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This paper presents an information-theoretic active localization technique applied to the
problem of relative navigation and self-localization in orbit. We apply the approach to the
problem of a chaser satellite circumnavigating a target satellite in a circular orbit, while
observing a set of feature points (landmarks) on the target satellite. The approach relies
on the Cross Entropy (CE) optimization method to select camera orientation trajectories
that minimize both the localization error and the corresponding uncertainty bounds, while
moderating the required control effort. The proposed method provides a framework for
near-optimal solutions by jointly considering control, planning and estimation. We show
the benefits of the method in terms of landmark uncertainty reduction and we compare
the proposed approach against an open-loop strategy and a “greedy” feedback strategy.

I. Introduction

Autonomous satellite relative navigation has received a lot of attention lately owing to its potential impact
on proximity operations in orbit. In fact, autonomous proximity operations (e.g., monitoring, servicing,
docking) are identified in NASA’s roadmap1 as an area of great interest for many future missions, both
in low Earth orbit (LEO) as well as in deep space. Fundamental to the achievement of such autonomy
is the ability to accurate localize a spacecraft with respect to another spacecraft or asteroid. Existing
work in proximity operations (see, for example Refs. [2–6]) solve the problem of control and estimation
independently. That is, various landmarks, such as patterns or features on the target satellite or asteroid,
are first localized and are subsequently used as reference points for other control tasks, such as docking or
precision landing. The effect that the particular control policies might have on the estimation and vice-
versa, by and large, are not explored. Instead, the standard approach is based on the separation principle
of stochastic optimal control,7–9 according to which the control and estimation problems are dual and they
can be solved completely separately from one another. This, however, is true only for linear systems with
additive Gaussian process and observation noise.

In this work we integrate planning and stochastic optimization with agent localization in order to perform
control under uncertainly for an autonomous spacecraft in orbit. Control here means the active rotation of
the spacecraft or sensor about one of its axes so that it points to the location of the feature point(s) detected
in a previous time step. The estimation accuracy of the detected feature(s) drives which feature(s) should
be selected next, and hence also drives the corresponding control action. The control and estimation steps
are therefore coupled. This active localization approach, when coupled with a mapping step of the initially
unknown environment, is known in the robotics community as Active SLAM (Simultaneous Localization
and Mapping) and it has been studied extensively in the past, mainly in the robotics community.10–12 In
particular, in Refs. [11, 12] model predictive control has been used for planning trajectories which improve
SLAM performance. Simulations and experiments were performed for a single agent exploration scenario.
In Ref. [10] Active SLAM was performed for the case of single robot while the metric used for planning was
the information gain. For some more recent results on the subject, see Refs. [13–15].

In this paper, and in order to capture estimation uncertainty in the optimization step, we construct a cost
function which includes, besides the state and control cost, a term encapsulating the uncertainty of the state
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as provided by an estimator, e.g., an Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF).
The resulting optimization problem is difficult to solve. We thus resort to the method of cross-entropy
(CE) minimization to find the optimal control strategy. The CE minimization method iteratively selects
the best attitude trajectories to minimize the aforementioned cost. The result is a near-optimal path, in
terms of achieving a predefined goal in the state space, while reducing the localization error and the total
uncertainty. Effectively, the proposed method provides a framework to obtain near-optimal solutions for the
orbital circumnavigation problem by jointly considering control, planning and estimation. To evaluate the
approach, we consider scenarios of a satellite circumnavigating another satellite in orbit while observing a set
of feature points (landmarks) on the target satellite. The objective of the observing satellite is to accurately
map the landmarks. Simulation results indicate that the proposed method results in trajectories which
compare favorably to a heuristic “greedy” planning algorithm in terms of landmark uncertainty reduction.

