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The problem of estimating the mass properties of a spacecraft while tracking a 6-DOF
reference is addressed using dual quaternions. Dual quaternions provide a position and
attitude (pose) representation, which has proven to be advantageous over other, more
conventional, parameterizations. An adaptive controller for 6-DOF tracking is proposed
using concepts from the concurrent learning framework. The latter is a recently proposed
methodology to incorporate current and recorded system data from measurements into the
update of an adaptive controller’s parameters. Asymptotic convergence of the parameters
is ensured through an easily verifiable rank condition of the matrix formed from a finite
set of collected data, contrary to the rather stringent, but more common requirement of
persistency of excitation. Simulation results for the tracking of a non-persistently exciting,
6-DOF reference are provided and compared to the baseline adaptive controller.

Nomenclature

k = time index

tk = time

H = space of quaternions

Hd = space of dual quaternions

rZ
X/Y = position quaternion from point Y to point X, in Z frame coordinates

vZ
X/Y = linear velocity quaternion of point X with respect to frame Y, in Z frame coordinates

ωZ
X/Y = angular velocity quaternion of frame X relative to frame Y, in Z frame coordinates

qX/Y = quaternion describing attitude change from frame Y to frame X

1 = (1, 0̄)

0 = (0, 0̄)

ε = dual unit

ωZ
X/Y = dual velocity of frame X relative to frame Y, in Z frame coordinates

qX/Y = dual quaternion describing pose change from frame Y to frame X

1 = 1 + ε0

0 = 0 + ε0

m = satellite mass (kg)

ĪB = satellite inertia about the center of mass in B frame coordinates (kg.m2)

τB = external torque quaternion applied at body center of mass expressed in the body frame (N.m)

fB = external force quaternion applied at body center of mass expressed in the body frame (N)

fB = external dual force applied at body center of mass expressed in the body frame

MB = dual inertia matrix about the center of mass in B frame coordinates
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M̂B = estimate of the dual inertia matrix

∆MB = estimate of the dual inertia matrix

εk = estimate error signal

X = time-indexed storage of state information

F = time-indexed storage of dual force information

h(·, ·) = function Hv
d ×Hv

d → R7

v(·) = dual inertia matrix vectorization function, R8×8 → R7

Rk = regressor matrix function, Hv
d ×Hv

d ×Hv
d ×Hv

d ×Hu
d → R8×7

Kp,Kd,Ki = gain matrices

I. Introduction

In the past, much of spacecraft control literature has focused on performing attitude reference tracking
through the use of a wide range of techniques and attitude parameterizations.1–5 With the advent of space
missions (both commercial and military), spacecraft proximity operations have become increasingly common,
and they remain among the most critical phases for space-related activities. Ranging from on-orbit servicing,
asteroid sample return, or just rendezvous and docking, these maneuvers pose a challenging technological
problem that requires addressing the natural coupling between the spacecraft’s attitude and its position.

Originally, the modeling of rigid body motion to address proximity operations was decoupled into the
corresponding attitude and position (pose) subproblems.6,7 This tends to be the simpler approach, as it
makes use of conventional techniques. The cost is usually efficiency and accuracy. New techniques treat
attitude and position on the same footing and thus increase numerical efficiency and accuracy. The benefits
have been especially dominant in the field of estimation where combined representations of pose have led to
significant improvements in the estimation of position.8–11

Within the area of kinematic and dynamic modeling, fixed-base robotics literature has flourished, making
extensive use of Lie-algebraic techniques. In particular, the space of homogeneous matrices SE(3) has
been adopted as a common resource in combination with standardizations such as the Denavit-Hartenberg
parameters. However, modeling of a freely-rotating body and its dynamics under the same framework requires
in-depth knowledge of Lie algebras and the associated geometric mechanics formalism for appropriate use
and implementation (see, for example, Ref. 12). This added complexity makes quaternions and, in particular,
dual quaternions an appealing alternative to work with for most practitioners.

Dual quaternions are an extension of quaternions in the context of dual algebra. While unit quaternions
carry information about the relative attitude between two frames, dual quaternions contain relative pose
information between two frames. Dual quaternions have been shown to have better computational efficiency
and lower memory requirements than other conventional methods for kinematic modeling.13–16 Since com-
putational power is often limited in space-related tasks, this makes quaternions and dual quaternions more
appropriate than, say, working directly with the more natural spaces SO(3) (for attitude) or SE(3) (for
pose).

