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We consider the design of a feedback control for a stochastic affine time-varying system
with explicit boundary conditions on the state mean and covariance, a method referred to
in the literature as covariance steering, with application to the Martian powered descent
problem. Linear covariance steering theory is first extended to include a deterministic
affine forcing term, and is then simulated with disturbances on the order of those expected
for a typical Martian entry, descent, and landing mission. Numerical results demonstrate
the benefits of the approach compared to standard Monte Carlo evaluation.

I. Introduction

Entry, Descent, and Landing (EDL) is the process of guiding a spacecraft entering a planet’s atmosphere,
decelerating from orbit, and descending to a safe landing site on the planet’s surface. Atmospheric distur-
bances, localization error, and other factors contribute to substantial deviations from the nominal descent
trajectory. These factors must be accounted for when selecting a landing target. During the powered flight
segment of EDL, which spans from the end of aerodynamic deceleration to touchdown, it is required to
control deviated trajectories to a safe landing site, while removing the remaining kinetic energy. Divert
radius, namely, the distance from the uncontrolled touchdown point to the target touchdown point, is an
important design parameter when selecting a landing site. Improvements in powered descent guidance divert
capabilities will allow future missions to select more scientifically “interesting” landing sites, also opening
the possibility of resupply missions for human outposts.1

The first American system to land on Mars, the Viking I, which landed on July 20, 1976, used a gravity
turn guidance scheme for terminal descent,2 namely, the thrust vector was directed opposite of the velocity
vector. During this phase, the Viking I guidance computer tracked steering commands to achieve the gravity
turn while maintaining a programmed descent rate profile until a touchdown with an approximate vertical
velocity of 2.4 m/s,.2 The Viking EDL system achieved a 280 km by 100 km 3σ landing ellipse. The Mars
Path Finder (MPF) mission, in contrast to the Viking mission, did not track a closed-loop descent profile
during powered descent, but rather relied on an altitude-triggered firing of solid rockets coupled with an
airbag system designed for a 12.5 m/s vertical velocity and maximum of a 20 m/s horizontal velocity at
touchdown.3,4 The subsequent Mars Exploration Rover missions used a variation of the MPF EDL scheme,4

and the Phoenix mission used a variation of the Viking gravity turn guidance for terminal descent.5

The most sophisticated Martian EDL procedure to date was performed by the Mars Science Laboratory
(MSL) mission. The 1,500 kg MSL spacecraft began powered descent at an altitude of 1.6 km with a velocity
of 85 m/s.6 The Apollo era fifth-order polynomial guidance scheme7 was used to target a point 242 m above
the landing site and 300 m perpendicular to the entry trajectory plane before initiating the final vertical
descent to the surface.6,8 The total time of the flight segment was determined as a function of the initial
altitude, which was in turn selected off-line in order to satisfy the maximum acceleration constraint.7 The
polynomial trajectory was computed by the flight computer at the start of the powered descent phase and
was subsequently tracked by a reference path following program.7 The MSL achieved a 20 km by 20 km 3σ
landing ellipse, nearly an order of magnitude greater than the Viking lander.
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On the theoretical side, several previous works have addressed the powered descent problem, using
primarily optimization techniques. One proposed method solves the two-point boundary value problem
with an 11th degree polynomial approximation and a parametric optimizer subject to control and path
constraints.9 However, the optimization cannot be performed onboard due to computational time constraints.
Most recently, it has been shown that convex optimization is a promising strategy for solving optimal powered
descent trajectories.10 Since a convex optimization program can be guaranteed to converge to the unique
solution, it is suitable for on-line implementation, by which the optimal trajectory to follow is computed
continuously, on-the-fly, during descent. The 2015 NASA Technology Roadmap specifically cites convex
optimization as a potential next-generation solution to the divert guidance problem.1

This work considers uncertainty and dispersion of EDL trajectories by modeling the system as a stochastic
differential equation, and by controlling its mean state and covariance using covariance steering, which is a
theory for controlling the state covariance of stochastic systems. Recent works have shown that, for a linear
time-varying system subject to Gaussian white noise, the state covariance is controllable through selection
of a full-state feedback gain,11 and furthermore, state mean and covariance may explicitly be provided as an
end-point constraint for an optimal feedback design.12 By applying covariance steering theory to EDL, the
state mean and covariance of descent trajectories are used as boundary conditions to solve for the optimal
time-varying controller gains. This approach would allow a system designer to specify the first and second
moments of the desired distribution of trajectories as constraints when designing a feedback strategy, rather
than iteratively tuning gains by trial and error, running simulations and making corrections, thus reducing
extensive Monte Carlo validation studies.