It should be noted that Cross Entropy (CE) optimization has been used in the past for obstacle avoidance
of Unmanned Aerial Vehicles (UAV), see Ref. [16]. Herein the CE method is applied for active localization in
space with the intention of accurately localizing a set of landmarks whose location is known a-priori with high
uncertainty. It is worth-mentioning that despite previous similar work of CE optimization for mobile robotic
agents, the current paper is the first one to apply this approach to the relative pose localization problem
in orbit, at least as far as the authors know. This problem also differs from previous work because in our
particular case, most of the state variables of the observer satellite are constrained to follow a specific circular
orbit. As a final remark, it should be mentioned that although information-theoretic methods (including CE
optimization) are computationally expensive for most terrestrial and aerial applications (which require short
time reaction scales), the long duration times encountered in orbit applications make the CE technique a
feasible alternative for space applications.

The paper is organized as follows: in Section II we briefly introduce the problem to be solved along with
the basic assumptions, definitions and kinematic equations. In Section III we provide a brief description
the Cross Entropy method as it is applied to solve stochastic optimal control problems. In Section IV we
present the state and observation models for the relative navigation scenario of two satellites along with
the EKF equations used to estimate the state. Section V presents the results of our numerical simulation
experiments, and we conclude this paper in Section VI with a summary of our work and some suggestions
for future extensions.

II. Relative Navigation in Orbit

In this paper we consider the following problem: a main “target” satellite is orbiting the Earth in a
circular or elliptical orbit. Using a (perhaps) smaller satellite (the “observer”), we wish to monitor/observe
the target satellite closely using a single camera. The camera is assumed to have a restricted field-of-view
and limited resolution range. In addition, the camera is allowed to gimbal and track “informative” features
on the target satellite. The generation and determination of such features are typically the output of well-
known image processing algorithms17,18 and are not the subject in this study. For simplicity, it will be
assumed that the camera is tracking the “most informative” feature at each instant of time, and that the
total number N of available features is given a priori, although these assumptions can be easily removed.
Finally, we assume that the vision processing pipeline deals with the (in general, non-trivial) data association
and feature correspondence problems.19–21

As the observer/chaser satellite circumnavigates around the target satellite, it uses the tracked feature
points on the target satellite to localize itself with respect to the latter. Localization here means determining
the relative orientation of the observer satellite with respect to the target satellite. Since the observer satellite
is in a predetermined orbit, it is assumed that the relative distance between the two is known to the observer
satellite. Hence, only the relative orientation between the two satellites needs to be determined.

To show the feasibility of the proposed approach, we consider only a simplified/planar version of the
previous problem. Specifically, we assume that the observer/chaser satellite circumnavigates the target
satellite following a circular trajectory of radius Rorb having linear velocity V and relative orbital velocity
ωφ = V/Rorb. Note that the choice of a circular orbit is only made for the sake of simplicity. Typical relative
orbits of two satellites flying in formation would result in a 2× 1 elliptical orbit.22 The incorporation of an
elliptical reference orbit for the chaser satellite is straightforward.

In order to simplify the analysis, we will assume that the target satellite is stationary, and that the
observer satellite (or sensor) is free to rotate around the axis that is normal to the xy plane going through
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its center of mass (the zR;S axis of the {R} and {S} frames in Figure 1) at an angle θ, which is independent
of the angle φ.

Figure 1. The various coordinate systems for an observer in circular orbit carrying a sensor: Global non Rotating
Coordinate System {G}, Local non Rotating Coordinate System centered on the observer {R}, and Local Rotating
Coordinate System on the sensor {S} .

The tracked features on the target satellite serve as “landmarks,” whose location is to be determined and
may denote feature points provided by a range and bearing sensor. Detection of the landmarks occurs only
if they are within the field of view and range of the sensor, as shown in Figure 2.
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Figure 2. A sample simulation setup showing the landmarks (blue stars), the orbit of the observer (cyan), and the
sensing area of the sensor (green).