A large amount of literature exists that addresses the problem of the estimation of the inertia matrix of
a spacecraft in orbit. It has been recurrently addressed and different solution approaches exist. The contri-
bution by Ref. 17 is worth highlighting, in particular, since it provides assurances as the number of samples
tends to infinity using least-correlation methods, without the assumption that the angular acceleration is
known. Refs. 18–20 also provide least-squares solutions, posing the estimation as an optimization problem
with convexity properties that aid convergence to a solution. Though theoretically sound, these approaches
can be computationally costly, in many cases requiring matrix inversions or decompositions, make use of
optimization software that may not be flight-rated, and are not necessarily incorporated into controllers that
can track a 6-DOF time-varying references. In fact, an on-line update of the inertia matrix using these meth-
ods could introduce undesired discontinuities to the actuators, making them undesirable for actual on-board
implementation.

Within the field of adaptive control, the requirement of persistency of excitation that frequently arises in
the study of systems with structured uncertainties, as is the case with the estimation of the mass properties
of a rigid body, is rather stringent.21–24 The necessary rank conditions on the integral with respect to time
of certain regressor matrices can be ensured by actuating the different axes of the spacecraft, as shown in
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Ref. 22. However, this may lead to unnecessary maneuvering, thus wasting fuel and power.
The main objective of this paper is to address the estimation of the mass properties of a spacecraft

through a data-based adaptive method, called concurrent learning, while following at the same time a
desired pose reference. This technique, initially proposed by Chowdhary et al.,25,26 bypasses the requirement
of persistency of excitation that is so common in the field of adaptive control, and instead requires that the
rank of a matrix built from a finite set of data be the same as the dimensionality of the uncertainty.
Additionally, it avoids matrix inversion, which makes it more computationally favorable, while still being
seamlessly integrated into an existing 6-DOF pose tracking controller.

This paper is structured as follows: Section II contains a review of the main equations for quaternions
and dual quaternions. Section III lays out the theoretical framework for the use of concurrent learning.
The main result of the paper is given in Section IV. Finally, Section V contains simulation results for the
proposed control law in comparison with the baseline controller.

II. Mathematical Preliminaries

This section introduces the basic concepts of quaternions, dual quaternions, and their use in representing
kinematics and dynamics of rigid bodies. For an exhaustive description the reader is referred to Refs. 27–30,
from which the notation has been adopted.

II.A. Quaternions

Quaternions are a mathematical tool commonly used to represent rotations in three-dimensional space.
Quaternions define an associative, non-commutative algebra, defined as H := {q = q0 + q1i+ q2j+ q3k : i2 =
j2 = k2 = ijk = −1, qi ∈ R}. In practice, quaternions are referred to by their scalar and vectors parts as
q = (q0, q), where q0 ∈ R and q = [q1, q2, q3]T ∈ R3. The properties of quaternion algebra are summarized
in Table 1. Previous literature has defined quaternion multiplication as the multiplication between a 4 × 4
matrix and a vector in R4.

Table 1. Quaternion Operations

Operation Definition

Addition a+ b = (a0 + b0, ā+ b̄)

Multiplication by a scalar λa = (λa0, λa)

Multiplication ab = (a0b0 − ā · b̄, a0b̄+ b0ā+ ā× b̄)

Conjugate a∗ = (a0,−ā)

Dot product a · b = (a0b0 + ā · b̄, 03×1)

Cross product a× b = (0, a0b̄+ b0ā+ ā× b̄)

Norm ‖a‖ =
√
a · a

Since any rotation can be described by three parameters, the unit norm constraint is imposed on quater-
nions for attitude representation. Unit quaternions are closed under multiplication, but not under addition.
A quaternion describing the orientation of frame X with respect to frame Y , qX/Y, will satisfy q∗X/YqX/Y =
qX/Yq

