figure 2: Singular control maneuver (u1 � u2 � 0).

be calculated explicitly from Eq. (25). For example, in
case �x3�0��x4�0�� � �1�0� and �x3�t f ��x4�t f �� � �0�1�
one obtains that t f �

π
2m . The optimality conditions in

this section have shown that this maneuver is not opti-
mal. Indeed, simulations using the numerical scheme
described in Section 6 showed that a bang-bang solu-
tion consisting of one switch for each u1 and u2 gives
a better (smaller) final time. Table 1 gives the numeri-
cal results for uimax � 1, i � 1�2 and for initial and final
conditions as above. The results in Table 1 show that
the difference of the final time between the coasting ma-
neuver in Eq. (25) and the bang-bang solution becomes
smaller and smaller as the spin-rate m increases. This
agrees with our intuition. For this example, the two so-
lutions give essentially the same value of t f for m � 10
rad/sec. For values above m � 10 rad/sec numerical is-
sues prevented accurate calculation of the optimal tra-
jectory using EZopt (see Section 6 for a discussion on

Table 1: Comparison between singular and bang-bang
solutions

m (rad/sec) t f (singular) t f (bang-bang)
0.5 3.141592 2.328614
1.0 1.570796 1.507866
1.5 1.047197 1.038082
2.0 0.785398 0.783575
4.0 0.392699 0.392674
6.0 0.261799 0.261798

10.0 0.157080 0.157080
∞ 0 0

the numerical scheme used in this paper to calculate the
optimal trajectories). The results in Table 1 correspond
to an inertia parameter a � 0�5, but similar results were
obtained for other values of a. The conclusions are there-
fore generic regardless of whether the body is prolate or
oblate.

4.2. Case II: only u1 is singular

In the previous subsection, we have ruled out the possi-
bility that both controls u1 and u2 become singular at the
same time. This observation is in accordance with sim-
ilar results for the inertially symmetric case with three
controls5. In this subsection we will assume that only u1

is singular during some interval �t1� t2� � �t0� t f � while
u2 is bang-bang. From Eq. (13) we therefore have
S1 � λ1 � 0 which implies that along the singular arc,
Ṡ1 � λ̇1 � 0. Substitution of these two equations into
Eq. (18a) yields S̈1 � m�1�a�λ̇2��λ3x4�λ4x3�x2. Be-
cause the control u1 does not appear in the equation of
S̈1, we have to take the third derivative of S1,

S�3�
1 � am3�1�a�λ2�m�1�2a��λ3x4�λ4x3�x1 �

x1x2λ̇2 �amx2
2λ2 �u2�λ3x4�λ4x3� (26)

where we have made use of the fact that λ1 � λ̇1 � 0 and

d
dt

�λ3x4�λ4x3� � �amλ1 � λ̇2�x1 ��amλ2� λ̇1�x2 (27)

Again, the control u1 does not appear in the equation of

S�3�
1 , so we shall take the fourth derivative of S1. The

control u1 appears in S�4�
1 explicitly, i.e.,

S�4�
1 � A1 �B1u1 (28)

where A1 and B1 are the coefficients which are given by

A1 � �2a�a�1�2m3�2amx2
1�2amx2

2 �2x1u2�λ̇2�

�4a2m2x1�3amu2�x2λ2 (29a)

B1 � x2λ̇2�m�1�2a��λ3x4�λ4x3� (29b)
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and λ̇2 is given by Eq. (10b). From the discussion in
Section 4, the optimal singular control u1 is of second
order and is given by

u1 ��
A1

B1
(30)

Kelley’s necessary condition for optimality requires that

B1 � 0 (31)

Since the singular control is of second order, one can
explicitly calculate the singular surface, i.e., the mani-
fold in the state space where all trajectories with control
(30) have to live. To construct the singular surface S1,
recall that the following conditions have to be satisfied
along a singular arc,

λ1 � 0 (32a)