In this paper, linear covariance steering theory is first extended for application to the EDL problem. An
affine forcing term is added to the system to model gravitational acceleration, and a scalar multiplier on the
noise magnitude is added to the governing stochastic differential equation to model the actual effect of noise.
Then, the nonlinear dynamics governing powered descent are relaxed to an affine time-varying model by
replacing the mass flow dynamics with a predetermined time-varying mass profile, which is selected through
an iteration scheme. The controller gains that are solved using the simplified mass profile are shown to
successfully steer the nonlinear system during powered descent. The theory is then used in Monte Carlo
simulations of several powered descent diversion maneuvers using a point-mass spacecraft model to validate
the proposed covariance steering controller.

II. Problem Formulation

We consider the problem of guiding a spacecraft during powered descent from an initial position and
velocity to a soft landing (zero vertical and lateral velocity at touchdown). The spacecraft is modeled as a
point-mass with position vector r ∈ R3 in a surface-fixed frame, which will be assumed inertial. Neglecting
aerodynamic forces, the equation of motion is

r̈ = g + u/m, (1)

where g ∈ R3 denotes the gravitational acceleration, u ∈ R3 is the control thrust, and m is the spacecraft
mass, which changes proportionally to thrust magnitude by

ṁ = −α‖u‖, (2)

where α > 0. However, for the purposes of the following analysis, the mass m in Eq. (1) will be assumed
to be given a priori as a function of time. In Sections IV and V we show that by iterating on the selection
of the mass profile m(t), the proposed control scheme is successful even when simulated with the actual
dynamics in Eqs. (1) and (2).

Defining the state vector as

x =

[
x1

x2

]
=

[
r

ṙ

]
∈ R6, (3)

the dynamics assume the state-space form[
ẋ1

ẋ2

]
=

[
0 I

0 0

][
x1

x2

]
+

[
0

I/m

]
u+

[
0

g

]
,
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where I is the identity matrix. These equations are of the form

ẋ = A(t)x+B(t)u+ c(t), (4)

where A(t) ∈ Rn×n, B(t) ∈ Rn×m are prescribed matrices for all t ≥ 0 and c(t) ∈ Rn. Disturbances and
uncertainty affecting Eq. (4) can be modeled as noise acting on the system, yielding the stochastic system

dx = A(t)xdt+B(t)udt+ c(t)dt+ γB(t)dw, (5)

where {w(t), t ∈ [0, T ]} is an m-dimensional Brownian motion, and γ > 0 is a metric of the relative magnitude
of noise to control. As γ → 0, the system in Eq. (5) reduces to Eq. (4), hence γ may be used to tune the
expected noise magnitude.

The solution of Eq. (5) yields a stochastic process x(t) where, for each t ≥ 0, x(t) is a random variable
with mean x̄(t) and covariance Σ(t), that is,

x̄(t) = E[x(t)], (6)

and
Σ(t) = E[(x(t)− x̄(t))(x(t)− x̄(t))T]. (7)

We assume finite-time problems where t ∈ [0, T ] with the final time T ≥ 0 fixed. The boundary conditions
are given by

x̄(0) = x̄0, x̄(T ) = x̄T , (8)

Σ(0) = Σ0, Σ(T ) = ΣT . (9)

Let the performance measure associated with the system in Eq. (5) be given by

J(u) = E[

∫ T

0

uT(t)u(t)dt]. (10)

The stochastic optimal control problem is then to minimize Eq. (10) subject to dynamics in Eq. (5), and
boundary conditions in Eqs. (8), (9).