∗
X/Y = 1, where 1 = (1, 03×1). This quaternion can be constructed as qX/Y = (cos(φ/2), n̄ sin(θ/2)),

where n̄ and θ are the unit Euler axis, and Euler angle of the rotation respectively. It is worth emphasizing
that q∗Y/X = qX/Y, and that qX/Y and −qX/Y represent the same rotation. Furthermore, given quaternions qY/X

and qZ/Y, the quaternion describing the rotation from X to Z is given by qZ/X = qY/XqZ/Y.
Three-dimensional vectors can be interpreted as quaternions. That is, given s̄X ∈ R3, the coordinates

of a vector expressed in frame X, its quaternion representation is given by sX = (0, s̄X) ∈ Hv, where Hv is
the set of vector quaternions defined as Hv , {(q0, q) ∈ H : q0 = 0} (see Ref. 29 for further information).
The change of reference frame on a vector quaternion is achieved by the adjoint operation, and is given by
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sY = q∗Y/Xs
XqY/X. Additionally, given s ∈ Hv, we can define the operation [·]× : Hv → R4×4 as

[s]× =

[
0 01×3

03×1 [s]×

]
, where [s]× =

 0 −s3 s2

s3 0 −s1
−s2 s1 0

 . (1)

In general, the attitude kinematics evolve as

q̇X/Y = 1
2qX/Yω

X

X/Y = 1
2ω

Y

X/YqX/Y, (2)

where ωZ
X/Y , (0, ωZ

X/Y) ∈ Hv and ωZ

X/Y ∈ R3 is the angular velocity of frame X with respect to frame Y
expressed in Z-frame coordinates.

Let I be the inertial frame of reference, B a frame fixed on the rigid body, and D the desired reference
frame to track. The kinematic equation of motion for the B and D frames, relative to the inertial frame is
given, respectively, by

q̇B/I = 1
2qB/Iω

B

B/I, and q̇D/I = 1
2qD/Iω

D

D/I. (3)

The kinematic equation for the rotational error between two non-inertial frames, whose relative orientation
is described by qB/D, can be easily derived to be

q̇B/D = 1
2qB/Dω

B

B/D, (4)

where ωB
B/D = ωB

B/I − ωB
D/I = ωB

B/I − q∗B/Dω
D
D/IqB/D.

II.B. Dual Quaternions

Dual quaternions are an extension of quaternions that arise in the study of dual numbers. A dual number
can be described by x = xr + εxd for xr, xd ∈ R, where ε is such that ε 6= 0, ε2 = 0. A dual quaternion is a
quaternion whose entries are dual numbers. This is analogous to defining the space of dual quaternions as
Hd = {q = qr + εqd : qr, qd ∈ H}. The nilpotent term ε commutes with the quaternion basis elements i, j, k,
allowing us to define the basic properties listed in Table 2. Reference 31 also conveniently defines a multipli-
cation between matrices and dual quaternions that resembles the well-known matrix-vector multiplication
by simply representing the dual quaternion coefficients as a vector in R8. A property that arises from the

Table 2. Dual Quaternion Operations

Operation Definition

Addition a + b = (ar + br) + ε(ad + bd)

Multiplication by a scalar λa = (λar) + ε(λad)

Multiplication ab = (arbr) + ε(adbr + arbd)

Conjugate a∗ = (a∗r) + ε(a∗d)

Dot product a · b = (ar · br) + ε(ad · br + ar · bd)

Cross product a× b = (ar × br) + ε(ad × br + ar × bd)

Circle product a ◦ b = (ar · br + ad · bd) + ε0

Swap as = ad + εar

Norm ‖a‖ =
√
a ◦ a

Vector part vec
(
a
)

= (0, ar) + ε(0, ad)

definition of the circle product for dual quaternions is given by

as ◦ bs = a ◦ b = b ◦ a. (5)
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Analogous to the set of vector quaternions Hv, we can define the set of vector dual quaternions as
Hv

d , {q = qr +εqd : qr, qd ∈ Hv}. Vector dual quaternions have special properties of interest in the study of
kinematics, dynamics and control of rigid bodies. The two main properties are listed below, where a, b ∈ Hv

d:

a◦(bc) = bs◦(asc∗) = cs◦(b∗as), (6)

a◦(b×c)=bs◦(c×as)=cs◦(as×b). (7)

Finally, for vector dual quaternions we will define the skew-symmetric operator [·]× : Hv
d → R8×8,