λ̇1 � amλ2�
1� x2

3� x2
4

2
λ3� x3x4λ4 � 0 (32b)

λ̈1 � ��m�1�a�x3x4 � x2x4�λ3�

�m�1�a�
1� x2

4� x2
3

2
� x2x3�λ4 � 0 (32c)

���

λ1 � �am3�1�a��amx2
2�λ2�

�m�1�2a�x1x4�u2x4 � x1x2x3x4�λ3 �

�m�1�2a�x1x3�u2x3� x1x2
1� x2

4� x2
3

2
�λ4 � 0

(32d)

These four equations are homogeneous in terms of the
four co-states λi� �i � 1� ����4�. Setting the determinant
of the coefficient matrix to zero, one obtains the singular
surface as S1 � fx � R 4 : detM1�x� � 0g where M1�x�
is the coefficient matrix from Eq. (32), i.e, M1�x�λ � 0.
The equation detM1�x� � 0 can be used in practice to
locate the beginning of a singular arc, without keeping
track of the co-state λ1. This is a significant simplifi-
cation of the control implementation, since the optimal
control law can be implemented in a feedback-form. As-
suming that the optimal switching structure is known,
one need not integrate the co-state equations in Eqs. (10).
Instead, it is enough to keep track whether the equation
detM1�x� � 0 is satisfied. Notice, however, that care
must be exercised when following this approach, since
the switching surface S1 has two branches due to the ap-
pearance of the control u2 �
u2max in Eq. (32d).

4.3. Case III: only u2 is singular

The same analysis as for the case when only u1 is singu-
lar can be repeated for u2 if only u2 is singular while u1

is bang-bang. In general, the optimal singular control is
of second order for u2 and is given by

u2 ��
A2

B2
(33)

where

A2 � ��2a�a�1�2m3�2amx2
1�2amx2

2 �2x2u1�λ̇1�

�4a2m2x2 �3amu1�x1λ1 (34a)

B2 � x1λ̇1�m�1�2a��λ3x4�λ4x3� (34b)

Kelly’s necessary condition for optimality requires

B2 � 0 (35)

The calculation of the singular surface S2 can be done
from the equations

λ2 � 0 (36a)

λ̇2 � �amλ1� x3x4λ3�
�1� x2

4� x2
3�

2
λ4 � 0 (36b)

λ̈2 � �m�1�a�
1� x2

3� x2
4

2
� x1x4�λ3 �

�m�1�a�x3x4 � x1x3�λ4 � 0 (36c)
���

λ2 � �amx2
1�am3�1�a��λ1�

�m�1�2a�x2x4 �u1x4 � x1x2
1� x2

3� x2
4

2
�λ3 �

�m�1�2a�x2x3 �u1x3� x1x2x3x4�λ4 � 0

(36d)

Setting the determinant of the coefficient matrix to zero,
one obtains the equation of the singular surface as S2 �
fx � R 4 : detM2�x� � 0g where M2�x� is the coefficient
matrix from Eq. (36), i.e, M2�x�λ � 0. Again, the sin-
gular control can be implemented in feedback form, but
care must be taken when following this approach since
S2 has two branches due to the appearance of the bang-
bang control u1 �
u1max in Eq. (36d).

5. Special Cases

In the discussion in the previous section, it was assumed
that m 	� 0 and a 	� 0. In this section, we will consider
two special cases when a � 0 and m � 0, respectively.
These two cases correspond to an inertially symmetric
rigid body and a nonspinning axi-symmetric rigid body,
respectively. For these cases, the equations are simpli-
fied significantly and a better insight is gained about the
optimal solution.

5.1. Inertially Symmetric Rigid Body �a � 0�

For an inertially symmetric rigid body, a � 0, and the
dynamics are simply

ẋ1 � u1 (37a)

ẋ2 � u2 (37b)

while the kinematics remain the same as given by Eqs.
(8c) and (8d). In this section, we assume that m 	� 0, i.e.,
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the rigid body has a nonzero angular velocity component
about the b̂3 axis. As before, we examine the three dif-
ferent cases separately.