III. Covariance Steering

To find a candidate optimal control, co-state variables Λ and λ will be used to construct an equivalent
performance measure, under which a minimizing selection of u will be clear. Let Λ : [0, T ]→ Rn×n, Λ ∈ C1,
Λ(t) = ΛT(t) for all t ∈ [0, T ] be a matrix-valued function, and let λ : [0, T ]→ Rn, λ ∈ C1. Then,

E[xT(t)Λ(t)x(t)] = E[xT(t)Λ(t)x(t)] + x̄T(t)Λ(t)x̄(t)− x̄T(t)Λ(t)x̄(t) (11)

= E[xT(t)Λ(t)x(t)− 2xT(t)Λ(t)x̄(t) + x̄T(t)Λ(t)x̄(t)] + x̄T(t)Λ(t)x̄(t) (12)

= E[(x(t)− x̄(t))TΛ(t)(x(t)− x̄(t))] + x̄T(t)Λ(t)x̄(t) (13)

= E[tr(Λ(t)(x(t)− x̄(t))(x(t)− x̄(t))T)] + x̄T(t)Λ(t)x̄(t) (14)

= tr(Λ(t)E[(x(t)− x̄(t))(x(t)− x̄(t))T]) + x̄T(t)Λ(t)x̄(t) (15)

= tr(Λ(t)Σ(t)) + x̄T(t)Λ(t)x̄(t), (16)

and
E[λT(t)x(t)] = λT(t)x̄(t). (17)

Because the end-point state mean and covariance are both fixed, the values in Eqs. (16) and (17) are constant
at times t = 0 and t = T , and are determined by the boundary conditions. Thus, minimizing Eq. (10) over
variations of u is equivalent to minimizing the modified index

J̃(u) = E
[ ∫ T

0

uT(t)u(t)dt+ xT(T )Λ(T )x(T )− xT(0)Λ(0)x(0)− 2λT(T )x(T ) + 2λT(0)x(0)
]
, (18)

which is equivalent to

J̃(u) = E
[ ∫ T

0

uT(t)u(t)dt+

∫ T

0

d(xT(t)Λ(t)x(t)− 2λT(t)x(t))
]
. (19)
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Expanding the second integral in Eq. (19) and using Itô’s rule, one obtains

J̃(u) = E
[ ∫ T

0

uT(t)u(t)dt+

∫ T

0

[
xT(t)Λ̇(t)x(t)− 2λ̇T(t)x(t) + (A(t)x+B(t)u+ c(t))TΛ(t)x(t)

+ xT(t)Λ(t)(A(t)x+B(t)u+ c(t))− 2λT(t)(A(t)x+B(t)u+ c(t))

+ γ2tr(Λ(t)B(t)BT(t))
]
dt+ 2γ

∫ T

0

(
x(t)Λ(t)B(t)− λT(t)B(t)

)
dw

]
(20)

Because w(t) is a zero-mean process, the expectation of the last integral over dw is zero. Furthermore, if Λ
satisfies the matrix Riccati equation

Λ̇ = −AT(t)Λ− ΛA(t) + ΛB(t)BT(t)Λ, (21)

for all t ∈ [0, T ], and λ satisfies the affine differential equation

λ̇ = −(A(t)−B(t)BT(t)Λ(t))Tλ+ Λ(t)c(t), (22)

for all t ∈ [0, T ], then Eq. (20) reduces to

J̃(u) = E
[ ∫ T

0

‖u(t) +BT(t)Λ(t)x(t)−BT(t)λ(t)‖2dt+ γ2

∫ T

0

tr(Λ(t)B(t)BT(t))dt

]
. (23)

Because the second integral is constant over variations of u, the candidate optimal control

u∗(x, t) = −BT(t)Λ(t)x+BT(t)λ(t), (24)

minimizes Eq. (23), and hence it also minimizes Eq. (10). The optimal evolution of the system in Eq. (5)
with respect to the performance index in Eq. (10) is thus

dx = (A(t)−B(t)BT(t)Λ(t))xdt+B(t)BT(t)λ(t)dt+ c(t)dt+ γB(t)dw. (25)