Augmenting the positions of the N landmarks, pi ∈ R2, to the orbiting satellite state vector yields the

vector x = (x, y, φ, θ,p1, ...,pN )
T ∈ R2N+4. The problem kinematics are then expressed as follows:

dx(t)

dy(t)

dφ(t)

dθ(t)

dp1(t)
...

dpN (t)


=



V cosφ(t)dt

V sinφ(t)dt

ωφ(t)dt

ωθ(t)dt

0
...

0


+

(
I4

02N×4

)
dw(t), (1)

where x, y correspond to the position, φ to the orientation of the observer satellite with respect to the global
reference frame {G} and θ is the orientation of the sensor with respect to the local frame {R}. The control
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input is the angular velocity ωθ. The process noise, dw(t) ∈ R4, is assumed to be white Gaussian with
covariance matrix Σw = diag(σ2

1 , σ
2
2 , σ

2
3 , σ

2
4).

The observation model can be written as follows:

dy(t) = S
RR(θ(t))RGR(φ(t)) (pi(t)− pR(t)) dt+ dv(t), (2)

where pi = (pxi , pyi)
T and pR = (x, y) are the position of the landmarks and the location of the observer

satellite, respectively. The term dv corresponds to the observation noise of the sensor, which is considered to
be zero-mean Gaussian with covariance matrix Σv = diag(σ2

5 , σ
2
6). The matrices R

GR(φ(tk)) and S
RR(θ(tk))

express rotational transformations from the global {G} to the observer frame of reference {R} and from {R}
to the sensor reference frame {S}, respectively. In compact form, the observation model is written as

dy(t) = H (x(t)) dt+ dv(t). (3)

As it was shown in Ref. [23], using a cost function that includes a measure of estimation uncertainty can
lead to trajectories that reduce the overall uncertainty of a map. A good candidate for such a measure of
uncertainty is the trace of the covariance matrix for the state estimate provided by an Extended Kalman
Filter (EKF), using Eq. (1) and Eq. (2) for the propagation and update phase of the EKF, respectively.
Alternatively, an Unscented Kalman Filter (UKF) can be used as described in Ref. [24]. The cost function
is therefore of the form:

L(x,u) = ψ(xtN ) +

∫ tN

0

(
Q(x) +

1

2
uTRu

)
dt, (4)

where the terminal cost is
ψ(xtN ) = ‖p∗ − pR‖2 + wΣ trace (Σ(tN )) , (5)

with p∗ being the target position, pR the final position of the observer in the global reference frame {G}
and wΣ the weight for the trace of the covariance given by the EKF at terminal time tN .

III. Stochastic Optimal Control and Relative Entropy Optimization

In order to solve the stochastic minimization problem (1)-(4) we use ideas from Cross-Entropy optimiza-
tion. The main ideas behind CE optimization are given in the next section. For more details, the interested
reader is referred to Refs. [25] and [16].

III.A. Cross Entropy Formulation

In this section we summarize the main ideas of Cross Entropy minimization and how it can be used to solve
a certain class of stochastic optimal control problems. To this end, assume that we are given a system with
stochastic dynamics

dx = f(x,u)dt+ g(x)dw, (6)

and we wish to minimize the cost
min
u

Ep[L(x,u)], (7)

where the expectation in Eq. (7) is with respect to the trajectories of Eq. (6). In Equation (6) x ∈ Rn
is the state of the system, u ∈ Rp is the control vector, and w ∈ R` is a zero-mean Gaussian process with
covariance Σw.

We parameterize the control input u(t) in terms of a parameter vector λ ∈ Λ ⊂ Rm to obtain u(t) =
u(t;λ). Therefore, instead of minimizing the cost function in Eq. (7) with respect to u(t) we will minimize
it with respect to the finite dimensional vector λ.