[s]× =

[
[sr]× 04×4

[sd]× [sr]×

]
. (8)

Since rigid body motion has six degrees of freedom, a dual quaternion needs two constraints to pa-
rameterize it. The dual quaternion describing the relative pose of frame B relative to I is given by
qB/I = qB/I,r + εqB/I,d = qB/I + ε 12qB/Ir

B
B/I, where rB

B/I is the position quaternion describing the location of
the origin of frame B relative to that of frame I, expressed in B-frame coordinates. It can be easily observed
that qB/I,r · qB/I,r = 1 and qB/I,r · qB/I,d = 0, where 0 = (0, 0̄), providing the two necessary constraints. Thus,
we say that a dual quaternion representing a pose transformation is a unit dual quaternion, since it satisfies
q · q = q∗q = 1, where 1 = 1 + ε0. For completeness purposes, let us also define 0 = 0 + ε0.

Furthermore, similar to quaternion relationships, the frame transformations laid out in Table 3 can be
easily verified.

Table 3. Unit Dual Quaternion Operations

Composition of rotations qZ/X = qY/XqZ/Y

Inverse, Conjugate q∗Y/X = qX/Y

A useful equation is the generalization of velocity in dual form, which will contain a linear and an angular
velocity term. The dual velocity is defined as

ωX

Y/Z = q∗X/Yω
Y

Y/ZqX/Y = ωX

Y/Z + ε(vX

Y/Z + ωX

Y/Z × rX

X/Y). (9)

Thus, the dual velocity of a rigid body, assigned to frame B, with respect to the inertial frame is defined as
ωB

B/I = ωB
B/I + εvB

B/I.
In general, the dual quaternion kinematics can be expressed as

q̇X/Y = 1
2qX/Yω

X

X/Y = 1
2ω

Y

X/YqX/Y. (10)

One of the key advantages of dual quaternions is the resemblance, in form, of the pose error kinematic
equations of motion to the attitude-only error kinematics. The pose error kinematic equations of motion are
given by

q̇B/D = 1
2qB/Dω

B

B/D, (11)

where ωB
B/D = ωB

B/I − ωB
D/I = ωB

B/I − q∗B/Dω
D
D/IqB/D.

In Ref. 31, the authors also represented the pose error dynamics in a manner that closely resembles the
attitude(-only) error dynamic equations of motion through the introduction of the swap operator and the
redefinition of the matrix-dual quaternion multiplication. These are given by

(ω̇B

B/D)s=(MB)−1?
(
fB−(ωB

B/D+ωB

D/I)×
(
MB?((ωB

B/D)s+(ωB

D/I)
s)
)

−MB?(q∗B/Dω̇
D

D/IqB/D)s−MB?(ωB

D/I×ωB

B/D)s
)
, (12)

where fB = fB + ετB is the total external dual force expressed in the body frame, and MB ∈ R8×8 is the
dual inertia matrix defined as

MB=


1 01×3 0 01×3

03×1 mI3×3 03×1 03×3

0 01×3 1 01×3

03×1 03×3 03×1 ĪB

 , (13)

where ĪB ∈ R3×3 is the mass moment of inertia of the body about the center of mass, and m is the mass of
the body.
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III. Concurrent Learning

Concurrent learning is a recently proposed approach that makes use of the current measured state of the
system along with recorded data to modify the adaptation of the parameters. Section 3 of Ref. 26 lays out
the fundamental results for the theory. An overview of how the concept feeds into Lyapunov stability theory
is provided here for the reader’s convenience, in the context of the estimation of the mass properties for a
spacecraft.

The first step is to recast the dynamics from Eq.(12) in a way amenable to the concurrent learning
framework. Specifically, we want the parameters to appear linearly with respect to the regressors, as is the
case in most adaptive control approaches. In our case, we will define v(MB) = [I11 I12 I13 I22 I23 I33 m]T, a
vectorized version of the dual inertia matrix MB, and the error in the estimation of the dual inertia matrix
as

∆MB = M̂B −MB, (14)

as they were originally defined in Ref. 22. This allows us to define the auxiliary function r : Hv
d → R8×7 that

satisfies

MB?a = r(a)v(MB) =



0 0 0 0 0 0 0

0 0 0 0 0 0 a2

0 0 0 0 0 0 a3

0 0 0 0 0 0 a4

0 0 0 0 0 0 0

a6 a7 a8 0 0 0 0

0 a6 0 a7 a8 0 0

0 0 a6 0 a7 a8 0


v(MB).