We now proceed to find the boundary conditions Λ(0), λ(0) such that Eq. (25) satisfies the mean and
covariance boundary conditions in Eqs. (8) and (9). From Eq. (22) it follows that λ(t) has the solution

λ(t) = Θ̄(t, 0)λ(0) +

∫ t

0

Θ̄(t, τ)Λ(τ)c(τ) dτ, (26)

where Θ̄ : [0, T ]× [0, T ]→ Rn×n is the transition matrix having the properties

∂Θ̄(t, s)

∂t
= −(A(t)−B(t)BT(t)Λ(t))TΘ̄(t, s), Θ̄(s, s) = I. (27)

Let the transition matrix Θ : [0, T ]× [0, T ]→ Rn×n, which obeys

∂Θ(t, s)

∂t
= (A(t)−B(t)BT(t)Λ(t))Θ(t, s), Θ(s, s) = I. (28)

Then, since
Θ(t, s) = Θ̄T(s, t) = Θ̄−T(t, s), (29)

it follows that

λ(t) = ΘT(0, t)λ(0) +

∫ t

0

ΘT(τ, t)Λ(τ)c(τ) dτ. (30)

By taking the expectation of Eq. (25) and dividing by dt, it follows that x̄ obeys the equation

˙̄x = (A(t)−B(t)BT(t)Λ(t))x̄+B(t)BT(t)λ(t) + c(t), (31)

and therefore it has the solution

x̄(t) = Θ(t, 0)x̄(0) +

∫ t

0

Θ(t, τ)B(τ)BT(τ)λ(τ)dτ +

∫ t

0

Θ(t, τ)c(τ) dτ. (32)
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Substituting λ(t) from Eq. (30) yields

x̄(t) = Θ(t, 0)x̄(0) +

∫ t

0

Θ(t, τ)B(τ)BT(τ)

[
ΘT(0, τ)λ(0) +

∫ τ

0

ΘT(σ, τ)Λ(σ)c(σ)dσ

]
dτ

+

∫ t

0

Θ(t, τ)c(τ)dτ. (33)

and at time t = T ,

x̄(T ) = Θ(T, 0)x̄(0) +

∫ T

0

Θ(T, τ)B(τ)BT(τ)ΘT(0, τ)λ(0)dτ

+

∫ T

0

Θ(T, τ)B(τ)BT(τ)

[ ∫ τ

0

ΘT(σ, τ)Λ(σ)c(σ)dσ

]
dτ +

∫ T

0

Θ(T, τ)c(τ) dτ. (34)

Let

c1 =

∫ T

0

Θ(T, τ)B(τ)BT(τ)

[ ∫ τ

0

ΘT(σ, τ)Λ(σ)c(σ)dσ

]
dτ, (35)

and

c2 =

∫ T

0

Θ(T, τ)c(τ) dτ. (36)

Solving for λ(0) then yields

λ(0) =

[ ∫ T

0

Θ(T, τ)B(τ)BT(τ)ΘT(0, τ)dτ

]−1(
x̄(T )−Θ(T, 0)x̄(0)− c1 − c2

)
. (37)

Define the controllability Gramian of the closed-loop system in Eq. (31) as

M̃(T, 0) =

∫ T

0

Θ(T, τ)B(τ)BT(τ)ΘT(T, τ)dτ. (38)

Using Eq. (38), the expression for λ(0) from Eq. (37) leads to

λ(0) = ΘT(T, 0)M̃−1(T, 0)
(
x̄(T )−Θ(T, 0)x̄(0)− c1 − c2

)
. (39)

Next, we solve for Λ(0) such that Σ(0) = Σ0 and Σ(T ) = ΣT . From Itô’s rule, the evolution of the state
covariance for the system in Eq. (25) is given by

Σ̇ = (A(t)−B(t)BT(t)Λ(t))Σ + Σ(A(t)−B(t)BT(t)Λ(t))T + γ2B(t)BT(t). (40)

Following the procedure in Ref. [12], introduce H : [0, T ]→ Rn×n by H(t) = γ2Σ−1(t)− Λ(t). Then