According to the Cross Entropy minimization method,25 we rewrite the cost function as follows:

J (λ) = Ep[L(λ)] =

∫
Λ
p(λ)L(λ)dλ, (8)

where p(λ) is the probability density function corresponding to sampling trajectories based on Eq. (6). Under
a parameterization of the baseline probability density, we have p(λ) = p(λ;µ). We perform importance
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sampling from a proposal probability density q(λ) and evaluate the expectation in Eq. (8) as follows:

J (λ) =

∫
p(λ;µ)

q(λ)
L(λ)q(λ)dλ = Eq

[
p(λ;µ)

q(λ)
L(λ)

]
. (9)

The expression above can be approximated numerically by

Ĵ (λ) ≈ 1

Ns

Ns∑
i=1

[
p(λi;µ)

q(λi)
L(λi)

]
(10)

with Ĵ (λ) being an unbiased estimator and Ns the number of samples drawn. The probability density that
minimizes the variance of the estimator Ĵ (λ) is

q∗(λ) = argmin
q

Var

[
L(λ)

p(λ;µ)

q(λ)

]
=
p(λ;µ)L(λ)

J (λ)
(11)

and it is the optimal (with respect to variance) importance sampling density.
In the cross entropy optimization framework25 the main idea is to find the parameters ξ ∈ Ξ within

the parametric class of pdfs p(λ; Ξ), such that the probability distribution p(λ; ξ) is close to the optimal
distribution q∗(λ) given in Eq. (11). Using the Kullback-Leibler divergence as a distance metric between
q∗(λ) and p(λ; ξ) yields

D (q∗(λ)‖p(λ; ξ)) =

∫
q∗(λ) ln q∗(λ)dλ−

∫
q∗(λ) ln p(λ; ξ)dλ.

The minimization problem can now be formulated as follows:

ξ∗ = argmin
ξ

D (q∗(λ)‖p(λ; ξ))

= argmax
ξ

∫
q∗(λ) ln p(λ; ξ)dλ

= argmax
ξ

∫
p(λ;µ)L(λ)

J (λ)
ln p(λ; ξ)dλ

= argmax
ξ

∫
p(λ;µ)L(λ) ln p(λ; ξ)dλ

= argmax
ξ

E
p(λ;µ)

[L(x) ln p(λ; ξ)] .

Based on the previous equation, the optimal parameters can be approximated numerically by

ξ∗ ≈ argmax
ξ

1

Ns

Ns∑
i=1

L(λi) ln p(λi; ξ) (12)

with Ns sample paths evaluated under the density p(λ;µ).

III.B. Optimization as Estimation of Rare-Event Probabilities

This subsection demonstrates how the CE optimization recasts the minimization of the cost shown in Eq. (8)
as an estimation problem of rare event probability. To this end, we consider the problem of estimating the
probability that a trajectory x = [x1,x2, . . . ,xtN ], which arose by sampling control vector parameters from
the distribution p(λ;µ), has a cost that is smaller than a constant γ. Specifically, we have

P (L ≤ γ) = E
p(λ;µ)

[I{L≤γ}].

Using (10), this probability can be numerically approximated by

P̂ (L ≤ γ) ≈ 1

Ns

Ns∑
i=1

[
p(λi;µ)

p(λi; ξ)
I{L(λi)≤γ}

]
,
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where λi are i.i.d samples drawn from p(λ; ξ). Based on Eq. (12), the goal becomes to find the optimal ξ∗

which is defined as

ξ∗ = argmax
ξ

1

Ns

Ns∑
i=1

I{L(λi)≤γ} ln p(λi; ξ), (13)

where now the samples λi are generated according to probability density p(λ;µ). Since the event {L ≤ γ} is
rare, its probability is difficult to be estimated directly using, for example, brute force Monte-Carlo. Instead,
one may start with a γ1 > γ for which the probability of the event {L ≤ γ1} is equal to some ρ > 0. Thus,
the value γ1 is set to the ρ-th quantile of L(λ) which means that γ1 is the largest number for which

P (L(λ) ≤ γ1) = ρ. (14)

The parameter γ1 can be found by sorting the samples according to their cost in increasing order and setting
γ1 = LdρNe. The optimal parameter ξ1 for the γ1 level is calculated according to Eq. (13) using the value
γ1. This iterative procedure terminates when γk ≤ γ, in which case the corresponding parameter ξk is the
optimal one and thus ξ∗ = ξk .