5.1.1. Case I: both u1 and u2 are singular

In this case, as in Section 4.1, since both u1 and u2 are
singular, we have λ1 � λ̇1 � λ2 � λ̇2 � 0. The Hamil-
tonian then becomes H � 1�m�λ3x4 � x3λ4�. From
Eq. (18) the second derivatives of S1 and S2 yield S̈1 �
�λ3x4� λ4x3�x2 and S̈2 � ��λ3x4� λ4x3�x1. Since the
Hamiltonian has to be zero along the whole trajectory,
and since m 	� 0, one obtains �λ3x4 � x3λ4� 	� 0. Now
letting the second derivatives of S1 and S2 be zero yields
x2 � 0 and x1 � 0. Taking the third time derivative of S1

and S2 and letting them be zero we get u2 � 0 and u1 � 0.
As in Section 4.1, since the controls u1 and u2 appear in
the third time derivative of S1 and S2, these controls are
not optimal22.

5.1.2. Case II: only u1 is singular (u2 is bang-bang).

In this case, since u2 is bang-bang, we have x2 	� 0, ex-
cept possibly at some isolated points. The control u1 is
assumed singular, so we have λ1 � λ̇1 � 0, and follow-
ing the same approach as in Section 4.2 one obtains that
the singular control is of second order and given by

u1 ��
2x1u2λ̇2

x2λ̇2�m�λ3x4�λ4x3�
(38)

where

λ̇2 ��λ4
1� x2

4� x2
3

2
�λ3x3x4 (39)

Kelley’s optimality condition requires x2λ̇2�m�λ3x4�
λ4x3� � 0. Since in this case the Hamiltonian takes a
simple form

H � 1�λ2u2� λ̇2x2 �m�λ3x4�λ4x3� (40)

and since u2 ��u2maxsgn�λ2� we have

λ̇2x2�m�λ3x4�λ4x3� � 1�λ2u2 � 1�u2maxjλ2j (41)

so the Kelley’s optimality condition is equivalent to
u2maxjλ2j � 1. From Eqs. (38) and (41), we can see
that the optimal control u1 is only defined when jλ2j 	�
1�u2max except at some isolated points. In this case
λ̇2 	� 0, and since x2 	� 0, from Eq. (18a) S̈1 � 0 im-
plies that λ3x4 � λ4x3 	� 0. Thus λ3 and λ4 cannot be
zero at the same time. To construct the singular surface,
recall the following necessary conditions along the sin-
gular arc

λ̇1 � �
1� x2

3� x2
4

2
λ3� x3x4λ4 � 0 (42a)

λ̈1 � ��mx3x4 � x2x4�λ3�

�m
1� x2

4� x2
3

2
� x2x3�λ4 � 0 (42b)

���

λ1 � ��mx1x4�u2x4 � x1x2x3x4�λ3 �

�mx1x3�u2x3� x1x2
1� x2

4� x2
3

2
�λ4 � 0 (42c)

Since �λ3�λ4� 	� �0�0�, one gets the singular sur-
face as S1 � fx � R 4 : det�M1�x�T M1�x�� � 0g where
M1�x� is the coefficient matrix from Eq. (42), i.e.,
M1�x��λ3�λ4�

T � 0. It is possible that jλ2j � 1�u2max

during the singular arc and u1 is no longer defined in
Eq. (38). In this case, since λ2 is continuous14, ei-
ther λ2 � 1�u2max or λ2 � �1�u2max holds. Therefore,
λ̇2 � 0, and S̈1 � 0 implies λ3x4�λ4x3 � 0 since x2 	� 0.
From Eq. (18a), we can see that S�3�

1 automatically
equals to zero, and all higher order derivatives of S1 will
be zero identically as well. Therefore, the optimal con-
trol u1 is an infinite order singular control and it can be
chosen arbitrarily as long as the boundary conditions are
satisfied5. In this case, substitution of λ3x4� λ4x3 � 0
into λ̇1 � 0 and λ̇2 � 0 yields λ3 � λ4 � 0 during the
infinite order singular arc.