Ḣ = −γ2Σ−1(t)Σ̇(t)Σ−1(t)− Λ̇(t), (41)

which, after substituting Eqs. (21) and (40), reduces to

Ḣ = −HA(t)−AT(t)H −HB(t)BT(t)H, (42)

with the boundary conditions

H(0) = γ2Σ−1(0)− Λ(0), H(T ) = γ2Σ−1(T )− Λ(T ). (43)

Define Q(t) = Λ−1(t) and P (t) = H−1(t). Then it can be easily shown that

Q̇ = A(t)Q+QAT(t)−B(t)BT(t), (44)

and
Ṗ = A(t)P + PAT(t) +B(t)BT(t), (45)
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with the boundary conditions

Σ−1(0) = γ2(P−1(0) +Q−1(0)), Σ−1(T ) = γ2(P−1(T ) +Q−1(T )). (46)

Let the open-loop transition matrix Φ : [0, T ]× [0, T ]→ Rn×n, which obeys

∂Φ(t, s)

∂t
= A(t)Φ(t, s), Φ(s, s) = I, (47)

and let the controllability Gramian of the open-loop system be given by

M(T, 0) =

∫ T

0

Φ(T, τ)B(τ)BT(τ)ΦT(T, τ)dτ. (48)

Then the initial value Q(0) can be solved for with Algorithm 1, which yields Q(t) invertible for all t ∈ [0, T ].12

Since Λ(0) = Q−1(0), Λ(t) is obtained by integrating Eq. (21) forward. Then the closed-loop state transition
matrix Θ(t, s) can be numerically solved from Eq. (28) and used to compute λ(0) from Eq. (39), and λ(t) is
solved by integrating Eq. (22) forward. The solution procedure is summarized in Algorithm 2.

Algorithm 1 Iteration to find Q(0) and P (0) that satisfy the boundary conditions in Eq. (46).12

1: function CalculateInitialQ(Φ(t, s),M(T, 0), γ,Σ0,ΣT , T )
2: P (0)← I
3: Q(0)← I
4: tol← some small number > 0
5: repeat
6: P (T )← Φ(T, 0)P (0)Φ(T, 0)T +M(T, 0)
7: Q(T )← ((γΣT )−1 − P−1(T ))−1

8: Q(0)new ← Φ(0, T )(Q(T ) +M(T, 0))Φ(0, T )T

9: P (0)new ← ((γΣ0)−1 −Q−1(0))−1

10: dQ(0)← Q(0)new −Q(0)
11: dP (0)← P (0)new − P (0)
12: Q(0)← Q(0)new

13: P (0)← P (0)new

14: until ‖dQ(0)‖ < tol and ‖dP (0)‖ < tol
15: return Q(0)

Algorithm 2 Procedure to find covariance steering controller gains.

1: function CovarianceSteering(A(t), B(t), c(t), γ,Φ(t, s), x̄0, x̄T ,Σ0,ΣT , T )
2: M(T, 0)← Evaluate Eq. (48)
3: Q(0)← CalculateInitialQ(Φ(t, s),M(T, 0), γ,Σ0,ΣT , T )
4: Λ(0)← Q−1(0)
5: Λ(t)← Integrate Eq. (21) with Λ(0) from 0 to T
6: Θ(t, s)← Integrate Eq. (28)
7: M̃(T, 0)← Evaluate Eq. (38)
8: λ(0)← Evaluate Eq. (39) with Θ(t, s) and M̃(T, 0)
9: λ(t)← Integrate Eq. (22) with λ(0) from 0 to T

10: u(x, t)← −BT(t)Λ(t)x+BT(t)λ(t)
11: return u(x, t)

IV. Successive Linearization Approach

Because covariance steering theory cannot be directly applied to nonlinear systems, the system in Eqs.
(1) and (2) is linearized about a mass profile m(t), which reduces the system to the time-varying affine
system in Eq. (4). The mass profile is obtained through the iterative application of covariance steering and
subsequent simulation of the closed-loop nonlinear system, which is summarized in Algorithm 3. Figure 1
shows the iteration scheme converging when applied to the scenario presented in Section V. Furthermore, in
Section V, we show that if the prior mass profile is close enough to the posterior mass profile, as determined
by evaluation of Eqs. (1) and (2), then the control scheme generated from the preceding analysis is sufficient
to guide the system in Eqs. (1) and (2) to the target state mean and covariance.
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Algorithm 3 Procedure to find the mass profile for a powered descent with covariance steering.