To summarize, for the case of optimal control in continuous action spaces, optimization is treated as an
estimation problem of rare event probability. To find the optimal trajectory λ∗ and optimal parameters ξ∗,
the process of estimating rare event probabilities is iterated until γ → γ∗, where γ∗ = minL(λ). Since γ∗ is
not known a-priori, we choose as γ∗ the value of γ for which no further improvement in the iterative process
is observed.

Iterative Algorithm. Choosing p(λ; ξ) to be a Gaussian, the algorithm can be summarized as follows:

1. Initialize an iteration counter j ← 1 and select some initial parameters µ = ξ1 = {µξ1
,Σξ1

}.

2. From a pdf p(λ; ξj) = N (µξj
,Σξj

) draw a set of Ns parameter vectors λi.

3. Evaluate the cost of each trajectory J(λi) and sort them in ascending order.

4. Select the best performing ρ-th percentile to form a set Sj and use it to estimate the parameters ξj :

µξj
=

1

|Sj |
∑

~xi∈Sj

λi, (15)

Σξj
=

1

|Sj |
∑

~xi∈Sj

(λi − µξj )(λi − µξj )
T (16)

5. If the stopping criterion is met set ξ∗ ← ξj and halt. Otherwise, set j ← j + 1 and iterate from step 2
using the newly adjusted parameters ξj .

IV. Application of CE Optimization to Satellite Self-Localization in Orbit

In order to apply the results of the previous section to our problem, we first consider a discretized version
of Eq. (1) as follows:

x(tk+1)

y(tk+1)

φ(tk+1)

θ(tk+1)

p1(tk+1)

...

pN (tk+1)


=



x(tk) + V cos(φ(tk))δt

y(tk) + V sin(φ(tk))δt

φ(tk) + ωφ(tk)δt

θ(tk) + ωθ(tk)δt

p1(tk)

...

pN (tk)


+

(
I4

02N×4

)
w(tk), (17)
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where δt is the discretization step. We use an EKF to estimate the state of the system, given the measure-
ments. The propagation phase of an EKF for the system described in Eq. (17) is then given by7

x̂(tk+1|k) = f

(
x̂(tk|k),u(x̂(tk|k), tk;λ)

)
Φ = ∇x̂f

(
x̂(tk|k),u(x̂(tk|k), tk;λ)

)
Σ(tk+1|k) = ΦΣ(tk|k)ΦT + Σw,

(18)

where λ is a parameter vector indicating that the control is parameterized. Similarly, the observation model
in Eq. (2) can be written in a discrete form as

Sy(tk) = S
RR(θ(tk))RGR(φ(tk))

(
Gpi(tk)− GpR(tk)

)
+ v(tk). (19)

In a compact form the discrete observation model is given by

y(tk) = H (x(tk)) + v(tk). (20)

The function H (x(tk)) is defined such that it matches the observation scenario as expressed in Eq. (19).
Given the observation model, the Extended Kalman Filter update equations are:

H(x̂(tk+1|k)) = ∇x̂(tk+1|k)H(x(t))

ŷ(tk+1) = H(x̂(tk+1|k))

y(tk+1) = H(x(tk+1)) + v(tk+1)

r(tk+1) = y(tk+1)− ŷ(tk+1)

S(tk+1) = HΣ(tk+1|k)HT + Σv

K(tk+1) = Σ(tk+1|k)HTS(tk+1)−1

x̂(tk+1|k+1) = x̂(tk+1|k) + K(tk+1)r(tk+1)

Σ(tk+1|k+1) = (I −KH) Σ(tk+1|k) (I −KH)
T

+ KΣvKT.