Using this expression to manipulate Eq.(12) yields the following affine representation with respect to v(MB)

fB=r((ω̇B

B/D)s)v(MB)+[(ωB

B/D+ωB

D/I)]
×r((ωB

B/D)s+(ωB

D/I)
s)v(MB)

+r((q∗B/Dω̇
D

D/IqB/D)s)v(MB)+r((ωB

D/I×ωB

B/D)s)v(MB)

=
[
r((ω̇B

B/D+q∗B/Dω̇
D

D/IqB/D+ωB

D/I×ωB

B/D)s)+[(ωB

B/D+ωB

D/I)]
×r((ωB

B/D+ωB

D/I)
s)
]
v(MB)

,Rk(ω̇B

B/D,ω
B

B/D, ω̇
D

D/I,ω
D

D/I, qB/D)︸ ︷︷ ︸
regressor matrix

v(MB) = Rkv(MB), (15)

where Rk : Hv
d × Hv

d × Hv
d × Hv

d × Hu
d → R8×7, and the sub-index denotes that its arguments are taken at

time tk. Defining εk as

εk , Rkv(M̂B)− fB(tk), (16)

and using Eq. (15), the above equation can be re-expressed as

εk , Rkv(M̂B)− fB(tk)

= Rkv(M̂B)−Rkv(MB)

= Rkv(∆MB), (17)

effectively making εk a signal that quantifies the error in the dual inertia matrix, which is in fact a key step
in concurrent learning. It is worth emphasizing that in generating the variable εk there is no need for the
true inertia matrix parameters; only the regressor matrix Rk, the estimated dual inertia, and the applied
dual force are needed as in Eq. (16).

Let now X = {(ω̇B

B/D,ω
B
B/D, ω̇

D

D/I,ω
D
D/I, qB/D)j}Ns

j=1 and F = {(fB)j}Ns
j=1 be sets of recorded pairs of data

as per Eq. (15) at times {tj}Ns
j=1. For our application, the cardinality of the sets X and F is 7 ≤ Ns < ∞,

and is set by the user. It is worth emphasizing that these sets will be initially empty, and that data will be
incorporated as the become available. Details on how this is done will be discussed in Section IV.
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IV. Identification of Mass and Inertia Properties

The main result of this paper is an adaptive pose-tracking controller that uses concurrent learning to
provide strong assurances on the convergence of the mass and the inertia matrix of the spacecraft. The result
is an extension of the controller first described in Ref. 22, with the corrections incorporated in Ref. 29. The
proof closely mimics the proof provided therein, incorporating the new concurrent learning term which leads
to improved performance in the calculation of the mass properties. The next theorem presents this controller
and shows that it ensures almost global asymptotic stability of the linear and angular motion relative to the
desired reference, which is the strongest kind of stability that can be proven for this problem for the given
parametrization.

Theorem 1. Consider the relative kinematic and dynamic equations given by Eq. (11) and Eq. (12). Let
the dual control force be defined by the feedback control law

fB

c =−vec
(
q∗B/D(qs

B/D − 1s)
)
−Kd ? s

s+ωB

B/I×(M̂B ? (ωB

B/I)
s)+M̂B?(q∗B/Dω̇

D

D/IqB/D)s+M̂B ? (ωB

D/I×ωB

B/D)s

(18)

−M̂B ? (Kp ?
d

dt
(q∗B/D(qs

B/D − 1s)))s,

where
s = ωB

B/D + (Kp ? (q∗B/D(qs
B/D − 1s)))s, (19)

Kp =

[
Kr 04×4

04×4 Kq

]
, Kr =

[
0 01×3

03×1 K̄r

]
, Kq =

[
0 01×3

03×1 K̄q

]
, (20)