1: function IdentifyMassProfile(γ, x̄0, x̄T ,Σ0,ΣT , T )
2: A← [ 0 I

0 0 ]
3: Φ(t, s) = exp(A(t− s))
4: c← [ 0 g ]

T

5: m(t)← mwet

6: repeat
7: m′(t)← m(t)
8: B(t)← [ 0 I ]

T
/m′(t)

9: u(x, t)← CovarianceSteering(A,B(t), c, γ,Φ(t, s), x̄0, x̄T ,Σ0,ΣT , T )
10: z0 ← [ x̄T

0 mwet ]
T

11: m(t)← SimulateNonlinearDynamics(z0, u(x, t))
12: until IntegrateDifference(m(t),m′(t)) < Tolerance
13: return m(t)
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Figure 1. Differences in mass profiles between iterations of the mass profile approximation procedure with the change
in mass between iterations given on a log scale.

V. Numerical Simulations

The performance of the proposed covariance steering controller is evaluated in a two-dimensional simu-
lation of a Martian powered descent involving two sequential divert maneuvers, whose geometry is shown in
Figure 2. Time-varying control gains were determined by an initial, intermediate, and final state mean and
covariance, hence the performance of the control scheme after passing the intermediate target is dependent
on the mean and covariance of the system state at the intermediate target. That is, if the trajectories
disperse beyond the end-point covariance requirement, the controller gains scheduled after the intermediate
target will be insufficient to meet the final covariance target. This scenario demonstrates the benefit of the
covariance steering approach to guarantee the mean and covariance of trajectories at some prescribed time
without the need to iteratively tune cost weights. Note that while the final time is fixed in this formulation,
the free final time problem can be solved by conducting a line search over final time.

In these simulations, the nonlinear system in Eqs. (1) and (2) was modified to include noise in the control
channel as follows

dṙ = (g + u/m)dt+ (γ/m)Idw, (49)

where γ = 0.02, and the two-dimensional state vector is

x =
[
r1 r2 ṙ1 ṙ2

]T
, (50)
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where r1 and r2 are the downrange position and altitude respectively. The initial, intermediate, and target
spacecraft mean positions and covariances are, respectively,

x̄0 =


250 m

500 m

50 sin 70◦ m/s

50 cos 70◦ m/s

 , Σ0 =


40 m2 0 0 0

0 40 m2 0 0

0 0 5 (m/s)
2

0

0 0 0 5 (m/s)
2

 (51)

x̄TI =


50 m

150 m

0 m/s

−5 m/s

 , ΣTI =


10 m2 0 0 0

0 10 m2 0 0

0 0 1 (m/s)
2

0

0 0 0 1 (m/s)
2

 (52)

x̄TF =


100 m

50 m

0 m/s

0 m/s

 , ΣTF =


5 m2 0 0 0

0 1
4 m2 0 0

0 0 1
4 (m/s)

2
0

0 0 0 1
4 (m/s)

2

 , (53)

and the time for from initialization to the intermediate target is 26 seconds. The time from the intermediate
to final target is 15 seconds. The spacecraft wet mass is 1,500 kg, maximum thrust is 18,000 N, specific
impulse is 210 s, which gives α = 4.85e−4 kg/Ns, and gravitational acceleration is 3.71 m/s2. A total of
2,000 trials were simulated on a computing cluster for 12 hours using 32 cores. Over the 2,000 trials, the
final state mean and covariance were

x̄TF,sim =


100.111

49.807 m

0.092 m/s

−0.005 m/s

 , ΣTF,sim =


3.889 m2 −0.055 m2 0.036 m2/s −0.009 m2/s

−0.552 m2 0.250 (m/s)
2

0.013 m2/s 0.011 m2/s

0.036 m2/s 0.013 m2/s 0.243 (m/s)
2 −0.007 (m/s)