(21)

Since the sensor has a limited field of view, the choice of ωθ may have a significant influence on the
uncertainty of the estimate of the state x(tN ) as it is captured by the trace(Σ(tN )), where tN is the time
horizon of a trajectory. We therefore choose ωθ such that it minimizes the descrete cost:

L̂(x,u) ≈ ψ(xtN ) +

N∑
k=0

(
1

2
u(tk)TRu(tk)

)
δt. (22)

For simplicity, we let Q(x) = 0 and ‖p∗ − pR‖ = 0. We use the following parameterization of ωθ,

ωθ(tk) = u

(
ωθ(tk−1), αωθ (tk−1;λ)

)
= ωθ(tk−1) + αωθ (tk−1;λ)δt,

(23)

where αωθ (tk−1;λ) is the rotational acceleration, which is parameterized as a piecewise constant trajectory
split in M parts. For each part i there are two parameters, the duration ∆Ti and the angular acceleration
αi ∈ [αmin, αmax] ⊂ R which remains constant in time interval ∆Ti. The interval [αmin, αmax] defines
the range of acceptable angular acceleration values. The sum of all time intervals is fixed and equal to
the pre-specified time horizon, that is,

∑M
i=1 ∆Ti = tN . The parameter vector λ is, therefore, defined as

λT = (∆T1, α1, ...,∆TM , αM ). Each parameter vector λ corresponds to a unique control vector u, which,
given an initial state value x0, gives rise to a unique trajectory x = [x1,x2, ...,xtN ]. Formally, one can say
that there is a function fλ : Λ→ X ×U where Λ,X ,U denote the sets of the parameter, state and control
trajectories respectively. Given this parameterization, the cost function in (4) can be restated as

L(λ) = C(fλ(λ)). (24)
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V. Numerical Results

To evaluate the proposed method, we perform a series of numerical simulations. We assume an observer
satellite at a distance of approximately 6 meters from the target satellite. Given the close distance and the
fact that the camera has a limited field of view, the satellite needs to actively move the camera to be able
to detect all available landmarks on the target satellite.

In the first simulation scenario, we compare the uncertainty measure for the state of the observer and
the position of the landmarks between the cases when ωθ = 0 and when it is provided by the proposed CE
optimization method. As can be seen in Figure 3, the estimator remains consistent throughout the duration
of the trajectory. For all cases, the optimization horizon tN is taken to be equal to one complete orbit,
assumed for our scenario to to take about 30 minutes.

Figure 4 shows the 3σ uncertainty ellipses around the landmarks at the time horizon from which it
becomes evident that the bounds are tighter for the optimized case. As an additional indication of this, at
the end of the time horizon, the value of trace(ΣtN ) was 12.15 for the case where optimization was used and
14.56 for the one without implying lower uncertainty for the optimized case.

The main observation from these results is that the optimized ωθ produces trajectories which place the
landmarks within the sensing area for longer periods of time, so that better localization is achieved. An
example of such behavior is shown in Figure 5.

Figure 3. Estimation error (in blue) and 3σ bounds (in red) for the state variables of the observer over time when ωθ
is given through the Relative Entropy optimization. Notice that the estimator remains consistent.

Next, we compare the proposed method against a heuristic “greedy” algorithm that uses a simple linear
controller, designed to align the observer with the nearest landmark. Specifically, the rotational velocity of
the observer, ωgreedy

θ , is expressed as

ωgreedy
θ (tk) = u

(
ωgreedy
θ (tk−1), αgreedy

ωθ
(tk−1)

)
= ωgreedy

θ (tk−1) +Kp min
i
‖pi − pR(tk−1)‖2δt,

(25)

where Kp is the proportional gain, pR(tk−1) the position of the observer at time instance tk−1 and pi the
position of landmark i. To make the comparison as fair as possible, the allowable angular acceleration
interval [αmin, αmax] was kept the same as the one in the parameterization of the control policy used in
the CE algorithm. As can be seen in Figure 6, the 3σ bounds for the location of the landmarks produced
by the CE algorithm are similar to those of the “greedy” for landmarks 3 and 4. The greedy algorithm
results in slightly tighter bounds for landmarks 1 and 2, at the expense of the bounds for landmark 5,
where it is significantly outperformed by the proposed method. Overall, the measure of uncertainty for the
trajectory selected by the CE method is smaller than the one resulting from the “greedy”, trace (ΣCE(tN )) =
14.70 < 15.26 = trace (Σgreedy(tN )), indicating a higher uncertainty reduction for the entire landmark map.