Kd =

[
Kv 04×4

04×4 Kω

]
, Kv =

[
0 01×3

03×1 K̄v

]
, Kω =

[
0 01×3

03×1 K̄ω

]
, (21)

and K̄r, K̄q, K̄v, K̄ω ∈ R3×3 are positive definite matrices, M̂B is an estimate of MB updated according to

d

dt
v(M̂B) = −αKi

Ns∑
k=1

R
T

kεk +Ki

[
−h((s× ωB

B/I)
s, (ωB

B/I)
s)

−h(ss, (q∗B/Dω̇
D

D/IqB/D)s+(ωB

D/I × ωB

B/D)s−Kp?
d(q∗B/D(qs

B/D − 1s))

dt
)
]
, (22)

Ki ∈ R7×7 is a positive definite matrix, the function h : Hv
d × Hv

d → R7 is defined as a ◦ (MB ? b) =
h(a, b)Tv(MB) = v(MB)Th(a, b) or, equivalently, h(a, b) = [a6b6, a7b6+a6b7, a8b6+a6b8, a7b7, a8b7+a7b8,
a8b8, a2b2+a3b3+a4b4]T, and εk is given by (16), constructed from the data in the sets X and F . Assume
that qD/I,ω

D
D/I, ω̇

D

D/I ∈ L∞ and

rank

Ns∑
k=1

R
T

kRk = 7. (23)

Then, for all initial conditions, limt→∞ qB/D = ±1 (i.e., limt→∞ qB/D = ±1 and limt→∞ rB
B/D = 0),

limt→∞ ωB
B/D = 0 (i.e., limt→∞ ωB

B/D = 0 and limt→∞ vB
B/D = 0), and v(M̂B)→ v(MB).

Proof. Note that qB/D = ±1, s = 0, and v(∆MB) = 07×1 are the equilibrium conditions of the closed-loop
system formed by Eqs. (12), (11), (18), (22), and (16). Consider now the following candidate Lyapunov
function for the equilibrium point (qB/D, s, v(∆MB)) = (+1,0, 07×1):

V (qB/D, s, v(∆MB)) = (qB/D − 1) ◦ (qB/D − 1) + 1
2s

s ◦ (MB ? ss) + 1
2v(∆MB)TK−1i v(∆MB). (24)

Note that V is a valid candidate Lyapunov function since V (qB/D = 1, s = 0, v(∆MB) = 07×1) = 0 and
V (qB/D, s, v(∆MB)) > 0 for all (qB/D, s, v(∆MB)) ∈ Hu

d ×Hv
d ×R7\{1,0, 07×1}. The time derivative of V is

equal to

V̇ = 2(qB/D − 1) ◦ q̇B/D + ss ◦ (MB ? ṡs) + v(∆MB)TK−1i

dv(∆MB)

dt
.
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From Eq. (11) and Eq. (19) we can write q̇B/D = 1
2qB/Ds− 1

2qB/D(Kp ? (q∗B/D(qs
B/D − 1s)))s, which can then

be plugged into V̇ , together with the time derivative of Eq. (19), to yield

V̇=(qB/D − 1) ◦ (qB/Ds− qB/D(Kp ? (q∗B/D(qs
B/D − 1s)))s)+v(∆MB)TK−1i

d

dt
v(∆MB)

+ss ◦ (MB ? (ω̇B

B/D)s)+ss ◦ (MB ? (Kp ?
d(q∗B/D(qs

B/D − 1s))

dt
)).

Applying Eq. (6) to the first term, evaluating the dynamics from Eq. (12), and using the identity ωB
B/D +

ωB
D/I = ωB

B/I yields

V̇=− (Kp ? (q
∗
B/D(q

s
B/D − 1s))) ◦ (q∗B/D(q

s
B/D − 1s))+ss ◦ (fB−ωB

B/I×
(
MB ? (ωB

B/I)
s)−MB?(q∗B/Dω̇

D
D/IqB/D)

s

−MB?(ωB
D/I×ωB

B/D)
s)+ss ◦ (MB ? (Kp ?

d(q∗B/D(q
s
B/D − 1s))

dt
))+v(∆MB)TK−1

i

d

dt
v(∆MB) + ss ◦ (q∗B/D(q

s
B/D − 1s)).