5.1.3. Case III: only u2 is singular (u1 is bang-bang).

This case is similar to Case II above. If jλ1j 	� 1�u1max

except possible at some isolated points, the optimal sin-
gular control u2 is second order and is written as

u2 ��
2x2u1λ̇1

x1λ̇1�m�λ3x4�λ4x3�
(43)

where

λ̇1 ��λ3
1� x2

3� x2
4

2
�λ4x3x4 (44)

Kelley’s optimality condition requires jλ1j � 1�u1max.
The singular surface can be calculated from the follow-
ing equations

λ̇2 � �x3x4λ3�
�1� x2

4� x2
3�

2
λ4 � 0 (45a)

λ̈2 � �m
1� x2

3� x2
4

2
� x1x4�λ3

��mx3x4 � x1x3�λ4 � 0 (45b)
���

λ2 � ��mx2x4 �u1x4 � x1x2
1� x2

3� x2
4

2
�λ3

��mx2x3 �u1x3� x1x2x3x4�λ4 � 0 (45c)

The singular surface is obtained as S2 � fx � R 4 :
det�M2�x�T M2�x�� � 0g where M2�x� is the coefficient
matrix from Eq. (45), i.e., M2�x��λ3�λ4�

T � 0. If
jλ1j� 1�u1max along the singular trajectory, the optimal
singular control u2 is of infinite order and can be chosen
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arbitrarily as long as all the boundary conditions are sat-
isfied. In this case necessarily λ3 � λ4 � 0 during the
singular arc.

5.2. Nonspinning Axi-Symmetric Rigid Body �m� 0�

If the body is not spinning, i.e., m � 0, then the system
equations are simplified as

ẋ1 � u1 (46a)

ẋ2 � u2 (46b)

ẋ3 � x2x3x4 � x1�1� x2
3� x2

4��2 (46c)

ẋ4 � x1x3x4 � x2�1� x2
4� x2

3��2 (46d)

These equations describe the dynamics and kinematics
of both an axi-symmetric and an inertially symmetric
body. Again in the analysis, we will discuss the possibil-
ity of both controls and only one control being singular.

5.2.1. Case I: both u1 and u2 are singular

In this case, as in Section 4.1, since both u1 and u2 are
singular during �t1� t2�� �t0� t f �, we get λ1 � λ̇1 � λ2 �

λ̇2 � 0. Substituting these equations into Eq. (9), it fol-
lows immediately that H � 1. This contradicts the nec-
essary condition which states that the Hamiltonian has
to be zero along the whole trajectory. Therefore both
controls being singular is impossible for a nonspinning
symmetric body.

5.2.2. Case II: only u1 is singular (u2 is bang-bang)

In this case, since u2 ��u2max sgn�λ2�, we have x2 	� 0
except possibly at some isolated points. The control
u1 is assumed to be singular, so by taking successive
derivatives of λ1 one obtains λ̇1 ��λ3�1�x2

3�x2
4��2�

λ4x3x4 � 0 and λ̈1 � �λ3x4�λ4x3�x2 � 0. Since x2 	� 0,
necessarily λ3x4�λ4x3 � 0. From Eq. (26) we have for
the third derivative of S1,

S�3�
1 � x1x2λ̇2 (47)

If λ̇2 	� 0, then letting S�3�
1 � 0, we have x1 � 0. Tak-

ing the fourth derivative of S1, we have that u1 explicitly

appears in S�4�
1 . Letting S�4�

1 � 0, we get the explicit ex-
pression for the second order optimal singular control u1

as
u1 � 0 (48)