Taking into account the control cost incurred for each method (
∑tN
k=0 uCE(tk)RuTCE(tk) = 34.52 < 73.11 =∑tN

k=0 ugreedy(tk)RuTgreedy(tk)) it becomes clear that the proposed method has a definite advantage over the
greedy heuristic. The latter, can be made to achieve similar uncertainty reduction to the CE optimization,
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Figure 4. Uncertainty ellipses for the locations of the landmarks showing the 3σ bounds: (a) initially (green), (b) after
two orbits where ωθ = 0 (blue) and when ωθ is given through the Relative Entropy optimization (red).

as shown in Figure 7, by increasing the control gain Kp and allowing for higher angular acceleration limits.
However, the control cost in this case is at least three times higher that the one incurred using the proposed
approach.

Finally, we briefly investigate the effect that the choice of the estimator (EKF vs UKF24) has on the
estimated map uncertainty. The results, shown in Figure 8, indicate that the UKF yields tighter uncertainty
bounds than the EKF. However, as expected, the UKF is computationally more expensive.

(a) (b)

(c) (d)

Figure 5. Examples of comparison of sensing instances between ωθ = 0 (blue) and when ωθ is given through the Relative
Entropy optimization (green). In the latter case the landmark is kept within the sensing area for a longer period of
time.
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Figure 6. Comparison of 3σ uncertainty ellipses for the locations of the landmarks between a heuristic ”greedy”
algorithm (dashed magenta) and the Cross Entropy optimization (solid green).

Figure 7. Comparison of 3σ uncertainty ellipses for the locations of the landmarks between a heuristic ”greedy”
algorithm (dashed magenta) and the Cross Entropy optimization (solid green). In this case the ”greedy” essentially
matches the uncertainty reduction of the proposed method at the expense of increased control cost.

VI. Conclusions

This paper presents a new approach to solving the active self-localization problem during relative naviga-
tion in orbit using Cross Entropy (CE) minimization. The method incorporates an uncertainty measure in the
cost function, which can be utilized to select near-optimal trajectories in terms of estimation uncertainty.
The proposed method, therefore, provides a principled way to balance control effort against localization
uncertainty by jointly considering the planning, control and estimation problems. Numerical simulations
comparing the results from the proposed approach against an open-loop strategy and a greedy strategy that
simply tries to keep the landmarks visible throughout the orbit, show the benefits of the CE approach.

There are several potential improvements and extensions to the proposed approach. An immediate
objective to consider, of course, is the use of more realistic orbital trajectories that account for the complete
orbital dynamics of two satellites flying close to one another, such as the Cholessy-Wiltshire model.22 This
will allow the representation and analysis of more complex scenarios. This is part of on-going investigation.
The major drawback of the CE approach is that is computationally expensive. Although the scale of
the orbital dynamics is such that computing the optimal trajectories can be done in real-time, further
improvements are possible. For example, the CE formulation is amenable to parallelization, which can be
exploited to speed-up the solution.
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Figure 8. Comparison of 3σ uncertainty ellipses for the locations of the landmarks between a EKF (a) and an UKF (b)
when used in conjunction with a heuristic ”greedy” algorithm (dashed magenta) and the Cross Entropy optimization
(solid green). The initial uncertainty bounds (in black) and the ones obtained by not actuating the sensor (blue baseline)
are also shown.
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