Introducing the feedback control law given by Eq. (18) and using Eqs. (7) and (5) yields

V̇=− (q∗B/D(qs
B/D − 1s)) ◦ (Kp ? (q∗B/D(qs

B/D − 1s)))+ss ◦ (ωB

B/I×
(
∆MB ? (ωB

B/I)
s
)
+∆MB?(q∗B/Dω̇

D

D/IqB/D)s

+∆MB?(ωB

D/I×ωB

B/D)s−∆MB ? (Kp ?
d(q∗B/D(qs

B/D − 1s))

dt
))−ss ◦ (Kd ? s

s)+v(∆MB)TK−1i

d

dt
v(∆MB)

or

V̇=− (q∗B/D(q
s
B/D − 1s)) ◦ (Kp ? (q

∗
B/D(q

s
B/D − 1s)))+(s× ωB

B/I)
s ◦ (∆MB ? (ωB

B/I)
s)+ss ◦ (∆MB?(q∗B/Dω̇

D
D/IqB/D)

s

+∆MB?(ωB
D/I×ωB

B/D)
s−∆MB ? (Kp ?

d(q∗B/D(q
s
B/D − 1s))

dt
))−ss ◦ (Kd ? s

s) + v(∆MB)TK−1
i

d

dt
v(∆MB).

Therefore, if d
dtv(∆MB) is defined as in Eq. (22), it follows that

V̇=− (q∗B/D(qs
B/D − 1s)) ◦ (Kp ? (q∗B/D(qs

B/D − 1s)))−ss ◦ (Kd ? s
s)− αv(∆MB)T

Ns∑
k=1

RT

kRkv(∆MB) ≤ 0

for all (qB/D, s, v(∆MB)) ∈ Hu
d × Hv

d × R7\{1,0, 07×1}. Hence, the equilibrium point (qB/D, s, v(∆MB)) =
(+1,0, 07×1) is uniformly stable and the solutions are uniformly bounded, i.e., qB/D, s, v(∆MB), ∈ L∞.

Moreover, from Eqs. (14) and (19) this also means that ωB
B/D, v(M̂B) ∈ L∞. Since V ≥ 0 and V̇ ≤ 0,

limt→∞ V (t) exists and is finite. Hence, limt→∞
∫ t

0
V̇ (τ) dτ = limt→∞ V (t) − V (0) also exists and is finite.

Since qB/D, s, v(∆MB),ωB
B/D, v(M̂B), ω̇D

D/I,ω
B
D/I, qD/I ∈ L∞, then from Eqs. (11), (18), and (12) and from

Lemma 53 in Ref. 29, rB
B/I, q̇B/D,f

B, ω̇B

B/D, ṡ ∈ L∞. Hence, by Barbalat’s lemma, vec
(
q∗B/D(qs

B/D − 1s)
)
→ 0,

s → 0 and v(∆MB) → 07×1 as t → ∞. In Ref. 31, it is shown that vec
(
q∗B/D(qs

B/D − 1s)
)
→ 0 is equivalent

to qB/D → ±1. Furthermore, calculating the limit as t → ∞ of both sides of Eq. (19) yields ωB
B/D → 0.

Finally, it is clear to see that v(∆MB)→ 07×1 implies by definition v(M̂B)→ v(MB) as t→∞. �

Remark 1. It is possible to prove that v(∆MB) → 07×1 because the term −v(∆MB)
∑Ns

j=1R
T

kRkv(∆MB)
appears in the derivative of the Lyapunov function, which is the main contribution of the concurrent learning

framework. Note that to do this, Eq. (17) was key, and that the matrix
∑Ns

k=1R
T

kεk is constructed from
collected data in the sets X and F .

Remark 2. Chapter 6 in Ref. 26 addresses how the matrices X and F should be populated. Algorithm 6.2
therein, which aims to maximize the minimum singular value of

∑Ns

j=1R
T

kRk, was selected for the implemen-
tation of the proposed controller. It is worth emphasizing that for the algorithm to work we only require
that Eq. (23) is satisfied. The maximization of the minimum singular value just speeds up the convergence
of the parameters.

Remark 3. As pointed out in Ref. 17, linear and angular velocity measurements, among others, are in-
evitably corrupted by noise in real systems. This limitation is not considered in this paper and will be the
subject of future research. However, the concurrent learning framework has already been successfully tested
experimentally in Ref. 32.