Kelley’s optimality condition requires that x2λ̇2 � 0.
Since in this case the Hamiltonian takes the simple form
H � 1�λ2u2� λ̇2x2 we have

λ̇2x2 � 1�λ2u2 � 1�u2maxjλ2j (49)

and Kelley’s optimality condition is equivalent to
u2maxjλ2j � 1. Substituting λ3x4�λ4x3 � 0 into λ̇1 � 0,
we get λ3 � 0 necessarily during the singular arc, so
λ̇2 	� 0 implies λ4 	� 0. Therefore, λ3x4�λ4x3 � 0 im-
plies that x3 � 0. Thus the singular surface in this case is
defined by S1 � fx�R 4 : x1 � x3 � 0g. If λ̇2 � 0 during

the singular arc, from Eq. (47), we can see that S�3�
1 auto-

matically equals to zero, and all higher order derivatives
of S1 will be zero identically as well. Therefore, the op-
timal control u1 is an infinite order singular control and
it can be chosen arbitrarily as long as the boundary con-
ditions are satisfied5. From Eq. (49), λ̇2 � 0 implies
λ2 � 
1�u2max. Substitution of λ3x4 � λ4x3 � 0 into
λ̇1 � 0 and λ̇2 � 0 yields that λ3 � λ4 � 0 during an in-
finite order singular arc.

5.2.3. Case III: only u2 is singular (u1 is bang-bang).

Consider the case only u2 is singular and u1 is bang-
bang, then the same analysis as in Case II yields the fol-
lowing results. If λ̇1 	� 0, except possible at some iso-
lated points, the optimal singular control u2 is of second
order and given by

u2 � 0 (50)

Kelley’s optimality condition requires that u1maxjλ1j �
1. The singular surface is defined as S2 � fx � R 4 :
x2 � x4 � 0g. As another necessary condition, during
the singular arc, λ4 � 0. If λ̇1 � 0 along the singular
arc, the optimal singular control u2 is of infinite order
and can be chosen arbitrarily as long as all the boundary
conditions are satisfied. In this case, λ1 �
1�u1max and
λ3 � λ4 � 0.
Remark: From Eqs. (48) and (50), it can be seen that
the second order singular arc for a nonspinning body is
an eigenaxis rotation.

6. A Numerical Approach for Computing Optimal
Solutions

The optimal solutions are obtained numerically using a
cascaded computational scheme. Both a direct method
and an indirect method are used in this scheme. A di-
rect method is applied first to get initial guesses for the
indirect method, which is then solved to obtain accurate
optimal solutions. The idea of combining direct and in-
direct methods for solving optimal control problems was
introduced by Stryk and Bulirsch23 and later by Seywald
and Kumar24 to take advantage of both the good conver-
gence properties of the direct methods and and accuracy
of the indirect methods.

Three programs are used in this numerical approach:
EZopt, COSCAL and BNDSCO. BNDSCO solves the
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problem using an indirect method, i.e., the optimal solu-
tions are determined by solving the Multipoint Bound-
ary Value Problem arising from Pontryagin’s Minimum
Principle using a multiple shooting method5,25. It con-
verges quickly to the optimal solution, and the solu-
tion obtained is of very high accuracy. However, the
radius of convergence of this method is rather small
since it requires very good initial guesses for the states,
controls, co-states, Lagrange multipliers and switching
structure23,24. A major difficulty lies in the fact that in
most cases we do not know the optimal switching struc-
ture in advance. Also, initial guesses for the co-states
and the Lagrange multipliers are nontrivial because these
do not, in general, have any intuitive physical interpreta-
tion.