2

−0.009 m2/s 0.010 m2/s −0.006 (m/s)
2

0.276 (m/s)
2

 ,
(54)

and the mean final mass was 1,349 kg, compared to 1,346 kg predicted by the prior mass profile.
A sample of 50 trial trajectories are shown for closed and open-loop control in Figure 3. To show the

evolution of the distribution of the trials, a series of 3σ covariance ellipses are drawn around the mean
trajectory at equal increments along each flight segment and the spacecraft positions for each trial at these
times are marked. The trajectories initially disperse from the starting distribution during the first diversion
maneuver before decreases to meet the intermediate target covariance. Comparable open-loop trajectories
are also shown in Figure 3 to give a reference of the effect of noise on the system. As expected, since the noise
was zero-mean, the mean of the open-loop trajectories is nearly equivalent to the mean of the closed-loop
trajectories. Similarly, plots of a selection of closed-loop trajectories over time are shown in Figure 4, and
vehicle mass over time is shown in Figure 5. For this simulation, noise was only applied through Eq. (49), so
variations in mass are the result of the feedback compensating for deviations from the nominal trajectory.

Controller feedback gains and the control magnitude, as a fraction of the maximum thrust of 18,000 N,
are shown in Figure 6. At t = 26 s, there is a discontinuity in both feedback gains and control when the
control law is changed for the second flight segment. While in this scenario the maximum thrust was not
exceeded, there was not an explicit constraint on control magnitude. Thus, we had to tune the boundary
conditions and total flight time until an admissible solution was obtained.

As a validation of the covariance evolution model, the variances in downrange position and altitude where
computed over the 2,000 simulated trajectories and were compared to the variance predicted by Eq. (40).
Figure 7 shows a nearly exact agreement at the initial and final time, but there is a minor deviation between
the experimental and theoretical results around the mid-course of each flight segment. This is most likely
due to the limited number of simulated trials or the assumption of fixing a prior mass profile.

VI. Conclusion

In this paper covariance steering theory was applied to the Martian powered descent problem, and was
shown to successfully steer an initial to a target state mean and covariance without the need to tune weight
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Figure 2. Divert guidance geometry. Given initial mean position, mean velocity, and covariance (r̄0, ˙̄r0, Σ0), the space-
craft would follow an uncontrolled trajectory to r̃(T ). Powered descent guidance must steer the mean and covariance
to (r̄T , ΣT ) with a requirement on divert radius rd.
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Figure 3. Simulated trajectories of a two-part divert maneuver. At the initial, intermediate target, and final target,
the positions are marked and ellipse is drawn around a 95% confidence interval in black. Several points along the path
are also marked to demonstrate how the trajectory dispersion changes with time.
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Figure 4. Downrange position, altitude, downrange velocity, and vertical velocity against time.
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Figure 5. Vehicle mass against time.

10 of 12

American Institute of Aeronautics and Astronautics



0 10 20 30 40

Time, s

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Fe
ed

ba
ck

 G
ai

n

K1;1

K2;2

K1;3

K2;4

Waypoint
Control law change

(a)

0 10 20 30 40

Time, s

10

20

30

40

50

60

70

80

90

T
hr

us
t, 

%
 M

ax

Mean
95%
BoundsWaypoint

Control law change

(b)

Figure 6. a) Feedback gains. Note that the change in target at t = 26 seconds. b) Mean, upper 95 percent, and
maximum control magnitude over all trials.
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parameters, as is often the case with standard Monte Carlo approaches. Covariance steering theory was
extended to include an affine forcing term to model gravitational acceleration and a scalar multiplier on noise
magnitude was added to model the actual effect of nose. For the purposes of applying covariance steering
theory to compute time-varying controller gains, the powered descent dynamic constraints were relaxed by
replacing the relationship between thrust and mass flow rate with a prior mass profile. After using an
iterative scheme to determine the prior mass profile, the proposed controller was effective in controlling the
original nonlinear system.
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