Remark 4. In practice the derivatives of certain states might not be readily accessible through the measure-
ments. This is the case, for example, with ω̇B

B/D. An optimal fixed-point smoother can be used to estimate
these variables, if needed.26,32
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V. Numerical Results

The controller proposed by Eq. (18) was simulated using MATLAB R2015b and Simulink and its
performance was compared to that of the nominal controller proposed in Ref. 27. The initial state of
the system is given by qB/D(0) = (0.8721,−[0.1178, 0.4621, 0.1097]T), r̄B

B/D(0) = [1, 2, 0.5]T (m), ω̄B
B/D(0) =

[0.5, 1, 1]T (rad/s), v̄B
B/D(0) = [0.5,−0.5, 1]T (m/s), v(MB) = [5, 2, 3, 5, 1, 4, 10]T, v(M̂B) = 07×1, with units of

kg.m2 and kg for the inertia elements and the mass respectively. The matrix gains were set to K̄r = 0.74/3I3,
K̄q = 0.2/3I3, K̄v = 84.37I3, K̄ω = 15I3, and Ki = 10I7. In addition, to avoid a persistently exciting refer-
ence, a constant reference is selected as ω̄D

D/I(t) = [1, 0, 0]T and v̄D
D/I(t) = [1, 0, 0]T.

The parameters that concern the concurrent learning controller are set to Ns = 50, α = 0.0005, and the
minimum singular value of the sum of regressor matrices required to stop the search of new data points is
set to a value of 20.

Figure 1 shows the evolution of the estimated mass properties as a function of time during the maneuver.
It is clear that the mass converges quickly using the concurrent learning framework proposed in this paper,
while the baseline controller does not converge. Similarly, all of the inertia parameters converge for the
proposed algorithm, but four of the estimates do not converge for the baseline controller from Ref. 27.
This behavior can be attributed to the lack of excitation induced by the desired linear and angular velocity
references. This is reinforced by the fact that the regressor matrix W (t) of Eq. 36 in Ref. 27 yields

W (t) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0


(25)

for our simulated scenario. This implies that the baseline controller’s convergence criterion,

rank
[
W (t1)

T

. . . W (tn)
T
]T

= 7,

will never be satisfied, while the convergence criterion given in Eq. (23) is satisfied even for such a non-exciting
reference. In fact, the criterion is achieved at t = 0.0177s. The difference in the behavior can be explained
by the fact that the concurrent learning controller uses additional information (such as force, torque and
acceleration) than the nominal controller to achieve this parameter convergence. When such information is
readily available, the concurrent learning framework is a reliable alternative for adaptive feedback control
with parameter convergence (see also Remark 1 related to this point).

Figure 2 shows the tracking error of the body frame relative to the desired frame. It is clear that both
controllers are able to successfully track a 6-DOF reference. Additionally, Figure 3 shows the control effort
(i.e., forces and torques) applied on the spacecraft. They are both similar and within acceptable limits.

This example highlights the significant advantage that the proposed framework can yield compared to
others in terms of system identification and reliability in terms of tracking the desired reference trajectory.
Finally, it is worth noting that the parameter Ns plays a significant role in the speed of convergence of the
inertia parameters. For example, if instead of Ns = 50 we choose Ns = 10 instead, convergence is achieved
in about 500 sec using the concurrent learning algorithm.

VI. Conclusions

On-line system identification tasks can be necessary beyond the mere requirement of performing refer-
ence tracking in the case of, for example, capture of another satellite or celestial body, under the assumption
that the location of the center of mass is known or unchanged. The use of the concurrent learning frame-
work avoids discontinuities in the estimate of the inertia matrix, while enabling precise pose control of the
spacecraft. Additionally, it avoids computationally intensive operations, such as matrix inversion or matrix
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Figure 1. Evolution of estimated dual inertia matrix parameters.

decomposition, both tasks commonly found in optimization software or formulations deriving from least
squares. In addition, the introduction of concurrent learning provides convergence assurances, given that
an easily verifiable rank condition is satisfied. This is a simplification of the commonly stringent condition
that the regressors are persistently exciting. Future work will include the study of the effects of noise in the
measurements of the state and other signals necessary to implement concurrent learning, as well as system
parameter identification for more complex systems.
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