EZopt26 solves the problem using a direct method,
namely, the optimal solution is determined by directly
minimizing the cost criterion through collocation and
nonlinear programming. The radius of convergence of
the direct method is usually much larger than that of
the indirect method23,24. The program converges upon
much less accurate initial guesses. The speed of con-
vergence is, however, much lower compared with BND-
SCO. Since this method does not involve co-states, one
needs to provide only initial guesses for the states and
controls. In addition, the switching structure does not
have to be known in advance. A disadvantage of this
method is that the solutions obtained may not be as accu-
rate as those obtained from a indirect method6,23. This is
especially true around switching points and when singu-
lar subarcs appear as part of the overall optimal solution.
The accuracy of the solution depends on the discretiza-
tion scheme and the number of the discrete nodes. How-
ever, these solutions are good enough to roughly deter-
mine the trajectories, states, controls, switching structure
and, if there exist, singular subarcs. Thus, they provide
good initial guesses for a direct optimization software
such as BNDSCO.

Based upon the foregoing discussion, we have devel-
oped a software package which combines the two pro-
grams (EZopt and BNDSCO) together to overcome the
drawbacks of each method. That is, we use the results
from EZopt as an initial guess for BNDSCO. With this
initial guess, BNDSCO typically converges very fast and
gives accurate and reliable results. In addition, the opti-
mality of the solution can be readily checked from the
time history of the corresponding switching functions.
One major obstacle with this approach is that BNDSCO
needs the initial guesses for the co-states (in addition
to the states and the correct switching structure) which
EZopt does not provide. Thus, the program COSCAL
was developed to calculate the co-states at each node
from the Kuhn-Tucker multipliers associated with the
nonlinear programming. In the following section, we

will briefly discuss the methodology used in COSCAL
for estimating the co-states and Lagrangian multipliers.
For a complete discussion of this approach, one may
consult Ref. 24.

7. Numerical Examples

EZopt, COSCAL and BNDSCO together form a cas-
caded computational scheme which is very effective in
carrying out the optimal control computations. It has
been used extensively by the authors to solve several
optimal control problems. In this section we present
two numerical examples for the min-time reorientation
problem, one demonstrating a bang-bang control and the
other one demonstrating a solution with a singular sub-
arc.

7.1. Bang-bang control example

For the problem at hand, bang-bang control is obtained
in most situations, including both rest-to-rest and non
rest-to-rest maneuvers. The optimal control is given
by Eq. (13). As an example of a bang-bang maneu-
ver, consider the following initial and final conditions
x�0� � �0�0�1�5��0�5� and x�t f � � �0�0�0�0�. The pa-
rameters a and m are chosen to be a � 0�5 and m ��0�5
rad/sec. The control inputs are assumed to be bounded
by u1max � u2max � 1�0.

This example represents a “rest-to-rest” maneuver
with respect to the two control axes since the body is
spinning about its symmetry axis at a constant rate. The
initial boundary condition corresponds to a relative po-
sition such that the initial angle between the b̂3 axis and
n̂3 axis is 115�38deg. An optimal control is to be found
to re-orient the body until b̂3 and n̂3 axes are aligned in a
rest situation. The optimal control for this example was
found to be bang-bang with the first control having one
switch and the second control having two switches. The
minimum time to complete this maneuver is 2�61 sec.

Figures 3 and 4 show the control inputs and the corre-
sponding switching functions. Figure 5 shows the his-
tory of the angular velocities ω1 and ω2, and Fig. 6
shows the time history of w1 and w2. Recall that w1 and
w2 represent the relative position of the inertial axis n̂3

with respect to the body fixed frame b̂. In these figures,
the solid lines stand for the optimal results obtained from
BNDSCO (states, controls and co-states), while the cir-
cles show the initial guesses obtained from EZopt (states
and controls) or COSCAL (co-states). From these
plots, one can see that the solution obtained from EZopt
almost captures the properties of the optimal solution, al-
though some discrepancy exists at the switching points.
The plots also show that COSCAL provides very accu-
rate guesses for the co-states.
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Figure 3: Control u1 and co-state λ1 for bang-bang ma-
neuver.
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Figure 4: Control u2 and co-state λ2 for bang-bang ma-
neuver.

For the calculations shown in Figs. 3-6, 21 nodes were
used for EZopt. The program converged in 2 minutes
on a SPARCstation 5. BNDSCO converged in about 2
seconds.

7.2. Finite order singular control example

Finite order singular subarcs can be part of an optimal
solution only in some particular situations. As an ex-
ample, a second order singular control is observed for
the boundary conditions x�0� � ��0�45��1�1�0�1��0�1�
and x�t f � � �0�0�0�0�. The parameters for this case are
given by a � 0�5 and m � 0, and the control inputs are
bounded by u1max � u2max � 1�0. Initially, the angle be-
tween b̂3 axis and n̂3 axis is 16�1deg for these values of
w1 and w2. The control is required to re-orient the body
until the symmetry axis b̂3 aligns with the inertial axis
n̂3 in a rest situation. It turns out that the first control has
a singular subarc and the second control is bang-bang.
The optimal singular control is given by Eq. (48). The
minimum time is 2�88 sec. The results of the numerical
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Figure 5: Angular velocities ω1 and ω2 for bang-bang
maneuver.
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Figure 6: Time histories of w1 and w2 for bang-bang
maneuver.

simulations are shown in Figs. 7-11. It should be noted
here that although the analysis in Section 3 does not pre-
clude the existence of singular subarcs in the case when
m 	� 0, we were unable to find optimal trajectories with
singular subarcs for the spinning case. Figures 7 and 8
show the control inputs and the corresponding switching
functions. Figure 9 shows the time history of the angular
velocities ω1 and ω2 and Fig. 10 shows the time history
of w1 and w2. Figure 11 shows the same trajectory on
the w1-w2 plane. From Fig. 7 we can see that the control
u1 is singular after t � 1�904 sec. In the w1-w2 plane, if
the body is not spinning about its symmetry axis, then an
eigenaxis rotation is represented by a straight line. Fig-
ure 11 indicates that during the bang-bang subarc, the
time-optimal trajectory is not an eigenaxis rotation and
during the singular subarc the time optimal trajectory is
an eigenaxis rotation.

In these figures, the solid lines show the optimal so-
lution obtained from the solution of the TPBVP and the
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stars indicate the solution of the direct method, which
was used as an initial guess for the TPBVP solver. From
these plots it is seen that the bang-bang subarc obtained
from EZopt captures the optimal bang-bang subarc very
well. The singular control subarc obtained from EZopt is
not as accurate, but the output from EZopt gives a good
understanding about the existence and location of a sin-
gular subarc. Again, COSCAL captures the time history
of the co-states pretty well.
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Figure 7: Control u1 and co-state λ1 for singular subarc
maneuver.
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Figure 8: Control u2 and co-state λ2 for singular subarc
maneuver.

In this example, the calculations in EZopt were per-
formed using 31 nodes, which required EZopt about 5
minutes to converge from an all-zero initial guess. On
the other hand, using the output from EZopt/COSCAL,
BNDSCO converged in about 2 seconds.

The appearance of a singular subarc in the optimal
trajectory deserves special mention. Kelley’s necessary
condition (which was found to be satisfied for this ex-
ample) alone does not guarantee that the singular subarc
will indeed be part of the composite optimal trajectory.
The boundary conditions will determine if this is true
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Figure 9: Angular velocities ω1 and ω2 for singular sub-
arc maneuver.
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Figure 10: Time histories of w1 and w2 for singular sub-
arc maneuver.

or not. Even in the case when a trajectory composed
of bang-bang and singular subarcs satisfies the bound-
ary conditions and the first order necessary conditions
(including Kelley’s condition on the singular subarc) it
is still not guaranteed that this solution is optimal. In
particular, the joining between bang-bang and singular
subarcs has to satisfy certain corner conditions. Such
optimality conditions are given in Refs. 22 and 27. For a
second order singular arc (as the one in Fig. 7) the main
condition in Ref. 27 states that the optimal control should
be continuous at each junction, i.e., a jump discontinu-
ity when joining a non-singular and a singular control is
not allowed. At first glance, this seems to contradict the
result in Fig. 7. However, the results in Ref. 27 assume
that the control is piecewise analytic. This is shown not
to be the case for singular arcs of even order (and in fact
even for arcs of odd order greater than one) in Ref. 28;
see also Ref. 29. Thus, for even-order singular subarcs
(and odd-order singular arc of order greater than one)

11



−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

w
1

w
2

Singular Subarc

Nonsingular Subarc

Starting Position

Final Position

Figure 11: Optimal trajectory with singular subarc in w1-
w2 plane.

the junction between singular and non-singular arcs is
not analytic, i.e., the control consists of a sequence of
an infinite number of switchings between u � umin and
u � umax with the time between switchings rapidly de-
creasing. More relevant to our case is the fact that singu-
lar controls may manifest themselves as the cumulative
effect of the infinite number of bang-bang control actions
(chattering). If this is the case, the solution of the the dif-
ferential equations have to be interpreted in the Filippov
sense30, and the singular control is then the “equivalent”
control action associated with the chattering control29.

The previous discussion reinforces our observations
for the singular control in Fig. 7. The solution from
EZopt shows that the optimal control switches rapidly
after t � 1�904. The subarc after that point is identi-
fied as a singular subarc, and the solid line stands for
the optimal solution (given from BNDSCO) which uses
the “equivalent” singular control u1 � 0, obtained us-
ing the necessary conditions. This singular control has
the equivalent effect of a bang-bang control with infinite
number of switchings. It must be pointed out that the
substitution of a chattering bang-bang control with its
“equivalent” singular form is more than a mathematical
convenience. In practice, it is often preferable to use the
“equivalent” singular control action instead of switching
between the upper and lower bounds infinitely fast. At
any rate, in both cases, the optimal state trajectory is the
same.

7.3. Infinite order singular control example

As a demonstration of the infinite order singular control,
the boundary conditions x�0� � �0�0�0�0� and x�t f � �
�1�0�2�0� free� free� are considered. a � 0, m ��0�3 and
u1max � u2max � 1 are also assumed in this example. The
infinite order singular control corresponding to these pa-

rameters are discussed in Section 5.1.2. From the bound-
ary conditions we can see that the purpose of this maneu-
ver is to accelerate the angular velocity components ω1

and ω2 from zero to 1.0 rad/sec and 2.0 rad/sec, respec-
tively. The final position is not important in this case.
Since ẋ1 � u1 and ẋ2 � u2, the minimum time that x2

reaches 2�0 rad/sec is 2 seconds, during which, x1 can
obtain its final value x1�t f � � 1 rad/sec in many ways.
Therefore, an infinite order singular control is a possi-
ble solution for this problem. The numerical results are
shown in Figs. 12 and 13. Two possible solutions for
u1 are presented. Similar results for infinite order sin-
gular arcs can be obtained when m � 0, with this case
discussed in section 5.2.2.
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Figure 12: Two possible solutions for u1 for infinite or-
der singular arc maneuver.
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Figure 13: Two possible solutions for ω1 for infinite or-
der singular arc maneuver.
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8. Conclusions

The time-optimal reorientation control problem of an
axi-symmetric rigid spacecraft with two control torques
has been studied in detail. It is assumed that no control
torque is available along the symmetry axis. The space-
craft may be spinning about its symmetric axis. The rel-
ative rotation about the symmetry axis is therefore inde-
terminate. A complete analysis of all the possible time-
optimal control structures is presented, including cases
with singular and nonsingular subarcs. It is shown that
second order singular arcs and infinite order singular arcs
can appear as part of the optimal trajectory for specific
boundary conditions. A cascaded computational scheme
is developed and used for the numerical computation of
the optimal trajectories. The method does not require
any a priori knowledge of the optimal switching struc-
ture. Examples show that this is a very effective ap-
proach to compute optimal trajectories numerically.
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